{-# LANGUAGE CPP #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE PatternGuards #-} module Agda.TypeChecking.Polarity where import Control.Applicative import Control.Monad.State import Data.List import Data.Maybe import Data.Traversable (traverse) import Agda.Syntax.Abstract.Name import Agda.Syntax.Common import Agda.Syntax.Internal import Agda.Syntax.Internal.Pattern import Agda.TypeChecking.Monad import Agda.TypeChecking.Pretty import Agda.TypeChecking.Substitute import Agda.TypeChecking.Telescope import Agda.TypeChecking.Reduce import Agda.TypeChecking.Free hiding (Occurrence(..)) import Agda.TypeChecking.Positivity.Occurrence import Agda.Interaction.Options import Agda.Utils.List import Agda.Utils.Maybe ( whenNothingM ) import Agda.Utils.Monad import Agda.Utils.Permutation import Agda.Utils.Size #include "undefined.h" import Agda.Utils.Impossible ------------------------------------------------------------------------ -- * Polarity lattice. ------------------------------------------------------------------------ -- | Infimum on the information lattice. -- 'Invariant' is bottom (dominant for inf), -- 'Nonvariant' is top (neutral for inf). (/\) :: Polarity -> Polarity -> Polarity Nonvariant /\ b = b a /\ Nonvariant = a a /\ b | a == b = a | otherwise = Invariant -- | 'Polarity' negation, swapping monotone and antitone. neg :: Polarity -> Polarity neg Covariant = Contravariant neg Contravariant = Covariant neg Invariant = Invariant neg Nonvariant = Nonvariant -- | What is the polarity of a function composition? composePol :: Polarity -> Polarity -> Polarity composePol Nonvariant _ = Nonvariant composePol _ Nonvariant = Nonvariant composePol Invariant _ = Invariant composePol Covariant x = x composePol Contravariant x = neg x polFromOcc :: Occurrence -> Polarity polFromOcc o = case o of GuardPos -> Covariant StrictPos -> Covariant JustPos -> Covariant JustNeg -> Contravariant Mixed -> Invariant Unused -> Nonvariant ------------------------------------------------------------------------ -- * Auxiliary functions ------------------------------------------------------------------------ -- | Get the next polarity from a list, 'Invariant' if empty. nextPolarity :: [Polarity] -> (Polarity, [Polarity]) nextPolarity [] = (Invariant, []) nextPolarity (p : ps) = (p, ps) -- | Replace 'Nonvariant' by 'Covariant'. -- (Arbitrary bias, but better than 'Invariant', see issue 1596). purgeNonvariant :: [Polarity] -> [Polarity] purgeNonvariant = map (\ p -> if p == Nonvariant then Covariant else p) ------------------------------------------------------------------------ -- * Computing the polarity of a symbol. ------------------------------------------------------------------------ -- | Main function of this module. computePolarity :: QName -> TCM () computePolarity x = inConcreteOrAbstractMode x $ do reportSLn "tc.polarity.set" 25 $ "Computing polarity of " ++ show x -- get basic polarity from positivity analysis def <- getConstInfo x let npars = droppedPars def let pol0 = replicate npars Nonvariant ++ map polFromOcc (defArgOccurrences def) reportSLn "tc.polarity.set" 15 $ "Polarity of " ++ show x ++ " from positivity: " ++ show pol0 {- -- get basic polarity from shape of def (arguments matched on or not?) def <- getConstInfo x let usagePol = usagePolarity $ theDef def reportSLn "tc.polarity.set" 15 $ "Polarity of " ++ show x ++ " from definition form: " ++ show usagePol let n = genericLength usagePol -- n <- getArity x reportSLn "tc.polarity.set" 20 $ " arity = " ++ show n -- refine polarity by positivity information pol0 <- zipWith (/\) usagePol <$> mapM getPol [0..n - 1] reportSLn "tc.polarity.set" 15 $ "Polarity of " ++ show x ++ " from positivity: " ++ show pol0 -} -- compute polarity of sized types pol1 <- sizePolarity x pol0 -- refine polarity again by using type information let t = defType def -- Instantiation takes place in Rules.Decl.instantiateDefinitionType -- t <- instantiateFull t -- Andreas, 2014-04-11 Issue 1099: needed for -- -- variable occurrence test in dependentPolarity. reportSDoc "tc.polarity.set" 15 $ text "Refining polarity with type " <+> prettyTCM t pol <- dependentPolarity t (enablePhantomTypes (theDef def) pol1) pol1 reportSLn "tc.polarity.set" 10 $ "Polarity of " ++ show x ++ ": " ++ show pol -- set the polarity in the signature setPolarity x $ drop npars pol -- purgeNonvariant pol -- temporarily disable non-variance -- make 'Nonvariant' args 'UnusedArg' in type and clause telescope -- Andreas 2012-11-18: skip this for abstract definitions (fixing issue 755). -- This means that the most precise type for abstract definitions -- is not available, even to other abstract definitions. -- A proper fix would be to introduce a second type for use within abstract. -- -- Andreas, 2015-07-01: I thought one should do this for -- abstract local definitions in @where@ blocks to fix Issue 1366b, --but it is not necessary. -- t <- if (defAbstract def == AbstractDef) && not (isAnonymousModuleName $ qnameModule x) t <- if (defAbstract def == AbstractDef) then return t else nonvariantToUnusedArg pol t modifySignature $ updateDefinition x $ updateTheDef (nonvariantToUnusedArgInDef pol) . updateDefType (const t) -- | Data and record parameters are used as phantom arguments all over -- the test suite (and possibly in user developments). -- @enablePhantomTypes@ turns 'Nonvariant' parameters to 'Covariant' -- to enable phantoms. enablePhantomTypes :: Defn -> [Polarity] -> [Polarity] enablePhantomTypes def pol = case def of Datatype{ dataPars = np } -> enable np Record { recPars = np } -> enable np _ -> pol where enable np = let (pars, rest) = genericSplitAt np pol in purgeNonvariant pars ++ rest {- UNUSED -- | Extract a basic approximate polarity info from the shape of definition. -- Arguments that are matched against get 'Invariant', others 'Nonvariant'. -- For data types, parameters get 'Nonvariant', indices 'Invariant'. usagePolarity :: Defn -> [Polarity] usagePolarity def = case def of Axiom{} -> [] Function{ funClauses = [] } -> [] Function{ funClauses = cs } -> usage $ map clausePats cs Datatype{ dataPars = np, dataIxs = ni } -> genericReplicate np Nonvariant Record{ recPars = n } -> genericReplicate n Nonvariant Constructor{} -> [] Primitive{} -> [] where usage = foldr1 (zipWith (/\)) . map (map (usagePat . unArg)) usagePat VarP{} = Nonvariant usagePat DotP{} = Nonvariant usagePat ConP{} = Invariant usagePat LitP{} = Invariant -} -- | Make arguments 'Invariant' if the type of a not-'Nonvariant' -- later argument depends on it. -- Also, enable phantom types by turning 'Nonvariant' into something -- else if it is a data/record parameter but not a size argument. [See issue 1596] -- -- Precondition: the "phantom" polarity list has the same length as the polarity list. dependentPolarity :: Type -> [Polarity] -> [Polarity] -> TCM [Polarity] dependentPolarity t _ [] = return [] -- all remaining are 'Invariant' dependentPolarity t [] (_ : _) = __IMPOSSIBLE__ dependentPolarity t (q:qs) pols@(p:ps) = do t <- reduce $ unEl t case ignoreSharing t of Pi dom b -> do let c = absBody b ps <- dependentPolarity c qs ps let mp = ifM (isJust <$> isSizeType (unDom dom)) (return p) (return q) p <- case b of Abs{} | p /= Invariant -> -- Andreas, 2014-04-11 see Issue 1099 -- Free variable analysis is not in the monad, -- hence metas must have been instantiated before! ifM (relevantInIgnoringNonvariant 0 c ps) (return Invariant) mp _ -> mp return $ p : ps _ -> return pols -- | Check whether a variable is relevant in a type expression, -- ignoring domains of non-variant arguments. relevantInIgnoringNonvariant :: Nat -> Type -> [Polarity] -> TCM Bool relevantInIgnoringNonvariant i t [] = return $ i `relevantInIgnoringSortAnn` t relevantInIgnoringNonvariant i t (p:ps) = do t <- reduce $ unEl t case ignoreSharing t of Pi a b -> if p /= Nonvariant && i `relevantInIgnoringSortAnn` a then return True else relevantInIgnoringNonvariant (i + 1) (absBody b) ps _ -> return $ i `relevantInIgnoringSortAnn` t -- * Turn polarity 'Nonvariant' into relevance 'UnusedArg' -- | Record information that an argument is unused in 'Relevance'. mkUnused :: Relevance -> Relevance mkUnused Relevant = UnusedArg -- commenting out this line switches off 'UnusedArg' polarity machinery mkUnused r = r -- 'Irrelevant' is more informative than 'UnusedArg'. -- | Improve 'Relevance' information in a type by polarity information. -- 'Nonvariant' becomes 'UnusedArg'. nonvariantToUnusedArg :: [Polarity] -> Type -> TCM Type nonvariantToUnusedArg [] t = return t nonvariantToUnusedArg (p:ps) t = do t <- reduce t case ignoreSharingType t of El s (Pi a b) -> do let a' = if p == Nonvariant then mapRelevance mkUnused a else a El s . Pi a' <$> traverse (nonvariantToUnusedArg ps) b -- we do not lift properly but bound variables do not matter for reduce -- also, we do not maintain the context _ -> return t -- | Propagate 'Nonvariant' 'Polarity' to 'Relevance' information in -- 'Arg's of a defined symbol. nonvariantToUnusedArgInDef :: [Polarity] -> Defn -> Defn nonvariantToUnusedArgInDef pol def = case def of Function { funClauses = cl } -> def { funClauses = map (nonvariantToUnusedArgInClause pol) cl } _ -> def nonvariantToUnusedArgInClause :: [Polarity] -> Clause -> Clause nonvariantToUnusedArgInClause pol cl@Clause{clauseTel = tel, namedClausePats = ps} = let adjPat p Nonvariant | properlyMatching (namedArg p) = __IMPOSSIBLE__ -- if we match, we cannot be Nonvariant (sanity check) | otherwise = mapRelevance mkUnused p adjPat p _ = p -- change relevance of 'Nonvariant' arguments to 'UnusedArg' -- note that the associated patterns cannot be 'ConP' or 'LitP' ps' = zipWith adjPat ps (pol ++ repeat Invariant) -- get a list of 'Relevance's for the variables bound in the pattern rels0 = getRelevance <$> (concatMap (patternVars . fmap namedThing) ps') -- this is the order the variables appear in the telescope perm = clausePerm cl rels = permute perm rels0 -- now improve 'Relevance' in 'Telescope' by pattern relevance updateDom UnusedArg = mapRelevance mkUnused updateDom r = id tel' = telFromList $ zipWith updateDom rels $ telToList tel in cl { namedClausePats = ps', clauseTel = tel'} ------------------------------------------------------------------------ -- * Sized types ------------------------------------------------------------------------ -- | Hack for polarity of size indices. -- As a side effect, this sets the positivity of the size index. -- See test/succeed/PolaritySizeSucData.agda for a case where this is needed. sizePolarity :: QName -> [Polarity] -> TCM [Polarity] sizePolarity d pol0 = do let exit = return pol0 ifM (not . optSizedTypes <$> pragmaOptions) exit $ do def <- getConstInfo d case theDef def of Datatype{ dataPars = np, dataCons = cons } -> do let TelV tel _ = telView' $ defType def (parTel, ixTel) = genericSplitAt np $ telToList tel case ixTel of [] -> exit -- No size index Dom _ (_, a) : _ -> ifM ((/= Just BoundedNo) <$> isSizeType a) exit $ do -- we assume the size index to be 'Covariant' ... let pol = genericTake np pol0 polCo = pol ++ [Covariant] polIn = pol ++ [Invariant] setPolarity d $ polCo -- and seek confirm it by looking at the constructor types let check c = do t <- defType <$> getConstInfo c addCtxTel (telFromList parTel) $ do let pars = map (defaultArg . var) $ downFrom np TelV conTel target <- telView =<< (t `piApplyM` pars) case conTel of EmptyTel -> return False -- no size argument ExtendTel arg tel -> ifM ((/= Just BoundedNo) <$> isSizeType (unDom arg)) (return False) $ do -- also no size argument -- First constructor argument has type Size -- check that only positive occurences in tel let isPos = underAbstraction arg tel $ \ tel -> do pols <- zipWithM polarity [0..] $ map (snd . unDom) $ telToList tel reportSDoc "tc.polarity.size" 25 $ text $ "to pass size polarity check, the following polarities need all to be covariant: " ++ show pols return $ all (`elem` [Nonvariant, Covariant]) pols -- check that the size argument appears in the -- right spot in the target type let sizeArg = size tel isLin = addContext conTel $ checkSizeIndex d np sizeArg target ok <- isPos `and2M` isLin reportSDoc "tc.polarity.size" 15 $ text "constructor" <+> prettyTCM c <+> text (if ok then "passes" else "fails") <+> text "size polarity check" return ok ifNotM (andM $ map check cons) (return polIn) -- no, does not conform to the rules of sized types $ do -- yes, we have a sized type here -- Andreas, 2015-07-01 -- As a side effect, mark the size also covariant for subsequent -- positivity checking (which feeds back into polarity analysis). modifyArgOccurrences d $ \ occ -> take np occ ++ [JustPos] return polCo _ -> exit -- | @checkSizeIndex d np i a@ checks that constructor target type @a@ -- has form @d ps (↑ i) idxs@ where @|ps| = np@. -- -- Precondition: @a@ is reduced and of form @d ps idxs0@. checkSizeIndex :: QName -> Nat -> Nat -> Type -> TCM Bool checkSizeIndex d np i a = do reportSDoc "tc.polarity.size" 15 $ withShowAllArguments $ text "checking that constructor target type " <+> prettyTCM a <+> text "is data type " <+> prettyTCM d <+> text "has size index successor of " <+> prettyTCM (var i) case ignoreSharing $ unEl a of Def d0 es -> do whenNothingM (sameDef d d0) __IMPOSSIBLE__ s <- sizeView $ unArg ix case s of SizeSuc v | Var j [] <- ignoreSharing v, i == j -> return $ not $ freeIn i (pars ++ ixs) _ -> return False where (pars, Apply ix : ixs) = genericSplitAt np es _ -> __IMPOSSIBLE__ -- | @polarities i a@ computes the list of polarities of de Bruijn index @i@ -- in syntactic entity @a@. class HasPolarity a where polarities :: Nat -> a -> TCM [Polarity] -- | @polarity i a@ computes the polarity of de Bruijn index @i@ -- in syntactic entity @a@ by taking the infimum of all 'polarities'. polarity :: HasPolarity a => Nat -> a -> TCM Polarity polarity i x = do ps <- polarities i x case ps of [] -> return Nonvariant ps -> return $ foldr1 (/\) ps instance HasPolarity a => HasPolarity (Arg a) where polarities i = polarities i . unArg instance HasPolarity a => HasPolarity (Dom a) where polarities i = polarities i . unDom instance HasPolarity a => HasPolarity (Abs a) where polarities i (Abs _ b) = polarities (i + 1) b polarities i (NoAbs _ v) = polarities i v instance HasPolarity a => HasPolarity [a] where polarities i xs = concat <$> mapM (polarities i) xs instance (HasPolarity a, HasPolarity b) => HasPolarity (a, b) where polarities i (x, y) = (++) <$> polarities i x <*> polarities i y instance HasPolarity Type where polarities i (El _ v) = polarities i v instance HasPolarity a => HasPolarity (Elim' a) where polarities i (Proj p) = return [] polarities i (Apply a) = polarities i a instance HasPolarity Term where polarities i v = do v <- instantiate v case v of -- Andreas, 2012-09-06: taking the polarities of the arguments -- without taking the variance of the function into account seems wrong. Var n ts | n == i -> (Covariant :) . map (const Invariant) <$> polarities i ts | otherwise -> map (const Invariant) <$> polarities i ts Lam _ t -> polarities i t Lit _ -> return [] Level l -> polarities i l Def x ts -> do pols <- getPolarity x let compose p ps = map (composePol p) ps concat . zipWith compose (pols ++ repeat Invariant) <$> mapM (polarities i) ts Con _ ts -> polarities i ts -- constructors can be seen as monotone in all args. Pi a b -> (++) <$> (map neg <$> polarities i a) <*> polarities i b Sort s -> return [] -- polarities i s -- return [] MetaV _ ts -> map (const Invariant) <$> polarities i ts Shared p -> polarities i $ derefPtr p DontCare t -> polarities i t -- return [] instance HasPolarity Level where polarities i (Max as) = polarities i as instance HasPolarity PlusLevel where polarities i ClosedLevel{} = return [] polarities i (Plus _ l) = polarities i l instance HasPolarity LevelAtom where polarities i l = case l of MetaLevel _ vs -> map (const Invariant) <$> polarities i vs BlockedLevel _ v -> polarities i v NeutralLevel _ v -> polarities i v UnreducedLevel v -> polarities i v