{-# LANGUAGE CPP #-} module Agda.Interaction.MakeCase where import Prelude hiding (mapM, mapM_, null) import Control.Applicative hiding (empty) import Control.Monad hiding (mapM, mapM_, forM) import qualified Data.Map as Map import qualified Data.List as List import Data.Maybe import Data.Traversable import Agda.Syntax.Common import Agda.Syntax.Position import qualified Agda.Syntax.Concrete as C import qualified Agda.Syntax.Abstract as A import qualified Agda.Syntax.Abstract.Views as A import qualified Agda.Syntax.Info as A import Agda.Syntax.Internal import Agda.Syntax.Internal.Pattern import Agda.Syntax.Scope.Base ( ResolvedName(..), Binder(..) ) import Agda.Syntax.Scope.Monad ( resolveName ) import Agda.Syntax.Translation.ConcreteToAbstract import Agda.Syntax.Translation.InternalToAbstract import Agda.TypeChecking.Monad import Agda.TypeChecking.Coverage import Agda.TypeChecking.Coverage.Match ( SplitPatVar(..) , SplitPattern , applySplitPSubst , fromSplitPatterns ) import Agda.TypeChecking.Pretty import Agda.TypeChecking.RecordPatterns import Agda.TypeChecking.Reduce import Agda.TypeChecking.Substitute import Agda.TypeChecking.Irrelevance import Agda.TypeChecking.Rules.LHS.Implicit import Agda.TheTypeChecker import Agda.Interaction.Options import Agda.Interaction.BasicOps import Agda.Utils.Function import Agda.Utils.Functor import Agda.Utils.Lens import Agda.Utils.List import Agda.Utils.Monad import Agda.Utils.Null import qualified Agda.Utils.Pretty as P import Agda.Utils.Singleton import Agda.Utils.Size import qualified Agda.Utils.HashMap as HMap #include "undefined.h" import Agda.Utils.Impossible type CaseContext = Maybe ExtLamInfo -- | Parse variables (visible or hidden), returning their de Bruijn indices. -- Used in 'makeCase'. parseVariables :: QName -- ^ The function name. -> Telescope -- ^ The telescope of the clause we are splitting. -> InteractionId -- ^ The hole of this function we are working on. -> Range -- ^ The range of this hole. -> [String] -- ^ The words the user entered in this hole (variable names). -> TCM [Int] -- ^ The computed de Bruijn indices of the variables to split on. parseVariables f tel ii rng ss = do -- Get into the context of the meta. mId <- lookupInteractionId ii updateMetaVarRange mId rng mi <- getMetaInfo <$> lookupMeta mId enterClosure mi $ \ r -> do -- Get printed representation of variables in context. n <- getContextSize xs <- forM (downFrom n) $ \ i -> do (,i) . P.render <$> prettyTCM (var i) -- We might be under some lambdas, in which case the context -- is bigger than the number of pattern variables. let nlocals = n - size tel unless (nlocals >= 0) __IMPOSSIBLE__ reportSDoc "interaction.case" 20 $ do m <- currentModule tel <- lookupSection m fv <- getDefFreeVars f vcat [ text "parseVariables:" , text "current module =" <+> prettyTCM m , text "current section =" <+> inTopContext (prettyTCM tel) , text $ "function's fvs = " ++ show fv , text $ "number of locals= " ++ show nlocals ] -- Resolve each string to a variable. forM ss $ \ s -> do let failNotVar = typeError $ GenericError $ "Not a variable: " ++ s failUnbound = typeError $ GenericError $ "Unbound variable " ++ s failAmbiguous = typeError $ GenericError $ "Ambiguous variable " ++ s failLocal = typeError $ GenericError $ "Cannot split on local variable " ++ s failModuleBound = typeError $ GenericError $ "Cannot split on module parameter " ++ s failLetBound v = typeError . GenericError $ "cannot split on let-bound variable " ++ s failInstantiatedVar v = typeError . GenericDocError =<< sep [ text $ "Cannot split on variable " ++ s ++ ", because it is bound to" , prettyTCM v ] -- Note: the range in the concrete name is only approximate. resName <- resolveName $ C.QName $ C.Name r $ C.stringNameParts s case resName of -- Fail if s is a name, but not of a variable. DefinedName{} -> failNotVar FieldName{} -> failNotVar ConstructorName{} -> failNotVar PatternSynResName{} -> failNotVar -- If s is a variable name in scope, get its de Bruijn index -- via the type checker. VarName x b -> do (v, _) <- getVarInfo x case (v , b) of -- Slightly dangerous: the pattern variable `x` may be -- refined to the module parameter `var i`. But in this -- case the instantiation could as well be the other way -- around, so the new clauses will still make sense. (Var i [] , PatternBound) -> do when (i < nlocals) __IMPOSSIBLE__ return $ i - nlocals (Var i [] , LambdaBound) | i < nlocals -> failLocal | otherwise -> failModuleBound (Var i [] , LetBound) -> failLetBound v (_ , _ ) -> failInstantiatedVar v -- If s is not a name, compare it to the printed variable representation. -- This fallback is to enable splitting on hidden variables. UnknownName -> do case filter ((s ==) . fst) xs of [] -> failUnbound [(_,i)] | i < nlocals -> failLocal | otherwise -> return $ i - nlocals -- Issue 1325: Variable names in context can be ambiguous. _ -> failAmbiguous -- | Lookup the clause for an interaction point in the signature. -- Returns the CaseContext, the clause itself, and a list of previous clauses -- Andreas, 2016-06-08, issue #289 and #2006. -- This replace the old findClause hack (shutter with disgust). getClauseForIP :: QName -> Int -> TCM (CaseContext, Clause, [Clause]) getClauseForIP f clauseNo = do (theDef <$> getConstInfo f) >>= \case Function{funClauses = cs, funExtLam = extlam} -> do let (cs1,cs2) = fromMaybe __IMPOSSIBLE__ $ splitExactlyAt clauseNo cs c = fromMaybe __IMPOSSIBLE__ $ headMaybe cs2 return (extlam, c, cs1) d -> do reportSDoc "impossible" 10 $ vcat [ text "getClauseForIP" <+> prettyTCM f <+> text (show clauseNo) <+> text "received" , text (show d) ] __IMPOSSIBLE__ -- | Entry point for case splitting tactic. makeCase :: InteractionId -> Range -> String -> TCM (QName, CaseContext, [A.Clause]) makeCase hole rng s = withInteractionId hole $ do -- Get function clause which contains the interaction point. InteractionPoint { ipMeta = mm, ipClause = ipCl} <- lookupInteractionPoint hole let meta = fromMaybe __IMPOSSIBLE__ mm (f, clauseNo, rhs) <- case ipCl of IPClause f clauseNo rhs-> return (f, clauseNo, rhs) IPNoClause -> typeError $ GenericError $ "Cannot split here, as we are not in a function definition" (casectxt, clause, prevClauses) <- getClauseForIP f clauseNo let perm = fromMaybe __IMPOSSIBLE__ $ clausePerm clause tel = clauseTel clause ps = namedClausePats clause reportSDoc "interaction.case" 10 $ vcat [ text "splitting clause:" , nest 2 $ vcat [ text "f =" <+> prettyTCM f , text "context =" <+> ((inTopContext . prettyTCM) =<< getContextTelescope) , text "tel =" <+> (inTopContext . prettyTCM) tel , text "perm =" <+> text (show perm) , text "ps =" <+> text (show ps) ] ] -- Check split variables. let vars = words s -- If the user just entered ".", do nothing. -- This will expand an ellipsis, if present. if concat vars == "." then do cl <- makeAbstractClause f rhs $ clauseToSplitClause clause return (f, casectxt, [cl]) -- If we have no split variables, split on result. else if null vars then do -- Andreas, 2017-07-24, issue #2654: -- When we introduce projection patterns in an extended lambda, -- we need to print them postfix. let postProjInExtLam = applyWhen (isJust casectxt) $ withPragmaOptions $ \ opt -> opt { optPostfixProjections = True } (piTel, sc) <- fixTarget $ clauseToSplitClause clause -- Andreas, 2015-05-05 If we introduced new function arguments -- do not split on result. This might be more what the user wants. -- To split on result, he can then C-c C-c again. -- Andreas, 2015-05-21 Issue 1516: However, if only hidden -- arguments are introduced, C-c C-c virtually does nothing -- (as they are not shown and get lost on the way to emacs and back). newPats <- if null piTel then return False else do -- If there were any pattern introduce, they will only have effect -- if any of them is shown by the printer imp <- optShowImplicit <$> pragmaOptions return $ imp || any visible (telToList piTel) scs <- if newPats then return [sc] else postProjInExtLam $ do res <- splitResult f sc case res of Left err -> do -- Andreas, 2017-12-16, issue #2871 -- If there is nothing to split, introduce trailing hidden arguments. -- Get trailing hidden pattern variables let trailingPatVars :: [NamedArg DBPatVar] trailingPatVars = takeWhileJust isVarP $ reverse ps isVarP (Arg ai (Named n (VarP _ x))) = Just $ Arg ai $ Named n x isVarP _ = Nothing -- If all are already coming from the user, there is really nothing todo! when (all ((UserWritten ==) . getOrigin) trailingPatVars) $ do typeError . GenericDocError =<< do text "Cannot split on result here, because" <+> prettyTCM err -- Otherwise, we make these user-written let xs = map (dbPatVarIndex . namedArg) trailingPatVars return [makePatternVarsVisible xs sc] Right cov -> ifNotM (optCopatterns <$> pragmaOptions) failNoCop $ {-else-} do -- Andreas, 2016-05-03: do not introduce function arguments after projection. -- This is sometimes annoying and can anyway be done by another C-c C-c. -- mapM (snd <.> fixTarget) $ splitClauses cov return $ splitClauses cov checkClauseIsClean ipCl (f, casectxt,) <$> mapM (makeAbstractClause f rhs) scs else do -- split on variables xs <- parseVariables f tel hole rng vars -- Variables that are not in scope yet are brought into scope (@toShow@) -- The other variables are split on (@toSplit@). let (toShow, toSplit) = flip mapEither (zip xs vars) $ \ (x, s) -> if take 1 s == "." then Left x else Right x let sc = makePatternVarsVisible toShow $ clauseToSplitClause clause scs <- split f toSplit sc -- filter out clauses that are already covered scs <- filterM (not <.> isCovered f prevClauses . fst) scs cs <- forM scs $ \(sc, isAbsurd) -> do if isAbsurd then makeAbsurdClause f sc else makeAbstractClause f rhs sc reportSDoc "interaction.case" 65 $ vcat [ text "split result:" , nest 2 $ vcat $ map (text . show . A.deepUnscope) cs ] checkClauseIsClean ipCl return (f, casectxt, cs) where failNoCop = typeError $ GenericError $ "OPTION --copatterns needed to split on result here" -- Split clause on given variables, return the resulting clauses together -- with a bool indicating whether each clause is absurd split :: QName -> [Nat] -> SplitClause -> TCM [(SplitClause, Bool)] split f [] clause = return [(clause,False)] split f (var : vars) clause = do z <- dontAssignMetas $ splitClauseWithAbsurd clause var case z of Left err -> typeError $ SplitError err Right (Left cl) -> return [(cl,True)] Right (Right cov) -> concat <$> do forM (splitClauses cov) $ \ cl -> split f (mapMaybe (newVar cl) vars) cl -- Finds the new variable corresponding to an old one, if any. newVar :: SplitClause -> Nat -> Maybe Nat newVar c x = case applySplitPSubst (scSubst c) (var x) of Var y [] -> Just y _ -> Nothing -- Check whether clause has been refined after last load. -- In this case, we refuse to split, as this might lose the refinements. checkClauseIsClean :: IPClause -> TCM () checkClauseIsClean ipCl = do sips <- filter ipSolved . Map.elems <$> use stInteractionPoints when (List.any ((== ipCl) . ipClause) sips) $ typeError $ GenericError $ "Cannot split as clause rhs has been refined. Please reload" -- | Make the given pattern variables visible by marking their origin as -- 'CaseSplit' and pattern origin as 'PatOSplit' in the 'SplitClause'. makePatternVarsVisible :: [Nat] -> SplitClause -> SplitClause makePatternVarsVisible [] sc = sc makePatternVarsVisible is sc@SClause{ scPats = ps } = sc{ scPats = mapNamedArgPattern mkVis ps } where mkVis :: NamedArg SplitPattern -> NamedArg SplitPattern mkVis (Arg ai (Named n (VarP o (SplitPatVar x i ls)))) | i `elem` is = -- We could introduce extra consistency checks, like -- if visible ai then __IMPOSSIBLE__ else -- or passing the parsed name along and comparing it with @x@ Arg (setOrigin CaseSplit ai) $ Named n $ VarP PatOSplit $ SplitPatVar x i ls mkVis np = np -- | Make clause with no rhs (because of absurd match). makeAbsurdClause :: QName -> SplitClause -> TCM A.Clause makeAbsurdClause f (SClause tel sps _ _ t) = do let ps = fromSplitPatterns sps reportSDoc "interaction.case" 10 $ vcat [ text "Interaction.MakeCase.makeAbsurdClause: split clause:" , nest 2 $ vcat [ text "context =" <+> do (inTopContext . prettyTCM) =<< getContextTelescope , text "tel =" <+> do inTopContext $ prettyTCM tel , text "ps =" <+> do inTopContext $ addContext tel $ prettyTCMPatternList ps -- P.sep <$> prettyTCMPatterns ps ] ] withCurrentModule (qnameModule f) $ do -- Andreas, 2015-05-29 Issue 635 -- Contract implicit record patterns before printing. -- c <- translateRecordPatterns $ Clause noRange tel perm ps NoBody t False -- Jesper, 2015-09-19 Don't contract, since we do on-demand splitting let c = Clause noRange noRange tel ps Nothing t False Nothing -- Normalise the dot patterns ps <- addContext tel $ normalise $ namedClausePats c reportSDoc "interaction.case" 60 $ text "normalized patterns: " <+> text (show ps) inTopContext $ reify $ QNamed f $ c { namedClausePats = ps } -- | Make a clause with a question mark as rhs. makeAbstractClause :: QName -> A.RHS -> SplitClause -> TCM A.Clause makeAbstractClause f rhs cl = do lhs <- A.clauseLHS <$> makeAbsurdClause f cl reportSDoc "interaction.case" 60 $ text "reified lhs: " <+> text (show lhs) return $ A.Clause lhs [] rhs A.noWhereDecls False -- let ii = InteractionId (-1) -- Dummy interaction point since we never type check this. -- -- Can end up in verbose output though (#1842), hence not __IMPOSSIBLE__. -- let info = A.emptyMetaInfo -- metaNumber = Nothing in order to print as ?, not ?n -- return $ A.Clause lhs [] (A.RHS $ A.QuestionMark info ii) [] False