{-# LANGUAGE CPP #-} {-# LANGUAGE PatternGuards #-} module Agda.TypeChecking.SizedTypes where import Prelude hiding (null) import Data.Function import Data.List hiding (null) import qualified Data.Map as Map import Agda.Interaction.Options import Agda.Syntax.Common import Agda.Syntax.Internal import Agda.TypeChecking.Monad import Agda.TypeChecking.Monad.Builtin import Agda.TypeChecking.Pretty import Agda.TypeChecking.Reduce import {-# SOURCE #-} Agda.TypeChecking.MetaVars import Agda.TypeChecking.Substitute import Agda.TypeChecking.Telescope import {-# SOURCE #-} Agda.TypeChecking.Conversion import {-# SOURCE #-} Agda.TypeChecking.Constraints import Agda.Utils.Except ( MonadError(catchError, throwError) ) import Agda.Utils.List import Agda.Utils.Maybe import Agda.Utils.Monad import Agda.Utils.Null import Agda.Utils.Size import Agda.Utils.Tuple import qualified Agda.Utils.Warshall as W #include "undefined.h" import Agda.Utils.Impossible ------------------------------------------------------------------------ -- * SIZELT stuff ------------------------------------------------------------------------ -- | Check whether a variable in the context is bounded by a size expression. -- If @x : Size< a@, then @a@ is returned. isBounded :: MonadTCM tcm => Nat -> tcm BoundedSize isBounded i = liftTCM $ do t <- reduce =<< typeOfBV i case ignoreSharing $ unEl t of Def x [Apply u] -> do sizelt <- getBuiltin' builtinSizeLt return $ if (Just (Def x []) == sizelt) then BoundedLt $ unArg u else BoundedNo _ -> return BoundedNo -- | Whenever we create a bounded size meta, add a constraint -- expressing the bound. -- In @boundedSizeMetaHook v tel a@, @tel@ includes the current context. boundedSizeMetaHook :: Term -> Telescope -> Type -> TCM () boundedSizeMetaHook v tel0 a = do res <- isSizeType a case res of Just (BoundedLt u) -> do n <- getContextSize let tel | n > 0 = telFromList $ genericDrop n $ telToList tel0 | otherwise = tel0 addCtxTel tel $ do v <- sizeSuc 1 $ raise (size tel) v `apply` teleArgs tel -- compareSizes CmpLeq v u size <- sizeType addConstraint $ ValueCmp CmpLeq size v u _ -> return () -- | @trySizeUniv cmp t m n x els1 y els2@ -- is called as a last resort when conversion checking @m `cmp` n : t@ -- failed for definitions @m = x els1@ and @n = y els2@, -- where the heads @x@ and @y@ are not equal. -- -- @trySizeUniv@ accounts for subtyping between SIZELT and SIZE, -- like @Size< i =< Size@. -- -- If it does not succeed it reports failure of conversion check. trySizeUniv :: Comparison -> Type -> Term -> Term -> QName -> Elims -> QName -> Elims -> TCM () trySizeUniv cmp t m n x els1 y els2 = do let failure = typeError $ UnequalTerms cmp m n t forceInfty u = compareSizes CmpEq (unArg u) =<< primSizeInf -- Get the SIZE built-ins. (size, sizelt) <- flip catchError (const failure) $ do Def size _ <- ignoreSharing <$> primSize Def sizelt _ <- ignoreSharing <$> primSizeLt return (size, sizelt) case (cmp, els1, els2) of -- Case @Size< _ <= Size@: true. (CmpLeq, [_], []) | x == sizelt && y == size -> return () -- Case @Size< u = Size@: forces @u = ∞@. (_, [Apply u], []) | x == sizelt && y == size -> forceInfty u (_, [], [Apply u]) | x == size && y == sizelt -> forceInfty u -- This covers all cases for SIZE and SIZELT. -- The remaining case is for @x@ and @y@ which are not size built-ins. _ -> failure ------------------------------------------------------------------------ -- * Size views that 'reduce'. ------------------------------------------------------------------------ -- | Compute the deep size view of a term. -- Precondition: sized types are enabled. deepSizeView :: Term -> TCM DeepSizeView deepSizeView v = do Def inf [] <- ignoreSharing <$> primSizeInf Def suc [] <- ignoreSharing <$> primSizeSuc let loop v = do v <- reduce v case ignoreSharing v of Def x [] | x == inf -> return $ DSizeInf Def x [Apply u] | x == suc -> sizeViewSuc_ suc <$> loop (unArg u) Var i [] -> return $ DSizeVar i 0 MetaV x us -> return $ DSizeMeta x us 0 _ -> return $ DOtherSize v loop v sizeMaxView :: Term -> TCM SizeMaxView sizeMaxView v = do inf <- getBuiltinDefName builtinSizeInf suc <- getBuiltinDefName builtinSizeSuc max <- getBuiltinDefName builtinSizeMax let loop v = do v <- reduce v case v of Def x [] | Just x == inf -> return $ [DSizeInf] Def x [Apply u] | Just x == suc -> maxViewSuc_ (fromJust suc) <$> loop (unArg u) Def x [Apply u1, Apply u2] | Just x == max -> maxViewMax <$> loop (unArg u1) <*> loop (unArg u2) Var i [] -> return $ [DSizeVar i 0] MetaV x us -> return $ [DSizeMeta x us 0] _ -> return $ [DOtherSize v] loop v ------------------------------------------------------------------------ -- * Size comparison that might add constraints. ------------------------------------------------------------------------ -- | Compare two sizes. compareSizes :: Comparison -> Term -> Term -> TCM () compareSizes cmp u v = do reportSDoc "tc.conv.size" 10 $ vcat [ text "Comparing sizes" , nest 2 $ sep [ prettyTCM u <+> prettyTCM cmp , prettyTCM v ] ] verboseS "tc.conv.size" 60 $ do u <- reduce u v <- reduce v reportSDoc "tc.conv.size" 60 $ nest 2 $ sep [ text (show u) <+> prettyTCM cmp , text (show v) ] us <- sizeMaxView u vs <- sizeMaxView v compareMaxViews cmp us vs -- | Compare two sizes in max view. compareMaxViews :: Comparison -> SizeMaxView -> SizeMaxView -> TCM () compareMaxViews cmp us vs = case (cmp, us, vs) of (CmpLeq, _, (DSizeInf : _)) -> return () (cmp, [u], [v]) -> compareSizeViews cmp u v (CmpLeq, us, [v]) -> forM_ us $ \ u -> compareSizeViews cmp u v (CmpLeq, us, vs) -> forM_ us $ \ u -> compareBelowMax u vs (CmpEq, us, vs) -> compareMaxViews CmpLeq us vs >> compareMaxViews CmpLeq vs us -- | @compareBelowMax u vs@ checks @u <= max vs@. Precondition: @size vs >= 2@ compareBelowMax :: DeepSizeView -> SizeMaxView -> TCM () compareBelowMax u vs = alt (dontAssignMetas $ alts $ map (compareSizeViews CmpLeq u) vs) $ do u <- unDeepSizeView u v <- unMaxView vs size <- sizeType addConstraint $ ValueCmp CmpLeq size u v where alt c1 c2 = c1 `catchError` const c2 alts [] = __IMPOSSIBLE__ alts [c] = c alts (c:cs) = c `alt` alts cs compareSizeViews :: Comparison -> DeepSizeView -> DeepSizeView -> TCM () compareSizeViews cmp s1' s2' = do size <- sizeType let (s1, s2) = removeSucs (s1', s2') withUnView cont = do u <- unDeepSizeView s1 v <- unDeepSizeView s2 cont u v failure = withUnView $ \ u v -> typeError $ UnequalTerms cmp u v size continue cmp = withUnView $ compareAtom cmp size case (cmp, s1, s2) of (CmpLeq, _, DSizeInf) -> return () (CmpEq, DSizeInf, DSizeInf) -> return () (CmpEq, DSizeVar{}, DSizeInf) -> failure (_ , DSizeInf, DSizeVar{}) -> failure (_ , DSizeInf, _ ) -> continue CmpEq (CmpLeq, DSizeVar i n, DSizeVar j m) | i == j -> unless (n <= m) failure (CmpLeq, DSizeVar i n, DSizeVar j m) | i /= j -> do res <- isBounded i case res of BoundedNo -> failure BoundedLt u' -> do -- now we have i < u', in the worst case i+1 = u' -- and we want to check i+n <= v v <- unDeepSizeView s2 if n > 0 then do u'' <- sizeSuc (n - 1) u' compareSizes cmp u'' v else compareSizes cmp u' =<< sizeSuc 1 v (CmpLeq, s1, s2) -> withUnView $ \ u v -> do unlessM (trivial u v) $ addConstraint $ ValueCmp CmpLeq size u v (CmpEq, s1, s2) -> continue cmp -- | Checked whether a size constraint is trivial (like @X <= X+1@). trivial :: Term -> Term -> TCM Bool trivial u v = do a@(e , n ) <- sizeExpr u b@(e', n') <- sizeExpr v let triv = e == e' && n <= n' -- Andreas, 2012-02-24 filtering out more trivial constraints fixes -- test/lib-succeed/SizeInconsistentMeta4.agda reportSDoc "tc.conv.size" 60 $ nest 2 $ sep [ if triv then text "trivial constraint" else empty , text (show a) <+> text "<=" , text (show b) ] return triv `catchError` \_ -> return False ------------------------------------------------------------------------ -- * Size constraints. ------------------------------------------------------------------------ -- | Test whether a problem consists only of size constraints. isSizeProblem :: ProblemId -> TCM Bool isSizeProblem pid = andM . map (isSizeConstraint . theConstraint) =<< getConstraintsForProblem pid -- | Test is a constraint speaks about sizes. isSizeConstraint :: Closure Constraint -> TCM Bool isSizeConstraint Closure{ clValue = ValueCmp _ s _ _ } = isJust <$> isSizeType s isSizeConstraint _ = return False -- | Find the size constraints. getSizeConstraints :: TCM [Closure Constraint] getSizeConstraints = do test <- isSizeTypeTest let sizeConstraint cl@Closure{ clValue = ValueCmp CmpLeq s _ _ } | isJust (test s) = Just cl sizeConstraint _ = Nothing mapMaybe (sizeConstraint . theConstraint) <$> getAllConstraints -- | Return a list of size metas and their context. getSizeMetas :: Bool -> TCM [(MetaId, Type, Telescope)] getSizeMetas interactionMetas = do test <- isSizeTypeTest catMaybes <$> do getOpenMetas >>= do mapM $ \ m -> do let no = return Nothing mi <- lookupMeta m case mvJudgement mi of HasType _ a -> do TelV tel b <- telView a -- b is reduced caseMaybe (test b) no $ \ _ -> do let yes = return $ Just (m, a, tel) if interactionMetas then yes else do ifM (isJust <$> isInteractionMeta m) no yes _ -> no {- ROLLED BACK getSizeMetas :: TCM ([(MetaId, Int)], [SizeConstraint]) getSizeMetas = do ms <- getOpenMetas test <- isSizeTypeTest let sizeCon m = do let nothing = return ([], []) mi <- lookupMeta m case mvJudgement mi of HasType _ a -> do TelV tel b <- telView =<< instantiateFull a let noConstr = return ([(m, size tel)], []) case test b of Nothing -> nothing Just BoundedNo -> noConstr Just (BoundedLt u) -> noConstr {- WORKS NOT Just (BoundedLt u) -> flip catchError (const $ noConstr) $ do -- we assume the metavariable is used in an -- extension of its creation context ctxIds <- getContextId let a = SizeMeta m $ take (size tel) $ reverse ctxIds (b, n) <- sizeExpr u return ([(m, size tel)], [Leq a (n-1) b]) -} _ -> nothing (mss, css) <- unzip <$> mapM sizeCon ms return (concat mss, concat css) -} ------------------------------------------------------------------------ -- * Size constraint solving. ------------------------------------------------------------------------ -- | Atomic size expressions. data SizeExpr = SizeMeta MetaId [Int] -- ^ A size meta applied to de Bruijn levels. | Rigid Int -- ^ A de Bruijn level. deriving (Eq) instance Show SizeExpr where show (SizeMeta m _) = "X" ++ show (fromIntegral m :: Int) show (Rigid i) = "c" ++ show i -- | Size constraints we can solve. data SizeConstraint = Leq SizeExpr Int SizeExpr -- ^ @Leq a +n b@ represents @a =< b + n@. -- @Leq a -n b@ represents @a + n =< b@. instance Show SizeConstraint where show (Leq a n b) | n == 0 = show a ++ " =< " ++ show b | n > 0 = show a ++ " =< " ++ show b ++ " + " ++ show n | otherwise = show a ++ " + " ++ show (-n) ++ " =< " ++ show b -- | Compute a set of size constraints that all live in the same context -- from constraints over terms of type size that may live in different -- contexts. -- -- cf. 'Agda.TypeChecking.LevelConstraints.simplifyLevelConstraint' computeSizeConstraints :: [Closure Constraint] -> TCM [SizeConstraint] computeSizeConstraints [] = return [] -- special case to avoid maximum [] computeSizeConstraints cs = catMaybes <$> mapM computeSizeConstraint leqs where -- get the constraints plus contexts they are defined in gammas = map (envContext . clEnv) cs ls = map clValue cs -- compute the longest context (common water level) -- gamma = maximumBy (compare `on` size) gammas -- waterLevel = size gamma ns = map size gammas waterLevel = maximum ns -- convert deBruijn indices to deBruijn levels to -- enable comparing constraints under different contexts -- leqs = zipWith raise (map ((waterLevel -) . size) gammas) ls leqs = zipWith raise (map (waterLevel -) ns) ls -- | Turn a constraint over de Bruijn levels into a size constraint. computeSizeConstraint :: Constraint -> TCM (Maybe SizeConstraint) computeSizeConstraint c = case c of ValueCmp CmpLeq _ u v -> do reportSDoc "tc.size.solve" 50 $ sep [ text "converting size constraint" , prettyTCM c ] (a, n) <- sizeExpr u (b, m) <- sizeExpr v return $ Just $ Leq a (m - n) b `catchError` \ err -> case err of PatternErr{} -> return Nothing _ -> throwError err _ -> __IMPOSSIBLE__ -- | Turn a term with de Bruijn levels into a size expression with offset. -- -- Throws a 'patternViolation' if the term isn't a proper size expression. sizeExpr :: Term -> TCM (SizeExpr, Int) sizeExpr u = do u <- reduce u -- Andreas, 2009-02-09. -- This is necessary to surface the solutions of metavariables. reportSDoc "tc.conv.size" 60 $ text "sizeExpr:" <+> prettyTCM u s <- sizeView u case s of SizeInf -> patternViolation SizeSuc u -> mapSnd (+1) <$> sizeExpr u OtherSize u -> case ignoreSharing u of Var i [] -> return (Rigid i, 0) -- i is already a de Bruijn level. MetaV m es | Just xs <- mapM isVar es, fastDistinct xs -> return (SizeMeta m xs, 0) _ -> patternViolation where isVar (Proj{}) = Nothing isVar (Apply v) = case ignoreSharing $ unArg v of Var i [] -> Just i _ -> Nothing -- | Compute list of size metavariables with their arguments -- appearing in a constraint. flexibleVariables :: SizeConstraint -> [(MetaId, [Int])] flexibleVariables (Leq a _ b) = flex a ++ flex b where flex (Rigid _) = [] flex (SizeMeta m xs) = [(m, xs)] -- | Convert size constraint into form where each meta is applied -- to levels @0,1,..,n-1@ where @n@ is the arity of that meta. -- -- @X[σ] <= t@ beomes @X[id] <= t[σ^-1]@ -- -- @X[σ] ≤ Y[τ]@ becomes @X[id] ≤ Y[τ[σ^-1]]@ or @X[σ[τ^1]] ≤ Y[id]@ -- whichever is defined. If none is defined, we give up. -- canonicalizeSizeConstraint :: SizeConstraint -> Maybe SizeConstraint canonicalizeSizeConstraint c@(Leq a n b) = case (a,b) of (Rigid{}, Rigid{}) -> return c (SizeMeta m xs, Rigid i) -> do j <- findIndex (==i) xs return $ Leq (SizeMeta m [0..size xs-1]) n (Rigid j) (Rigid i, SizeMeta m xs) -> do j <- findIndex (==i) xs return $ Leq (Rigid j) n (SizeMeta m [0..size xs-1]) (SizeMeta m xs, SizeMeta l ys) -- try to invert xs on ys | Just ys' <- mapM (\ y -> findIndex (==y) xs) ys -> return $ Leq (SizeMeta m [0..size xs-1]) n (SizeMeta l ys') -- try to invert ys on xs | Just xs' <- mapM (\ x -> findIndex (==x) ys) xs -> return $ Leq (SizeMeta m xs') n (SizeMeta l [0..size ys-1]) -- give up | otherwise -> Nothing -- | Main function. solveSizeConstraints :: TCM () solveSizeConstraints = whenM haveSizedTypes $ do reportSLn "tc.size.solve" 70 $ "Considering to solve size constraints" cs0 <- getSizeConstraints cs <- computeSizeConstraints cs0 ms <- getSizeMetas True -- get all size metas, also interaction metas when (not (null cs) || not (null ms)) $ do reportSLn "tc.size.solve" 10 $ "Solving size constraints " ++ show cs cs <- return $ mapMaybe canonicalizeSizeConstraint cs reportSLn "tc.size.solve" 10 $ "Canonicalized constraints: " ++ show cs let -- Error for giving up cannotSolve = typeError . GenericDocError =<< vcat (text "Cannot solve size constraints" : map prettyTCM cs0) -- Size metas in constraints. metas0 :: [(MetaId, Int)] -- meta id + arity metas0 = nub $ map (mapSnd length) $ concatMap flexibleVariables cs -- Unconstrained size metas that do not occur in constraints. metas1 :: [(MetaId, Int)] metas1 = forMaybe ms $ \ (m, _, tel) -> maybe (Just (m, size tel)) (const Nothing) $ lookup m metas0 -- All size metas metas = metas0 ++ metas1 reportSLn "tc.size.solve" 15 $ "Metas: " ++ show metas0 ++ ", " ++ show metas1 verboseS "tc.size.solve" 20 $ -- debug print the type of all size metas forM_ metas $ \ (m, _) -> reportSDoc "tc.size.solve" 20 $ prettyTCM =<< mvJudgement <$> lookupMeta m -- Run the solver. unlessM (oldSolver metas cs) cannotSolve -- Double-checking the solution. -- Andreas, 2012-09-19 -- The returned solution might not be consistent with -- the hypotheses on rigid vars (j : Size< i). -- Thus, we double check that all size constraints -- have been solved correctly. flip catchError (const cannotSolve) $ noConstraints $ forM_ cs0 $ \ cl -> enterClosure cl solveConstraint -- | Old solver for size constraints using "Agda.Utils.Warshall". oldSolver :: [(MetaId, Int)] -- ^ Size metas and their arity. -> [SizeConstraint] -- ^ Size constraints (in preprocessed form). -> TCM Bool -- ^ Returns @False@ if solver fails. oldSolver metas cs = do let cannotSolve = return False mkFlex (m, ar) = W.NewFlex (fromIntegral m) $ \ i -> fromIntegral i < ar mkConstr (Leq a n b) = W.Arc (mkNode a) n (mkNode b) mkNode (Rigid i) = W.Rigid $ W.RVar i mkNode (SizeMeta m _) = W.Flex $ fromIntegral m -- run the Warshall solver case W.solve $ map mkFlex metas ++ map mkConstr cs of Nothing -> cannotSolve Just sol -> do reportSLn "tc.size.solve" 10 $ "Solved constraints: " ++ show sol s <- primSizeSuc infty <- primSizeInf let suc v = s `apply` [defaultArg v] plus v 0 = v plus v n = suc $ plus v (n - 1) inst (i, e) = do let m = fromIntegral i -- meta variable identifier ar = fromMaybe __IMPOSSIBLE__ $ lookup m metas -- meta var arity term (W.SizeConst W.Infinite) = infty term (W.SizeVar j n) | j < ar = plus (var $ ar - j - 1) n term _ = __IMPOSSIBLE__ tel = replicate ar $ defaultArg "s" -- convert size expression to term v = term e reportSDoc "tc.size.solve" 20 $ sep [ pretty m <+> text ":=" , nest 2 $ prettyTCM v ] -- Andreas, 2012-09-25: do not assign interaction metas to \infty let isInf (W.SizeConst W.Infinite) = True isInf _ = False unlessM ((isJust <$> isInteractionMeta m) `and2M` return (isInf e)) $ assignTerm m tel v mapM_ inst $ Map.toList sol return True