{-# LANGUAGE CPP #-} {-# LANGUAGE UndecidableInstances #-} {-| Translation from "Agda.Syntax.Concrete" to "Agda.Syntax.Abstract". Involves scope analysis, figuring out infix operator precedences and tidying up definitions. -} module Agda.Syntax.Translation.ConcreteToAbstract ( ToAbstract(..), localToAbstract , concreteToAbstract_ , concreteToAbstract , NewModuleQName(..) , OldName(..) , TopLevel(..) , TopLevelInfo(..) , topLevelModuleName , AbstractRHS , NewModuleName, OldModuleName , NewName, OldQName , LeftHandSide, RightHandSide , PatName, APatName, LetDef, LetDefs ) where #if MIN_VERSION_base(4,11,0) import Prelude hiding ( (<>), mapM, null ) #else import Prelude hiding ( mapM, null ) #endif import Control.Applicative import Control.Monad.Reader hiding (mapM) import Data.Foldable (Foldable, traverse_) import Data.Traversable (mapM, traverse) import Data.List ((\\), nub, foldl') import Data.Set (Set) import qualified Data.Set as Set import qualified Data.Map as Map import Data.Maybe import Data.Void import Agda.Syntax.Concrete as C hiding (topLevelModuleName) import Agda.Syntax.Concrete.Generic import Agda.Syntax.Concrete.Operators import Agda.Syntax.Concrete.Pattern import Agda.Syntax.Abstract as A import Agda.Syntax.Abstract.Pattern ( patternVars, checkPatternLinearity ) import Agda.Syntax.Abstract.Pretty import qualified Agda.Syntax.Internal as I import Agda.Syntax.Position import Agda.Syntax.Literal import Agda.Syntax.Common import Agda.Syntax.Info import Agda.Syntax.Concrete.Definitions as C import Agda.Syntax.Fixity import Agda.Syntax.Notation import Agda.Syntax.Scope.Base import Agda.Syntax.Scope.Monad import Agda.Syntax.Translation.AbstractToConcrete (ToConcrete) import Agda.Syntax.DoNotation import Agda.Syntax.IdiomBrackets import Agda.TypeChecking.Monad.Base hiding (ModuleInfo, MetaInfo) import qualified Agda.TypeChecking.Monad.Benchmark as Bench import Agda.TypeChecking.Monad.Builtin import Agda.TypeChecking.Monad.Trace (traceCall, setCurrentRange) import Agda.TypeChecking.Monad.State import Agda.TypeChecking.Monad.MetaVars (registerInteractionPoint) import Agda.TypeChecking.Monad.Debug import Agda.TypeChecking.Monad.Options import Agda.TypeChecking.Monad.Env (insideDotPattern, isInsideDotPattern) import Agda.TypeChecking.Rules.Builtin (isUntypedBuiltin, bindUntypedBuiltin) import Agda.TypeChecking.Patterns.Abstract (expandPatternSynonyms) import Agda.TypeChecking.Pretty hiding (pretty, prettyA) import Agda.TypeChecking.Warnings import Agda.Interaction.FindFile (checkModuleName) -- import Agda.Interaction.Imports -- for type-checking in ghci import {-# SOURCE #-} Agda.Interaction.Imports (scopeCheckImport) import Agda.Interaction.Options import qualified Agda.Interaction.Options.Lenses as Lens import Agda.Utils.AssocList (AssocList) import qualified Agda.Utils.AssocList as AssocList import Agda.Utils.Either import Agda.Utils.Except ( MonadError(catchError, throwError) ) import Agda.Utils.FileName import Agda.Utils.Functor import Agda.Utils.Lens import Agda.Utils.List import Agda.Utils.Maybe import Agda.Utils.Monad import Agda.Utils.NonemptyList import Agda.Utils.Null import qualified Agda.Utils.Pretty as P import Agda.Utils.Pretty (render, Pretty, pretty, prettyShow) import Agda.Utils.Tuple import Agda.Interaction.FindFile ( rootNameModule ) #include "undefined.h" import Agda.Utils.Impossible import Agda.ImpossibleTest (impossibleTest) {-------------------------------------------------------------------------- Exceptions --------------------------------------------------------------------------} -- notAModuleExpr e = typeError $ NotAModuleExpr e notAnExpression :: C.Expr -> ScopeM A.Expr notAnExpression e = typeError $ NotAnExpression e nothingAppliedToHiddenArg :: C.Expr -> ScopeM A.Expr nothingAppliedToHiddenArg e = typeError $ NothingAppliedToHiddenArg e nothingAppliedToInstanceArg :: C.Expr -> ScopeM A.Expr nothingAppliedToInstanceArg e = typeError $ NothingAppliedToInstanceArg e notAValidLetBinding :: NiceDeclaration -> ScopeM a notAValidLetBinding d = typeError $ NotAValidLetBinding d {-------------------------------------------------------------------------- Helpers --------------------------------------------------------------------------} annotateDecl :: ScopeM A.Declaration -> ScopeM A.Declaration annotateDecl m = annotateDecls $ (:[]) <$> m annotateDecls :: ScopeM [A.Declaration] -> ScopeM A.Declaration annotateDecls m = do ds <- m s <- getScope return $ ScopedDecl s ds annotateExpr :: ScopeM A.Expr -> ScopeM A.Expr annotateExpr m = do e <- m s <- getScope return $ ScopedExpr s e -- | Make sure that there are no dot patterns (called on pattern synonyms). noDotPattern :: String -> A.Pattern' e -> ScopeM (A.Pattern' Void) noDotPattern err = traverse $ const $ typeError $ GenericError err -- | Compute the type of the record constructor (with bogus target type) recordConstructorType :: [NiceDeclaration] -> ScopeM C.Expr recordConstructorType fields = build <$> mapM validForLet fs where -- drop all declarations after the last field declaration fs = reverse $ dropWhile notField $ reverse fields notField NiceField{} = False notField _ = True -- | Check that declarations before last field can be handled -- by current translation into let. -- -- Sometimes a declaration is valid with minor modifications. validForLet :: NiceDeclaration -> ScopeM NiceDeclaration validForLet d = do let failure = traceCall (SetRange $ getRange d) $ typeError $ NotValidBeforeField d case d of -- Andreas, 2013-11-08 -- Turn @open public@ into just @open@, since we cannot have an -- @open public@ in a @let@. Fixes issue #532. C.NiceOpen r m dir -> return $ C.NiceOpen r m dir{ publicOpen = False } C.NiceModuleMacro r p x modapp open dir -> return $ C.NiceModuleMacro r p x modapp open dir{ publicOpen = False } C.NiceField{} -> return d C.NiceMutual _ _ _ [ C.FunSig _ _ _ _ _instanc macro _info _ _ _ , C.FunDef _ _ _ abstract _ _ _ [ C.Clause _top _catchall (C.LHS _p [] []) (C.RHS _rhs) NoWhere [] ] ] | abstract /= AbstractDef && macro /= MacroDef -> -- TODO: this is still too generous, we also need to check that _p -- is only variable patterns. return d C.NiceMutual{} -> failure -- TODO: some of these cases might be __IMPOSSIBLE__ C.Axiom{} -> failure C.PrimitiveFunction{} -> failure C.NiceModule{} -> failure C.NiceImport{} -> failure C.NicePragma{} -> failure C.NiceRecSig{} -> failure C.NiceDataSig{} -> failure C.NiceFunClause{} -> failure C.FunSig{} -> failure -- Note: these are bundled with FunDef in NiceMutual C.FunDef{} -> failure C.DataDef{} -> failure C.RecDef{} -> failure C.NicePatternSyn{} -> failure C.NiceUnquoteDecl{} -> failure C.NiceUnquoteDef{} -> failure build fs = let (ds1, ds2) = span notField fs in lets (concatMap notSoNiceDeclarations ds1) $ fld ds2 -- Turn a field declaration into a the domain of a Pi-type fld [] = C.SetN noRange 0 -- todo: nicer fld (NiceField r f _ _ _ x (Arg info e) : fs) = C.Pi [C.TypedBindings r $ Arg info (C.TBind r [pure $ mkBoundName x f] e)] $ build fs where r = getRange x fld _ = __IMPOSSIBLE__ -- Turn non-field declarations into a let binding. -- Smart constructor for C.Let: lets [] c = c lets ds c = C.Let (getRange ds) ds (Just c) checkModuleApplication :: C.ModuleApplication -> ModuleName -> C.Name -> C.ImportDirective -> ScopeM (A.ModuleApplication, ScopeCopyInfo, A.ImportDirective) checkModuleApplication (C.SectionApp _ tel e) m0 x dir' = do reportSDoc "scope.decl" 70 $ vcat $ [ text $ "scope checking ModuleApplication " ++ prettyShow x ] -- For the following, set the current module to be m0. withCurrentModule m0 $ do -- Check that expression @e@ is of the form @m args@. (m, args) <- parseModuleApplication e -- Scope check the telescope (introduces bindings!). tel' <- toAbstract tel -- Scope check the old module name and the module args. m1 <- toAbstract $ OldModuleName m args' <- toAbstractCtx (ArgumentCtx PreferParen) args -- Drop constructors (OnlyQualified) if there are arguments. The record constructor -- isn't properly in the record module, so copying it will lead to badness. let noRecConstr | null args = id | otherwise = removeOnlyQualified -- Copy the scope associated with m and take the parts actually imported. (adir, s) <- applyImportDirectiveM (C.QName x) dir' =<< getNamedScope m1 (s', copyInfo) <- copyScope m m0 (noRecConstr s) -- Set the current scope to @s'@ modifyCurrentScope $ const s' printScope "mod.inst" 20 "copied source module" reportSDoc "scope.mod.inst" 30 $ return $ pretty copyInfo let amodapp = A.SectionApp tel' m1 args' reportSDoc "scope.decl" 70 $ vcat $ [ text $ "scope checked ModuleApplication " ++ prettyShow x ] reportSDoc "scope.decl" 70 $ vcat $ [ nest 2 $ prettyA amodapp ] return (amodapp, copyInfo, adir) checkModuleApplication (C.RecordModuleIFS _ recN) m0 x dir' = withCurrentModule m0 $ do m1 <- toAbstract $ OldModuleName recN s <- getNamedScope m1 (adir, s) <- applyImportDirectiveM recN dir' s (s', copyInfo) <- copyScope recN m0 (removeOnlyQualified s) modifyCurrentScope $ const s' printScope "mod.inst" 20 "copied record module" return (A.RecordModuleIFS m1, copyInfo, adir) -- | @checkModuleMacro mkApply range access concreteName modapp open dir@ -- -- Preserves local variables. checkModuleMacro :: (Pretty c, ToConcrete a c) => (ModuleInfo -> ModuleName -> A.ModuleApplication -> ScopeCopyInfo -> A.ImportDirective -> a) -> Range -> Access -> C.Name -> C.ModuleApplication -> OpenShortHand -> C.ImportDirective -> ScopeM [a] checkModuleMacro apply r p x modapp open dir = do reportSDoc "scope.decl" 70 $ vcat $ [ text $ "scope checking ModuleMacro " ++ prettyShow x ] notPublicWithoutOpen open dir m0 <- toAbstract (NewModuleName x) reportSDoc "scope.decl" 90 $ text "NewModuleName: m0 =" <+> prettyA m0 printScope "mod.inst" 20 "module macro" -- If we're opening a /named/ module, the import directive is -- applied to the "open", otherwise to the module itself. However, -- "public" is always applied to the "open". let (moduleDir, openDir) = case (open, isNoName x) of (DoOpen, False) -> (defaultImportDir, dir) (DoOpen, True) -> ( dir { publicOpen = False } , defaultImportDir { publicOpen = publicOpen dir } ) (DontOpen, _) -> (dir, defaultImportDir) -- Restore the locals after module application has been checked. (modapp', copyInfo, adir') <- withLocalVars $ checkModuleApplication modapp m0 x moduleDir printScope "mod.inst.app" 20 "checkModuleMacro, after checkModuleApplication" reportSDoc "scope.decl" 90 $ text "after mod app: trying to print m0 ..." reportSDoc "scope.decl" 90 $ text "after mod app: m0 =" <+> prettyA m0 bindModule p x m0 reportSDoc "scope.decl" 90 $ text "after bindMod: m0 =" <+> prettyA m0 printScope "mod.inst.copy.after" 20 "after copying" -- Open the module if DoOpen. -- Andreas, 2014-09-02 openModule_ might shadow some locals! adir <- case open of DontOpen -> return adir' DoOpen -> openModule_ (C.QName x) openDir printScope "mod.inst" 20 $ show open reportSDoc "scope.decl" 90 $ text "after open : m0 =" <+> prettyA m0 stripNoNames printScope "mod.inst" 10 $ "after stripping" reportSDoc "scope.decl" 90 $ text "after stripNo: m0 =" <+> prettyA m0 let m = m0 `withRangesOf` [x] adecls = [ apply info m modapp' copyInfo adir ] reportSDoc "scope.decl" 70 $ vcat $ [ text $ "scope checked ModuleMacro " ++ prettyShow x ] reportSLn "scope.decl" 90 $ "info = " ++ show info reportSLn "scope.decl" 90 $ "m = " ++ prettyShow m reportSLn "scope.decl" 90 $ "modapp' = " ++ show modapp' reportSDoc "scope.decl" 90 $ return $ pretty copyInfo reportSDoc "scope.decl" 70 $ vcat $ map (nest 2 . prettyA) adecls return adecls where info = ModuleInfo { minfoRange = r , minfoAsName = Nothing , minfoAsTo = renamingRange dir , minfoOpenShort = Just open , minfoDirective = Just dir } -- | The @public@ keyword must only be used together with @open@. notPublicWithoutOpen :: OpenShortHand -> C.ImportDirective -> ScopeM () notPublicWithoutOpen DoOpen dir = return () notPublicWithoutOpen DontOpen dir = when (publicOpen dir) $ typeError $ GenericError "The public keyword must only be used together with the open keyword" -- | Computes the range of all the \"to\" keywords used in a renaming -- directive. renamingRange :: C.ImportDirective -> Range renamingRange = getRange . map renToRange . impRenaming -- | Scope check a 'NiceOpen'. checkOpen :: Range -> C.QName -> C.ImportDirective -- ^ Arguments of 'NiceOpen' -> ScopeM (ModuleInfo, A.ModuleName, A.ImportDirective) -- ^ Arguments of 'A.Open' checkOpen r x dir = do reportSDoc "scope.decl" 70 $ do cm <- getCurrentModule vcat $ [ text "scope checking NiceOpen " <> return (pretty x) , text " getCurrentModule = " <> prettyA cm , text $ " getCurrentModule (raw) = " ++ show cm , text $ " C.ImportDirective = " ++ prettyShow dir ] -- Andreas, 2017-01-01, issue #2377: warn about useless `public` when (publicOpen dir) $ do whenM ((A.noModuleName ==) <$> getCurrentModule) $ do warning $ UselessPublic m <- toAbstract (OldModuleName x) printScope "open" 20 $ "opening " ++ prettyShow x adir <- openModule_ x dir printScope "open" 20 $ "result:" let minfo = ModuleInfo { minfoRange = r , minfoAsName = Nothing , minfoAsTo = renamingRange dir , minfoOpenShort = Nothing , minfoDirective = Just dir } let adecls = [A.Open minfo m adir] reportSDoc "scope.decl" 70 $ vcat $ [ text $ "scope checked NiceOpen " ++ prettyShow x ] ++ map (nest 2 . prettyA) adecls return (minfo, m, adir) {-------------------------------------------------------------------------- Translation --------------------------------------------------------------------------} concreteToAbstract_ :: ToAbstract c a => c -> ScopeM a concreteToAbstract_ x = toAbstract x concreteToAbstract :: ToAbstract c a => ScopeInfo -> c -> ScopeM a concreteToAbstract scope x = withScope_ scope (toAbstract x) -- | Things that can be translated to abstract syntax are instances of this -- class. class ToAbstract concrete abstract | concrete -> abstract where toAbstract :: concrete -> ScopeM abstract -- | This function should be used instead of 'toAbstract' for things that need -- to keep track of precedences to make sure that we don't forget about it. toAbstractCtx :: ToAbstract concrete abstract => Precedence -> concrete -> ScopeM abstract toAbstractCtx ctx c = withContextPrecedence ctx $ toAbstract c toAbstractTopCtx :: ToAbstract c a => c -> ScopeM a toAbstractTopCtx = toAbstractCtx TopCtx toAbstractHiding :: (LensHiding h, ToAbstract c a) => h -> c -> ScopeM a toAbstractHiding h | visible h = toAbstract -- don't change precedence if visible toAbstractHiding _ = toAbstractCtx TopCtx setContextCPS :: Precedence -> (a -> ScopeM b) -> ((a -> ScopeM b) -> ScopeM b) -> ScopeM b setContextCPS p ret f = do old <- scopePrecedence <$> getScope withContextPrecedence p $ f $ \ x -> setContextPrecedence old >> ret x localToAbstractCtx :: ToAbstract concrete abstract => Precedence -> concrete -> (abstract -> ScopeM a) -> ScopeM a localToAbstractCtx ctx c ret = setContextCPS ctx ret (localToAbstract c) -- | This operation does not affect the scope, i.e. the original scope -- is restored upon completion. localToAbstract :: ToAbstract c a => c -> (a -> ScopeM b) -> ScopeM b localToAbstract x ret = fst <$> localToAbstract' x ret -- | Like 'localToAbstract' but returns the scope after the completion of the -- second argument. localToAbstract' :: ToAbstract c a => c -> (a -> ScopeM b) -> ScopeM (b, ScopeInfo) localToAbstract' x ret = do scope <- getScope withScope scope $ ret =<< toAbstract x instance (ToAbstract c1 a1, ToAbstract c2 a2) => ToAbstract (c1,c2) (a1,a2) where toAbstract (x,y) = (,) <$> toAbstract x <*> toAbstract y instance (ToAbstract c1 a1, ToAbstract c2 a2, ToAbstract c3 a3) => ToAbstract (c1,c2,c3) (a1,a2,a3) where toAbstract (x,y,z) = flatten <$> toAbstract (x,(y,z)) where flatten (x,(y,z)) = (x,y,z) instance {-# OVERLAPPABLE #-} ToAbstract c a => ToAbstract [c] [a] where toAbstract = mapM toAbstract instance (ToAbstract c1 a1, ToAbstract c2 a2) => ToAbstract (Either c1 c2) (Either a1 a2) where toAbstract = traverseEither toAbstract toAbstract instance ToAbstract c a => ToAbstract (Maybe c) (Maybe a) where toAbstract = traverse toAbstract -- Names ------------------------------------------------------------------ data NewName a = NewName { newBinder :: Binder -- what kind of binder? , newName :: a } data OldQName = OldQName C.QName (Maybe (Set A.Name)) -- ^ If a set is given, then the first name must correspond to one -- of the names in the set. newtype OldName a = OldName a -- | Wrapper to resolve a name to a 'ResolvedName' (rather than an 'A.Expr'). data ResolveQName = ResolveQName C.QName data PatName = PatName C.QName (Maybe (Set A.Name)) -- ^ If a set is given, then the first name must correspond to one -- of the names in the set. instance ToAbstract (NewName C.Name) A.Name where toAbstract (NewName b x) = do y <- freshAbstractName_ x bindVariable b x y return y instance ToAbstract (NewName C.BoundName) A.Name where toAbstract (NewName b BName{ boundName = x, bnameFixity = fx }) = do y <- freshAbstractName fx x bindVariable b x y return y instance ToAbstract OldQName A.Expr where toAbstract (OldQName x ns) = do qx <- resolveName' allKindsOfNames ns x reportSLn "scope.name" 10 $ "resolved " ++ prettyShow x ++ ": " ++ prettyShow qx case qx of VarName x' _ -> return $ A.Var x' DefinedName _ d -> do -- In case we find a defined name, we start by checking whether there's -- a warning attached to it reportSDoc "scope.warning" 50 $ text $ "Checking usage of " ++ prettyShow d mstr <- Map.lookup (anameName d) <$> use stUserWarnings forM_ mstr (warning . UserWarning) -- and then we return the name return $ nameExpr d FieldName ds -> return $ A.Proj ProjPrefix $ AmbQ (fmap anameName ds) ConstructorName ds -> return $ A.Con $ AmbQ (fmap anameName ds) UnknownName -> notInScope x PatternSynResName ds -> return $ A.PatternSyn $ AmbQ (fmap anameName ds) instance ToAbstract ResolveQName ResolvedName where toAbstract (ResolveQName x) = resolveName x >>= \case UnknownName -> notInScope x q -> return q data APatName = VarPatName A.Name | ConPatName (NonemptyList AbstractName) | PatternSynPatName (NonemptyList AbstractName) instance ToAbstract PatName APatName where toAbstract (PatName x ns) = do reportSLn "scope.pat" 10 $ "checking pattern name: " ++ prettyShow x rx <- resolveName' [ConName, PatternSynName] ns x -- Andreas, 2013-03-21 ignore conflicting names which cannot -- be meant since we are in a pattern case (rx, x) of (VarName y _, C.QName x) -> bindPatVar x (FieldName d, C.QName x) -> bindPatVar x (DefinedName _ d, C.QName x) | DefName == anameKind d -> bindPatVar x (UnknownName, C.QName x) -> bindPatVar x (ConstructorName ds, _) -> patCon ds (PatternSynResName d, _) -> patSyn d _ -> genericError $ "Cannot pattern match on non-constructor " ++ prettyShow x where bindPatVar x = do reportSLn "scope.pat" 10 $ "it was a var: " ++ prettyShow x y <- (AssocList.lookup x <$> getVarsToBind) >>= \case Just (LocalVar y _ _) -> return $ setRange (getRange x) y Nothing -> freshAbstractName_ x addVarToBind x $ LocalVar y PatternBound [] return $ VarPatName y patCon ds = do reportSLn "scope.pat" 10 $ "it was a con: " ++ prettyShow (fmap anameName ds) return $ ConPatName ds patSyn ds = do reportSLn "scope.pat" 10 $ "it was a pat syn: " ++ prettyShow (fmap anameName ds) return $ PatternSynPatName ds class ToQName a where toQName :: a -> C.QName instance ToQName C.Name where toQName = C.QName instance ToQName C.QName where toQName = id -- Should be a defined name. instance (Show a, ToQName a) => ToAbstract (OldName a) A.QName where toAbstract (OldName x) = do rx <- resolveName (toQName x) case rx of DefinedName _ d -> return $ anameName d -- We can get the cases below for DISPLAY pragmas ConstructorName ds -> return $ anameName (headNe ds) -- We'll throw out this one, so it doesn't matter which one we pick FieldName ds -> return $ anameName (headNe ds) PatternSynResName ds -> return $ anameName (headNe ds) VarName x _ -> typeError $ GenericError $ "Not a defined name: " ++ prettyShow x UnknownName -> notInScope (toQName x) newtype NewModuleName = NewModuleName C.Name newtype NewModuleQName = NewModuleQName C.QName newtype OldModuleName = OldModuleName C.QName freshQModule :: A.ModuleName -> C.Name -> ScopeM A.ModuleName freshQModule m x = A.qualifyM m . mnameFromList . (:[]) <$> freshAbstractName_ x checkForModuleClash :: C.Name -> ScopeM () checkForModuleClash x = do ms <- scopeLookup (C.QName x) <$> getScope unless (null ms) $ do reportSLn "scope.clash" 20 $ "clashing modules ms = " ++ prettyShow ms reportSLn "scope.clash" 60 $ "clashing modules ms = " ++ show ms setCurrentRange x $ typeError $ ShadowedModule x $ map ((`withRangeOf` x) . amodName) ms instance ToAbstract NewModuleName A.ModuleName where toAbstract (NewModuleName x) = do checkForModuleClash x m <- getCurrentModule y <- freshQModule m x createModule Nothing y return y instance ToAbstract NewModuleQName A.ModuleName where toAbstract (NewModuleQName m) = toAbs noModuleName m where toAbs m (C.QName x) = do y <- freshQModule m x createModule Nothing y return y toAbs m (C.Qual x q) = do m' <- freshQModule m x toAbs m' q instance ToAbstract OldModuleName A.ModuleName where toAbstract (OldModuleName q) = setCurrentRange q $ do amodName <$> resolveModule q -- Expressions ------------------------------------------------------------ -- | Peel off 'C.HiddenArg' and represent it as an 'NamedArg'. mkNamedArg :: C.Expr -> NamedArg C.Expr mkNamedArg (C.HiddenArg _ e) = Arg (hide defaultArgInfo) e mkNamedArg (C.InstanceArg _ e) = Arg (makeInstance defaultArgInfo) e mkNamedArg e = Arg defaultArgInfo $ unnamed e -- | Peel off 'C.HiddenArg' and represent it as an 'Arg', throwing away any name. mkArg' :: ArgInfo -> C.Expr -> Arg C.Expr mkArg' info (C.HiddenArg _ e) = Arg (hide info) $ namedThing e mkArg' info (C.InstanceArg _ e) = Arg (makeInstance info) $ namedThing e mkArg' info e = Arg (setHiding NotHidden info) e -- | By default, arguments are @Relevant@. mkArg :: C.Expr -> Arg C.Expr mkArg e = mkArg' defaultArgInfo e inferParenPreference :: C.Expr -> ParenPreference inferParenPreference C.Paren{} = PreferParen inferParenPreference _ = PreferParenless -- | Parse a possibly dotted C.Expr as A.Expr. Bool = True if dotted. toAbstractDot :: Precedence -> C.Expr -> ScopeM (A.Expr, Bool) toAbstractDot prec e = do reportSLn "scope.irrelevance" 100 $ "toAbstractDot: " ++ (render $ pretty e) traceCall (ScopeCheckExpr e) $ case e of C.Dot _ e -> do e <- toAbstractCtx prec e return (e, True) C.RawApp r es -> do e <- parseApplication es toAbstractDot prec e C.Paren _ e -> toAbstractDot TopCtx e e -> do e <- toAbstractCtx prec e return (e, False) -- | Translate concrete expression under at least one binder into nested -- lambda abstraction in abstract syntax. toAbstractLam :: Range -> [C.LamBinding] -> C.Expr -> Precedence -> ScopeM A.Expr toAbstractLam r bs e ctx = do -- Translate the binders localToAbstract (map (C.DomainFull . makeDomainFull) bs) $ \ bs -> do -- Translate the body e <- toAbstractCtx ctx e -- We have at least one binder. Get first @b@ and rest @bs@. caseList bs __IMPOSSIBLE__ $ \ b bs -> do return $ A.Lam (ExprRange r) b $ foldr mkLam e bs where mkLam b e = A.Lam (ExprRange $ fuseRange b e) b e -- | Scope check extended lambda expression. scopeCheckExtendedLam :: Range -> [C.LamClause] -> ScopeM A.Expr scopeCheckExtendedLam r cs = do whenM isInsideDotPattern $ genericError "Extended lambdas are not allowed in dot patterns" -- Find an unused name for the extended lambda definition. cname <- nextlamname r 0 extendedLambdaName name <- freshAbstractName_ cname reportSLn "scope.extendedLambda" 10 $ "new extended lambda name: " ++ prettyShow name verboseS "scope.extendedLambda" 60 $ do forM_ cs $ \ c -> do reportSLn "scope.extendedLambda" 60 $ "extended lambda lhs: " ++ show (C.lamLHS c) qname <- qualifyName_ name bindName (PrivateAccess Inserted) DefName cname qname -- Compose a function definition and scope check it. a <- aModeToDef <$> asks envAbstractMode let insertApp :: C.Pattern -> ScopeM C.Pattern insertApp (C.RawAppP r es) = return $ C.RawAppP r $ IdentP (C.QName cname) : es insertApp (C.AppP p1 p2) = return $ (IdentP (C.QName cname) `C.AppP` defaultNamedArg p1) `C.AppP` p2 -- Case occurs in issue #2785 insertApp p = return $ C.RawAppP r $ IdentP (C.QName cname) : [p] -- Issue #2807: C.ParenP also possible where r = getRange p -- Andreas, 2017-10-17 issue #2807: do not raise IMPOSSSIBLE here -- since we are actually not sure what is possible and what not. -- insertApp (C.IdentP q ) = return $ C.RawAppP r $ IdentP (C.QName cname) : [C.IdentP q] -- where r = getRange q -- insertApp p = do -- reportSLn "impossible" 10 $ "scopeCheckExtendedLam: unexpected pattern: " ++ -- case p of -- C.QuoteP{} -> "QuoteP" -- C.OpAppP{} -> "OpAppP" -- C.HiddenP{} -> "HiddenP" -- C.InstanceP{} -> "InstanceP" -- C.ParenP{} -> "ParenP" -- C.WildP{} -> "WildP" -- C.AbsurdP{} -> "AbsurdP" -- C.AsP{} -> "AsP" -- C.DotP{} -> "DotP" -- C.LitP{} -> "LitP" -- C.RecP{} -> "RecP" -- _ -> __IMPOSSIBLE__ -- __IMPOSSIBLE__ d <- C.FunDef r [] noFixity' {-'-} a NotInstanceDef __IMPOSSIBLE__ cname <$> do forM cs $ \ (LamClause lhs rhs wh ca) -> do -- wh == NoWhere, see parser for more info lhs' <- mapLhsOriginalPatternM insertApp lhs return $ C.Clause cname ca lhs' rhs wh [] scdef <- toAbstract d -- Create the abstract syntax for the extended lambda. case scdef of A.ScopedDecl si [A.FunDef di qname' NotDelayed cs] -> do setScope si -- This turns into an A.ScopedExpr si $ A.ExtendedLam... return $ A.ExtendedLam (ExprRange r) di qname' cs _ -> __IMPOSSIBLE__ where -- Get a concrete name that is not yet in scope. nextlamname :: Range -> Int -> String -> ScopeM C.Name nextlamname r i s = do let cname = C.Name r [Id $ stringToRawName $ s ++ show i] rn <- resolveName $ C.QName cname case rn of UnknownName -> return cname _ -> nextlamname r (i+1) s instance ToAbstract C.Expr A.Expr where toAbstract e = traceCall (ScopeCheckExpr e) $ annotateExpr $ case e of -- Names Ident x -> toAbstract (OldQName x Nothing) -- Literals C.Lit l -> case l of LitNat r n -> do let builtin | n < 0 = Just <$> primFromNeg -- negative literals are only allowed if FROMNEG is defined | otherwise = ensureInScope =<< getBuiltin' builtinFromNat l' = LitNat r (abs n) info = defaultAppInfo r conv <- builtin case conv of Just (I.Def q _) -> return $ A.App info (A.Def q) $ defaultNamedArg (A.Lit l') _ -> return $ A.Lit l LitString r s -> do conv <- ensureInScope =<< getBuiltin' builtinFromString let info = defaultAppInfo r case conv of Just (I.Def q _) -> return $ A.App info (A.Def q) $ defaultNamedArg (A.Lit l) _ -> return $ A.Lit l _ -> return $ A.Lit l where ensureInScope :: Maybe I.Term -> ScopeM (Maybe I.Term) ensureInScope v@(Just (I.Def q _)) = ifM (isNameInScope q <$> getScope) (return v) (return Nothing) ensureInScope _ = return Nothing -- Meta variables C.QuestionMark r n -> do scope <- getScope -- Andreas, 2014-04-06 create interaction point. ii <- registerInteractionPoint True r n let info = MetaInfo { metaRange = r , metaScope = scope , metaNumber = Nothing , metaNameSuggestion = "" } return $ A.QuestionMark info ii C.Underscore r n -> do scope <- getScope return $ A.Underscore $ MetaInfo { metaRange = r , metaScope = scope , metaNumber = maybe Nothing __IMPOSSIBLE__ n , metaNameSuggestion = fromMaybe "" n } -- Raw application C.RawApp r es -> do e <- parseApplication es toAbstract e -- Application C.App r e1 e2 -> do let parenPref = inferParenPreference (namedArg e2) info = (defaultAppInfo r) { appOrigin = UserWritten, appParens = parenPref } e1 <- toAbstractCtx FunctionCtx e1 e2 <- toAbstractCtx (ArgumentCtx parenPref) e2 return $ A.App info e1 e2 -- Operator application C.OpApp r op ns es -> toAbstractOpApp op ns es -- With application C.WithApp r e es -> do e <- toAbstractCtx WithFunCtx e es <- mapM (toAbstractCtx WithArgCtx) es return $ A.WithApp (ExprRange r) e es -- Misplaced hidden argument C.HiddenArg _ _ -> nothingAppliedToHiddenArg e C.InstanceArg _ _ -> nothingAppliedToInstanceArg e -- Lambda C.AbsurdLam r h -> return $ A.AbsurdLam (ExprRange r) h C.Lam r bs e -> toAbstractLam r bs e TopCtx -- Extended Lambda C.ExtendedLam r cs -> scopeCheckExtendedLam r cs -- Relevant and irrelevant non-dependent function type C.Fun r e1 e2 -> do Arg info (e0, dotted) <- traverse (toAbstractDot FunctionSpaceDomainCtx) $ mkArg e1 let e1 = Arg ((if dotted then setRelevance Irrelevant else id) info) e0 e2 <- toAbstractCtx TopCtx e2 return $ A.Fun (ExprRange r) e1 e2 -- Dependent function type e0@(C.Pi tel e) -> localToAbstract tel $ \tel -> do e <- toAbstractCtx TopCtx e let info = ExprRange (getRange e0) return $ A.Pi info tel e -- Sorts C.Set _ -> return $ A.Set (ExprRange $ getRange e) 0 C.SetN _ n -> return $ A.Set (ExprRange $ getRange e) n C.Prop _ -> return $ A.Prop $ ExprRange $ getRange e -- Let e0@(C.Let _ ds (Just e)) -> ifM isInsideDotPattern (genericError $ "Let-expressions are not allowed in dot patterns") $ localToAbstract (LetDefs ds) $ \ds' -> do e <- toAbstractCtx TopCtx e let info = ExprRange (getRange e0) return $ A.Let info ds' e C.Let _ _ Nothing -> genericError "Missing body in let-expression" -- Record construction C.Rec r fs -> do fs' <- toAbstractCtx TopCtx fs let ds' = [ d | Right (_, ds) <- fs', d <- ds ] fs'' = map (mapRight fst) fs' i = ExprRange r return $ A.mkLet i ds' (A.Rec i fs'') -- Record update C.RecUpdate r e fs -> do A.RecUpdate (ExprRange r) <$> toAbstract e <*> toAbstractCtx TopCtx fs -- Parenthesis C.Paren _ e -> toAbstractCtx TopCtx e -- Idiom brackets C.IdiomBrackets r e -> toAbstractCtx TopCtx =<< parseIdiomBrackets r e -- Do notation C.DoBlock r ss -> toAbstractCtx TopCtx =<< desugarDoNotation r ss -- Post-fix projections C.Dot r e -> A.Dot (ExprRange r) <$> toAbstract e -- Pattern things C.As _ _ _ -> notAnExpression e C.Absurd _ -> notAnExpression e -- Impossible things C.ETel _ -> __IMPOSSIBLE__ C.Equal{} -> genericError "Parse error: unexpected '='" C.Ellipsis _ -> genericError "Parse error: unexpected '...'" -- Quoting C.QuoteGoal _ x e -> do x' <- toAbstract (NewName LetBound x) e' <- toAbstract e return $ A.QuoteGoal (ExprRange $ getRange e) x' e' C.QuoteContext r -> return $ A.QuoteContext (ExprRange r) C.Quote r -> return $ A.Quote (ExprRange r) C.QuoteTerm r -> return $ A.QuoteTerm (ExprRange r) C.Unquote r -> return $ A.Unquote (ExprRange r) C.Tactic r e es -> do let AppView e' args = appView e e' : es <- toAbstract (e' : es) args <- toAbstract args return $ A.Tactic (ExprRange r) e' args (map defaultNamedArg es) -- DontCare C.DontCare e -> A.DontCare <$> toAbstract e instance ToAbstract C.ModuleAssignment (A.ModuleName, [A.LetBinding]) where toAbstract (C.ModuleAssignment m es i) | null es && isDefaultImportDir i = (\x-> (x, [])) <$> toAbstract (OldModuleName m) | otherwise = do x <- C.NoName (getRange m) <$> fresh r <- checkModuleMacro LetApply (getRange (m, es, i)) PublicAccess x (C.SectionApp (getRange (m , es)) [] (RawApp (fuseRange m es) (Ident m : es))) DontOpen i case r of (LetApply _ m' _ _ _ : _) -> return (m', r) _ -> __IMPOSSIBLE__ instance ToAbstract c a => ToAbstract (FieldAssignment' c) (FieldAssignment' a) where toAbstract = traverse toAbstract instance ToAbstract C.LamBinding A.LamBinding where toAbstract (C.DomainFree info x) = A.DomainFree info . A.BindName <$> toAbstract (NewName LambdaBound x) toAbstract (C.DomainFull tb) = A.DomainFull <$> toAbstract tb makeDomainFull :: C.LamBinding -> C.TypedBindings makeDomainFull (C.DomainFull b) = b makeDomainFull (C.DomainFree info x) = C.TypedBindings r $ Arg info $ C.TBind r [pure x] $ C.Underscore r Nothing where r = getRange x instance ToAbstract C.TypedBindings A.TypedBindings where toAbstract (C.TypedBindings r bs) = A.TypedBindings r <$> toAbstract bs instance ToAbstract C.TypedBinding A.TypedBinding where toAbstract (C.TBind r xs t) = do t' <- toAbstractCtx TopCtx t xs' <- toAbstract $ map (fmap (NewName LambdaBound)) xs return $ A.TBind r (map (fmap A.BindName) xs') t' toAbstract (C.TLet r ds) = A.TLet r <$> toAbstract (LetDefs ds) -- | Scope check a module (top level function). -- scopeCheckNiceModule :: Range -> Access -> C.Name -> C.Telescope -> ScopeM [A.Declaration] -> ScopeM [A.Declaration] scopeCheckNiceModule r p name tel checkDs | telHasOpenStmsOrModuleMacros tel = do -- Andreas, 2013-12-10: -- If the module telescope contains open statements -- or module macros (Issue 1299), -- add an extra anonymous module around the current one. -- Otherwise, the open statements would create -- identifiers in the parent scope of the current module. -- But open statements in the module telescope should -- only affect the current module! scopeCheckNiceModule noRange p noName_ [] $ scopeCheckNiceModule_ | otherwise = do scopeCheckNiceModule_ where -- The actual workhorse: scopeCheckNiceModule_ = do -- Check whether we are dealing with an anonymous module. -- This corresponds to a Coq/LEGO section. (name, p', open) <- do if isNoName name then do (i :: NameId) <- fresh return (C.NoName (getRange name) i, PrivateAccess Inserted, True) else return (name, p, False) -- Check and bind the module, using the supplied check for its contents. aname <- toAbstract (NewModuleName name) ds <- snd <$> do scopeCheckModule r (C.QName name) aname tel checkDs bindModule p' name aname -- If the module was anonymous open it public -- unless it's private, in which case we just open it (#2099) when open $ void $ -- We can discard the returned default A.ImportDirective. openModule_ (C.QName name) $ defaultImportDir { publicOpen = p == PublicAccess } return ds -- | Check whether a telescope has open declarations or module macros. telHasOpenStmsOrModuleMacros :: C.Telescope -> Bool telHasOpenStmsOrModuleMacros = any yesBinds where yesBinds (C.TypedBindings _ tb) = yesBind $ unArg tb yesBind C.TBind{} = False yesBind (C.TLet _ ds) = any yes ds yes C.ModuleMacro{} = True yes C.Open{} = True yes C.Import{} = True -- not __IMPOSSIBLE__, see Issue #1718 -- However, it does not matter what we return here, as this will -- become an error later: "Not a valid let-declaration". -- (Andreas, 2015-11-17) yes (C.Mutual _ ds) = any yes ds yes (C.Abstract _ ds) = any yes ds yes (C.Private _ _ ds) = any yes ds yes _ = False {- UNUSED telHasLetStms :: C.Telescope -> Bool telHasLetStms = any isLetBinds where isLetBinds (C.TypedBindings _ tb) = isLetBind $ unArg tb isLetBind C.TBind{} = False isLetBind C.TLet{} = True -} -- | We for now disallow let-bindings in @data@ and @record@ telescopes. -- This due "nested datatypes"; there is no easy interpretation of -- @ -- data D (A : Set) (open M A) (b : B) : Set where -- c : D (A × A) b → D A b -- @ -- where @B@ is brought in scope by @open M A@. class EnsureNoLetStms a where ensureNoLetStms :: a -> ScopeM () {- From ghc 7.2, there is LANGUAGE DefaultSignatures default ensureNoLetStms :: Foldable t => t a -> ScopeM () ensureNoLetStms = traverse_ ensureNoLetStms -} instance EnsureNoLetStms C.TypedBinding where ensureNoLetStms tb = case tb of C.TLet{} -> typeError $ IllegalLetInTelescope tb C.TBind{} -> return () instance EnsureNoLetStms a => EnsureNoLetStms (LamBinding' a) where ensureNoLetStms = traverse_ ensureNoLetStms instance EnsureNoLetStms a => EnsureNoLetStms (TypedBindings' a) where ensureNoLetStms = traverse_ ensureNoLetStms instance EnsureNoLetStms a => EnsureNoLetStms [a] where ensureNoLetStms = traverse_ ensureNoLetStms -- | Returns the scope inside the checked module. scopeCheckModule :: Range -> C.QName -- ^ The concrete name of the module. -> A.ModuleName -- ^ The abstract name of the module. -> C.Telescope -- ^ The module telescope. -> ScopeM [A.Declaration] -- ^ The code for checking the module contents. -> ScopeM (ScopeInfo, [A.Declaration]) scopeCheckModule r x qm tel checkDs = do printScope "module" 20 $ "checking module " ++ prettyShow x -- Andreas, 2013-12-10: Telescope does not live in the new module -- but its parent, so check it before entering the new module. -- This is important for Nicolas Pouillard's open parametrized modules -- statements inside telescopes. res <- withLocalVars $ do tel <- toAbstract tel withCurrentModule qm $ do -- pushScope m -- qm <- getCurrentModule printScope "module" 20 $ "inside module " ++ prettyShow x ds <- checkDs scope <- getScope return (scope, [ A.Section info (qm `withRangesOfQ` x) tel ds ]) -- Binding is done by the caller printScope "module" 20 $ "after module " ++ prettyShow x return res where info = ModuleInfo r noRange Nothing Nothing Nothing -- | Temporary data type to scope check a file. data TopLevel a = TopLevel { topLevelPath :: AbsolutePath -- ^ The file path from which we loaded this module. , topLevelExpectedName :: C.TopLevelModuleName -- ^ The expected module name -- (coming from the import statement that triggered scope checking this file). , topLevelTheThing :: a -- ^ The file content. } data TopLevelInfo = TopLevelInfo { topLevelDecls :: [A.Declaration] , topLevelScope :: ScopeInfo -- ^ as seen from inside the module } -- | The top-level module name. topLevelModuleName :: TopLevelInfo -> A.ModuleName topLevelModuleName topLevel = scopeCurrent (topLevelScope topLevel) -- | Top-level declarations are always -- @ -- (import|open)* -- a bunch of possibly opened imports -- module ThisModule ... -- the top-level module of this file -- @ instance ToAbstract (TopLevel [C.Declaration]) TopLevelInfo where toAbstract (TopLevel file expectedMName ds) = -- A file is a bunch of preliminary decls (imports etc.) -- plus a single module decl. case C.spanAllowedBeforeModule ds of -- If there are declarations after the top-level module -- we have to report a parse error here. (_, C.Module{} : d : _) -> traceCall (SetRange $ getRange d) $ genericError $ "No declarations allowed after top-level module." -- Otherwise, proceed. (outsideDecls, [ C.Module r m0 tel insideDecls ]) -> do -- If the module name is _ compute the name from the file path m <- if isNoName m0 then do -- Andreas, 2017-07-28, issue #1077 -- Check if the insideDecls end in a single module which has the same -- name as the file. In this case, it is highly likely that the user -- put some non-allowed declarations before the top-level module in error. -- Andreas, 2017-10-19, issue #2808 -- Widen this check to: -- If the first module of the insideDecls has the same name as the file, -- report an error. case flip span insideDecls $ \case { C.Module{} -> False; _ -> True } of (ds0, (C.Module _ m1 _ _ : _)) | C.toTopLevelModuleName m1 == expectedMName -- If the anonymous module comes from the user, -- the range cannot be the beginningOfFile. -- That is the range if the parser inserted the anon. module. , r == beginningOfFile (getRange insideDecls) -> do traceCall (SetRange $ getRange ds0) $ typeError $ GenericError $ "Illegal declaration(s) before top-level module" -- Otherwise, reconstruct the top-level module name _ -> return $ C.QName $ C.Name (getRange m0) [Id $ stringToRawName $ rootNameModule file] -- Andreas, 2017-05-17, issue #2574, keep name as jump target! -- Andreas, 2016-07-12, ALTERNATIVE: -- -- We assign an anonymous file module the name expected from -- -- its import. For flat file structures, this is the same. -- -- For hierarchical file structures, this reverses the behavior: -- -- Loading the file by itself will fail, but it can be imported. -- -- The previous behavior is: it can be loaded by itself, but not -- -- be imported -- then return $ C.fromTopLevelModuleName expectedMName else do -- Andreas, 2014-03-28 Issue 1078 -- We need to check the module name against the file name here. -- Otherwise one could sneak in a lie and confuse the scope -- checker. checkModuleName (C.toTopLevelModuleName m0) file $ Just expectedMName return m0 setTopLevelModule m am <- toAbstract (NewModuleQName m) -- Scope check the declarations outside outsideDecls <- toAbstract outsideDecls (insideScope, insideDecls) <- scopeCheckModule r m am tel $ toAbstract insideDecls let scope = mapScopeInfo (restrictLocalPrivate am) insideScope setScope scope return $ TopLevelInfo (outsideDecls ++ insideDecls) scope -- We already inserted the missing top-level module, see -- 'Agda.Syntax.Parser.Parser.figureOutTopLevelModule', -- thus, this case is impossible: _ -> __IMPOSSIBLE__ -- | runs Syntax.Concrete.Definitions.niceDeclarations on main module niceDecls :: [C.Declaration] -> ScopeM [NiceDeclaration] niceDecls ds = do let (result, warns) = runNice $ niceDeclarations ds unless (null warns) $ setCurrentRange ds $ warnings $ NicifierIssue <$> warns case result of Left e -> throwError $ Exception (getRange e) $ pretty e Right ds -> return ds instance {-# OVERLAPPING #-} ToAbstract [C.Declaration] [A.Declaration] where toAbstract ds = do -- When --safe is active the termination checker (Issue 586) and -- positivity checker (Issue 1614) may not be switched off, and -- polarities may not be assigned. ds <- ifM (Lens.getSafeMode <$> commandLineOptions) (mapM (noNoTermCheck >=> noNoPositivityCheck >=> noPolarity) ds) (return ds) toAbstract =<< niceDecls ds where -- ASR (31 December 2015). We don't pattern-match on -- @NoTerminationCheck@ because the @NO_TERMINATION_CHECK@ pragma -- was removed. See Issue 1763. noNoTermCheck :: C.Declaration -> TCM C.Declaration noNoTermCheck d@(C.Pragma (C.TerminationCheckPragma r NonTerminating)) = d <$ (setCurrentRange d $ warning SafeFlagNonTerminating) noNoTermCheck d@(C.Pragma (C.TerminationCheckPragma r Terminating)) = d <$ (setCurrentRange d $ warning SafeFlagTerminating) noNoTermCheck d = return d noNoPositivityCheck :: C.Declaration -> TCM C.Declaration noNoPositivityCheck d@(C.Pragma (C.NoPositivityCheckPragma _)) = d <$ (setCurrentRange d $ warning SafeFlagNoPositivityCheck) noNoPositivityCheck d = return d noPolarity :: C.Declaration -> TCM C.Declaration noPolarity d@(C.Pragma C.PolarityPragma{}) = d <$ (setCurrentRange d $ warning SafeFlagPolarity) noPolarity d = return d newtype LetDefs = LetDefs [C.Declaration] newtype LetDef = LetDef NiceDeclaration instance ToAbstract LetDefs [A.LetBinding] where toAbstract (LetDefs ds) = concat <$> (toAbstract =<< map LetDef <$> niceDecls ds) instance ToAbstract LetDef [A.LetBinding] where toAbstract (LetDef d) = case d of NiceMutual _ _ _ d@[C.FunSig _ fx _ _ instanc macro info _ x t, C.FunDef _ _ _ abstract _ _ _ [cl]] -> do when (abstract == AbstractDef) $ do genericError $ "abstract not allowed in let expressions" when (macro == MacroDef) $ do genericError $ "Macros cannot be defined in a let expression." t <- toAbstract t -- We bind the name here to make sure it's in scope for the LHS (#917). -- It's unbound for the RHS in letToAbstract. x <- toAbstract (NewName LetBound $ mkBoundName x fx) (x', e) <- letToAbstract cl -- If InstanceDef set info to Instance let info' | instanc == InstanceDef = makeInstance info | otherwise = info -- There are sometimes two instances of the -- let-bound variable, one declaration and one -- definition. The first list element below is -- used to highlight the declared instance in the -- right way (see Issue 1618). return [ A.LetDeclaredVariable (A.BindName (setRange (getRange x') x)) , A.LetBind (LetRange $ getRange d) info' (A.BindName x) t e ] -- irrefutable let binding, like (x , y) = rhs NiceFunClause r PublicAccess ConcreteDef termCheck catchall d@(C.FunClause lhs@(C.LHS p [] []) (C.RHS rhs) NoWhere ca) -> do mp <- setCurrentRange p $ (Right <$> parsePattern p) `catchError` (return . Left) case mp of Right p -> do rhs <- toAbstract rhs p <- toAbstract p checkPatternLinearity p $ \ys -> typeError $ RepeatedVariablesInPattern ys bindVarsToBind p <- toAbstract p return [ A.LetPatBind (LetRange r) p rhs ] -- It's not a record pattern, so it should be a prefix left-hand side Left err -> case definedName p of Nothing -> throwError err Just x -> toAbstract $ LetDef $ NiceMutual r termCheck True [ C.FunSig r noFixity' PublicAccess ConcreteDef NotInstanceDef NotMacroDef defaultArgInfo termCheck x (C.Underscore (getRange x) Nothing) , C.FunDef r __IMPOSSIBLE__ __IMPOSSIBLE__ ConcreteDef NotInstanceDef __IMPOSSIBLE__ __IMPOSSIBLE__ [C.Clause x (ca || catchall) lhs (C.RHS rhs) NoWhere []] ] where definedName (C.IdentP (C.QName x)) = Just x definedName C.IdentP{} = Nothing definedName (C.RawAppP _ (p : _)) = definedName p definedName (C.ParenP _ p) = definedName p definedName C.WildP{} = Nothing -- for instance let _ + x = x in ... (not allowed) definedName C.AbsurdP{} = Nothing definedName C.AsP{} = Nothing definedName C.DotP{} = Nothing definedName C.LitP{} = Nothing definedName C.RecP{} = Nothing definedName C.QuoteP{} = Nothing definedName C.HiddenP{} = Nothing -- Not impossible, see issue #2291 definedName C.InstanceP{} = Nothing definedName C.WithP{} = Nothing definedName C.RawAppP{} = __IMPOSSIBLE__ definedName C.AppP{} = __IMPOSSIBLE__ definedName C.OpAppP{} = __IMPOSSIBLE__ definedName C.EllipsisP{} = __IMPOSSIBLE__ -- You can't open public in a let NiceOpen r x dirs -> do when (publicOpen dirs) $ warning UselessPublic m <- toAbstract (OldModuleName x) adir <- openModule_ x dirs let minfo = ModuleInfo { minfoRange = r , minfoAsName = Nothing , minfoAsTo = renamingRange dirs , minfoOpenShort = Nothing , minfoDirective = Just dirs } return [A.LetOpen minfo m adir] NiceModuleMacro r p x modapp open dir -> do when (publicOpen dir) $ warning UselessPublic -- Andreas, 2014-10-09, Issue 1299: module macros in lets need -- to be private checkModuleMacro LetApply r (PrivateAccess Inserted) x modapp open dir _ -> notAValidLetBinding d where letToAbstract (C.Clause top catchall clhs@(C.LHS p [] []) (C.RHS rhs) NoWhere []) = do {- p <- parseLHS top p localToAbstract (snd $ lhsArgs p) $ \args -> -} (x, args) <- do res <- setCurrentRange p $ parseLHS (C.QName top) p case res of C.LHSHead x args -> return (x, args) C.LHSProj{} -> genericError $ "copatterns not allowed in let bindings" C.LHSWith{} -> genericError $ "with-patterns not allowed in let bindings" e <- localToAbstract args $ \args -> do bindVarsToBind -- Make sure to unbind the function name in the RHS, since lets are non-recursive. rhs <- unbindVariable top $ toAbstract rhs foldM lambda rhs (reverse args) -- just reverse because these DomainFree return (x, e) letToAbstract _ = notAValidLetBinding d -- Named patterns not allowed in let definitions lambda e (Arg info (Named Nothing (A.VarP x))) = return $ A.Lam i (A.DomainFree info x) e where i = ExprRange (fuseRange x e) lambda e (Arg info (Named Nothing (A.WildP i))) = do x <- freshNoName (getRange i) return $ A.Lam i' (A.DomainFree info $ A.BindName x) e where i' = ExprRange (fuseRange i e) lambda _ _ = notAValidLetBinding d newtype Blind a = Blind { unBlind :: a } instance ToAbstract (Blind a) (Blind a) where toAbstract = return -- The only reason why we return a list is that open declarations disappears. -- For every other declaration we get a singleton list. instance ToAbstract NiceDeclaration A.Declaration where toAbstract d = annotateDecls $ traceCall (ScopeCheckDeclaration d) $ -- Andreas, 2015-10-05, Issue 1677: -- We record in the environment whether we are scope checking an -- abstract definition. This way, we can propagate this attribute -- the extended lambdas. caseMaybe (niceHasAbstract d) id (\ a -> local $ \ e -> e { envAbstractMode = aDefToMode a }) $ case d of -- Axiom (actual postulate) C.Axiom r f p a i rel _ x t -> do -- check that we do not postulate in --safe mode clo <- commandLineOptions when (Lens.getSafeMode clo) (warning $ SafeFlagPostulate x) -- check the postulate toAbstractNiceAxiom A.NoFunSig NotMacroDef d -- Fields C.NiceField r f p a i x t -> do unless (p == PublicAccess) $ genericError "Record fields can not be private" -- Interaction points for record fields have already been introduced -- when checking the type of the record constructor. -- To avoid introducing interaction points (IP) twice, we turn -- all question marks to underscores. (See issue 1138.) let maskIP (C.QuestionMark r _) = C.Underscore r Nothing maskIP e = e t' <- toAbstractCtx TopCtx $ mapExpr maskIP t y <- freshAbstractQName f x irrProj <- optIrrelevantProjections <$> pragmaOptions unless (isIrrelevant t && not irrProj) $ -- Andreas, 2010-09-24: irrelevant fields are not in scope -- this ensures that projections out of irrelevant fields cannot occur -- Ulf: unless you turn on --irrelevant-projections bindName p FldName x y return [ A.Field (mkDefInfoInstance x f p a i NotMacroDef r) y t' ] -- Primitive function PrimitiveFunction r f p a x t -> do t' <- toAbstractCtx TopCtx t y <- freshAbstractQName f x bindName p DefName x y return [ A.Primitive (mkDefInfo x f p a r) y t' ] -- Definitions (possibly mutual) NiceMutual r termCheck pc ds -> do ds' <- toAbstract ds -- We only termination check blocks that do not have a measure. return [ A.Mutual (MutualInfo termCheck pc r) ds' ] C.NiceRecSig r f p a _pc x ls t -> do ensureNoLetStms ls withLocalVars $ do ls' <- toAbstract (map makeDomainFull ls) t' <- toAbstract t x' <- freshAbstractQName f x bindName p DefName x x' return [ A.RecSig (mkDefInfo x f p a r) x' ls' t' ] C.NiceDataSig r f p a _pc x ls t -> withLocalVars $ do printScope "scope.data.sig" 20 ("checking DataSig for " ++ prettyShow x) ensureNoLetStms ls ls' <- toAbstract (map makeDomainFull ls) t' <- toAbstract t x' <- freshAbstractQName f x {- -- Andreas, 2012-01-16: remember number of parameters bindName p (DataName (length ls)) x x' -} bindName p DefName x x' return [ A.DataSig (mkDefInfo x f p a r) x' ls' t' ] -- Type signatures C.FunSig r f p a i m rel tc x t -> toAbstractNiceAxiom A.FunSig m (C.Axiom r f p a i rel Nothing x t) -- Function definitions C.FunDef r ds f a i tc x cs -> do printLocals 10 $ "checking def " ++ prettyShow x (x',cs) <- toAbstract (OldName x,cs) -- Andreas, 2017-12-04 the name must reside in the current module unlessM ((A.qnameModule x' ==) <$> getCurrentModule) $ __IMPOSSIBLE__ let delayed = NotDelayed -- (delayed, cs) <- translateCopatternClauses cs -- TODO return [ A.FunDef (mkDefInfoInstance x f PublicAccess a i NotMacroDef r) x' delayed cs ] -- Uncategorized function clauses C.NiceFunClause r acc abs termCheck catchall (C.FunClause lhs rhs wcls ca) -> genericError $ "Missing type signature for left hand side " ++ prettyShow lhs C.NiceFunClause{} -> __IMPOSSIBLE__ -- Data definitions C.DataDef r f a _ x pars cons -> withLocalVars $ do printScope "scope.data.def" 20 ("checking DataDef for " ++ prettyShow x) (p, ax) <- resolveName (C.QName x) >>= \case DefinedName p ax -> do livesInCurrentModule ax -- Andreas, 2017-12-04, issue #2862 return (p, ax) _ -> genericError $ "Missing type signature for data definition " ++ prettyShow x ensureNoLetStms pars -- Check for duplicate constructors do cs <- mapM conName cons let dups = nub $ cs \\ nub cs bad = filter (`elem` dups) cs unless (distinct cs) $ setCurrentRange bad $ typeError $ DuplicateConstructors dups pars <- toAbstract pars let x' = anameName ax -- Create the module for the qualified constructors checkForModuleClash x -- disallow shadowing previously defined modules let m = mnameFromList $ qnameToList x' createModule (Just IsData) m bindModule p x m -- make it a proper module cons <- toAbstract (map (ConstrDecl NoRec m a p) cons) -- Open the module -- openModule_ (C.QName x) defaultImportDir{ publicOpen = True } printScope "data" 20 $ "Checked data " ++ prettyShow x return [ A.DataDef (mkDefInfo x f PublicAccess a r) x' pars cons ] where conName (C.Axiom _ _ _ _ _ _ _ c _) = return c conName d = errorNotConstrDecl d -- Record definitions (mucho interesting) C.RecDef r f a _ x ind eta cm pars fields -> do printScope "scope.rec.def" 20 ("checking RecDef for " ++ prettyShow x) (p, ax) <- resolveName (C.QName x) >>= \case DefinedName p ax -> do livesInCurrentModule ax -- Andreas, 2017-12-04, issue #2862 return (p, ax) _ -> genericError $ "Missing type signature for record definition " ++ prettyShow x ensureNoLetStms pars withLocalVars $ do -- Check that the generated module doesn't clash with a previously -- defined module checkForModuleClash x pars <- toAbstract pars let x' = anameName ax -- We scope check the fields a first time when putting together -- the type of the constructor. contel <- toAbstract =<< recordConstructorType fields m0 <- getCurrentModule let m = A.qualifyM m0 $ mnameFromList [ last $ qnameToList x' ] printScope "rec" 15 "before record" createModule (Just IsRecord) m -- We scope check the fields a second time, as actual fields. afields <- withCurrentModule m $ do afields <- toAbstract fields printScope "rec" 15 "checked fields" return afields -- Andreas, 2017-07-13 issue #2642 disallow duplicate fields -- Check for duplicate fields. (See "Check for duplicate constructors") do let fs = catMaybes $ for fields $ \case C.NiceField _ _ _ _ _ f _ -> Just f _ -> Nothing let dups = nub $ fs \\ nub fs bad = filter (`elem` dups) fs unless (distinct fs) $ setCurrentRange bad $ typeError $ DuplicateFields dups bindModule p x m cm' <- mapM (\(ThingWithFixity c f, _) -> bindConstructorName m c f a p YesRec) cm let inst = caseMaybe cm NotInstanceDef snd printScope "rec" 15 "record complete" return [ A.RecDef (mkDefInfoInstance x f PublicAccess a inst NotMacroDef r) x' ind eta cm' pars contel afields ] NiceModule r p a x@(C.QName name) tel ds -> do reportSDoc "scope.decl" 70 $ vcat $ [ text $ "scope checking NiceModule " ++ prettyShow x ] adecls <- traceCall (ScopeCheckDeclaration $ NiceModule r p a x tel []) $ do scopeCheckNiceModule r p name tel $ toAbstract ds reportSDoc "scope.decl" 70 $ vcat $ [ text $ "scope checked NiceModule " ++ prettyShow x ] ++ map (nest 2 . prettyA) adecls return adecls NiceModule _ _ _ m@C.Qual{} _ _ -> genericError $ "Local modules cannot have qualified names" NiceModuleMacro r p x modapp open dir -> do reportSDoc "scope.decl" 70 $ vcat $ [ text $ "scope checking NiceModuleMacro " ++ prettyShow x ] adecls <- checkModuleMacro Apply r p x modapp open dir reportSDoc "scope.decl" 70 $ vcat $ [ text $ "scope checked NiceModuleMacro " ++ prettyShow x ] ++ map (nest 2 . prettyA) adecls return adecls NiceOpen r x dir -> do (minfo, m, adir) <- checkOpen r x dir return [A.Open minfo m adir] NicePragma r p -> do ps <- toAbstract p return $ map (A.Pragma r) ps NiceImport r x as open dir -> setCurrentRange r $ do notPublicWithoutOpen open dir -- First scope check the imported module and return its name and -- interface. This is done with that module as the top-level module. -- This is quite subtle. We rely on the fact that when setting the -- top-level module and generating a fresh module name, the generated -- name will be exactly the same as the name generated when checking -- the imported module. (m, i) <- withCurrentModule noModuleName $ withTopLevelModule x $ do m <- toAbstract $ NewModuleQName x printScope "import" 10 "before import:" (m, i) <- scopeCheckImport m printScope "import" 10 $ "scope checked import: " ++ show i -- We don't want the top scope of the imported module (things happening -- before the module declaration) return (m, Map.delete noModuleName i) -- Merge the imported scopes with the current scopes modifyScopes $ \ ms -> Map.unionWith mergeScope (Map.delete m ms) i -- Bind the desired module name to the right abstract name. case as of Nothing -> bindQModule (PrivateAccess Inserted) x m Just y -> bindModule (PrivateAccess Inserted) (asName y) m printScope "import" 10 "merged imported sig:" -- Open if specified, otherwise apply import directives let (name, theAsSymbol, theAsName) = case as of Nothing -> (x, noRange, Nothing) Just a -> (C.QName (asName a), asRange a, Just (asName a)) adir <- case open of DoOpen -> do (_minfo, _m, adir) <- checkOpen r name dir return adir -- If not opening, import directives are applied to the original scope. DontOpen -> modifyNamedScopeM m $ applyImportDirectiveM x dir let minfo = ModuleInfo { minfoRange = r , minfoAsName = theAsName , minfoAsTo = getRange (theAsSymbol, renamingRange dir) , minfoOpenShort = Just open , minfoDirective = Just dir } return [ A.Import minfo m adir ] NiceUnquoteDecl r fxs p a i tc xs e -> do ys <- zipWithM freshAbstractQName fxs xs zipWithM_ (bindName p QuotableName) xs ys e <- toAbstract e zipWithM_ (rebindName p DefName) xs ys let mi = MutualInfo tc True r return [ A.Mutual mi [A.UnquoteDecl mi [ mkDefInfoInstance x fx p a i NotMacroDef r | (fx, x) <- zip fxs xs ] ys e] ] NiceUnquoteDef r fxs p a tc xs e -> do ys <- mapM (toAbstract . OldName) xs zipWithM_ (rebindName p QuotableName) xs ys e <- toAbstract e zipWithM_ (rebindName p DefName) xs ys return [ A.UnquoteDef [ mkDefInfo x fx PublicAccess a r | (fx, x) <- zip fxs xs ] ys e ] NicePatternSyn r fx n as p -> do reportSLn "scope.pat" 10 $ "found nice pattern syn: " ++ prettyShow n (as, p) <- withLocalVars $ do p <- toAbstract =<< parsePatternSyn p checkPatternLinearity p $ \ys -> typeError $ RepeatedVariablesInPattern ys bindVarsToBind let err = "Dot patterns are not allowed in pattern synonyms. Use '_' instead." p <- noDotPattern err p as <- (traverse . mapM) (unVarName <=< resolveName . C.QName) as unlessNull (patternVars p \\ map unArg as) $ \ xs -> do typeError . GenericDocError =<< do text "Unbound variables in pattern synonym: " <+> sep (map prettyA xs) return (as, p) y <- freshAbstractQName fx n bindName PublicAccess PatternSynName n y -- Expanding pattern synonyms already at definition makes it easier to -- fold them back when printing (issue #2762). ep <- expandPatternSynonyms p modifyPatternSyns (Map.insert y (as, ep)) return [A.PatternSynDef y as p] -- only for highlighting, so use unexpanded version where unVarName (VarName a _) = return a unVarName _ = typeError $ UnusedVariableInPatternSynonym where -- checking postulate or type sig. without checking safe flag toAbstractNiceAxiom funSig isMacro (C.Axiom r f p a i info mp x t) = do t' <- toAbstractCtx TopCtx t y <- freshAbstractQName f x let kind | isMacro == MacroDef = MacroName | otherwise = DefName bindName p kind x y return [ A.Axiom funSig (mkDefInfoInstance x f p a i isMacro r) info mp y t' ] toAbstractNiceAxiom _ _ _ = __IMPOSSIBLE__ -- | Make sure definition is in same module as signature. class LivesInCurrentModule a where livesInCurrentModule :: a -> ScopeM () instance LivesInCurrentModule AbstractName where livesInCurrentModule = livesInCurrentModule . anameName instance LivesInCurrentModule A.QName where livesInCurrentModule x = do m <- getCurrentModule reportSLn "scope.data.def" 30 $ unlines [ " A.QName of data type: " ++ show x , " current module: " ++ show m ] unless (A.qnameModule x == m) $ genericError $ "Definition in different module than its type signature" data IsRecordCon = YesRec | NoRec data ConstrDecl = ConstrDecl IsRecordCon A.ModuleName IsAbstract Access C.NiceDeclaration bindConstructorName :: ModuleName -> C.Name -> Fixity'-> IsAbstract -> Access -> IsRecordCon -> ScopeM A.QName bindConstructorName m x f a p record = do -- The abstract name is the qualified one y <- withCurrentModule m $ freshAbstractQName f x -- Bind it twice, once unqualified and once qualified bindName p' ConName x y withCurrentModule m $ bindName p'' ConName x y return y where -- An abstract constructor is private (abstract constructor means -- abstract datatype, so the constructor should not be exported). p' = case a of AbstractDef -> PrivateAccess Inserted _ -> p p'' = case (a, record) of (AbstractDef, _) -> PrivateAccess Inserted (_, YesRec) -> OnlyQualified -- record constructors aren't really in the record module _ -> PublicAccess instance ToAbstract ConstrDecl A.Declaration where toAbstract (ConstrDecl record m a p d) = do case d of C.Axiom r f p1 a1 i info Nothing x t -> do -- rel==Relevant -- unless (p1 == p) __IMPOSSIBLE__ -- This invariant is currently violated by test/Succeed/Issue282.agda unless (a1 == a) __IMPOSSIBLE__ t' <- toAbstractCtx TopCtx t -- The abstract name is the qualified one -- Bind it twice, once unqualified and once qualified y <- bindConstructorName m x f a p record printScope "con" 15 "bound constructor" return $ A.Axiom NoFunSig (mkDefInfoInstance x f p a i NotMacroDef r) info Nothing y t' C.Axiom _ _ _ _ _ _ (Just _) _ _ -> __IMPOSSIBLE__ _ -> errorNotConstrDecl d errorNotConstrDecl :: C.NiceDeclaration -> ScopeM a errorNotConstrDecl d = typeError . GenericDocError $ P.text "Illegal declaration in data type definition " P.$$ P.nest 2 (P.vcat $ map pretty (notSoNiceDeclarations d)) instance ToAbstract C.Pragma [A.Pragma] where toAbstract (C.ImpossiblePragma _) = impossibleTest toAbstract (C.OptionsPragma _ opts) = return [ A.OptionsPragma opts ] toAbstract (C.RewritePragma _ []) = [] <$ warning EmptyRewritePragma toAbstract (C.RewritePragma _ xs) = concat <$> do forM xs $ \ x -> do e <- toAbstract $ OldQName x Nothing case e of A.Def x -> return [ A.RewritePragma x ] A.Proj _ p | Just x <- getUnambiguous p -> return [ A.RewritePragma x ] A.Proj _ x -> genericError $ "REWRITE used on ambiguous name " ++ prettyShow x A.Con c | Just x <- getUnambiguous c -> return [ A.RewritePragma x ] A.Con x -> genericError $ "REWRITE used on ambiguous name " ++ prettyShow x A.Var x -> genericError $ "REWRITE used on parameter " ++ prettyShow x ++ " instead of on a defined symbol" _ -> __IMPOSSIBLE__ toAbstract (C.CompiledTypePragma _ x hs) = do e <- toAbstract $ OldQName x Nothing case e of A.Def x -> return [ A.CompiledTypePragma x hs ] _ -> genericError $ "Bad compiled type: " ++ prettyShow x -- TODO: error message toAbstract (C.CompiledDataPragma _ x hs hcs) = do e <- toAbstract $ OldQName x Nothing case e of A.Def x -> return [ A.CompiledDataPragma x hs hcs ] _ -> genericError $ "Not a datatype: " ++ prettyShow x -- TODO: error message toAbstract (C.CompiledPragma _ x hs) = do e <- toAbstract $ OldQName x Nothing y <- case e of A.Def x -> return x A.Proj _ c | Just x <- getUnambiguous c -> return x -- TODO: do we need to do s.th. special for projections? (Andreas, 2014-10-12) A.Proj _ x -> genericError $ "COMPILED on ambiguous name " ++ prettyShow x A.Con _ -> genericError "Use COMPILED_DATA for constructors" -- TODO _ -> __IMPOSSIBLE__ return [ A.CompiledPragma y hs ] toAbstract (C.CompiledExportPragma _ x hs) = do e <- toAbstract $ OldQName x Nothing y <- case e of A.Def x -> return x _ -> __IMPOSSIBLE__ return [ A.CompiledExportPragma y hs ] toAbstract (C.CompiledJSPragma _ x ep) = do e <- toAbstract $ OldQName x Nothing y <- case e of A.Def x -> return x A.Proj _ p | Just x <- getUnambiguous p -> return x A.Proj _ x -> genericError $ "COMPILED_JS used on ambiguous name " ++ prettyShow x A.Con c | Just x <- getUnambiguous c -> return x A.Con x -> genericError $ "COMPILED_JS used on ambiguous name " ++ prettyShow x _ -> __IMPOSSIBLE__ return [ A.CompiledJSPragma y ep ] toAbstract (C.CompiledUHCPragma _ x cr) = do e <- toAbstract $ OldQName x Nothing y <- case e of A.Def x -> return x _ -> __IMPOSSIBLE__ return [ A.CompiledUHCPragma y cr ] toAbstract (C.CompiledDataUHCPragma _ x crd crcs) = do e <- toAbstract $ OldQName x Nothing case e of A.Def x -> return [ A.CompiledDataUHCPragma x crd crcs ] _ -> fail $ "Bad compiled type: " ++ prettyShow x -- TODO: error message toAbstract (C.ForeignPragma _ b s) = [] <$ addForeignCode b s toAbstract (C.CompilePragma _ b x s) = do e <- toAbstract $ OldQName x Nothing let err what = genericError $ "Cannot COMPILE " ++ what ++ " " ++ prettyShow x y <- case e of A.Def x -> return x A.Proj _ p | Just x <- getUnambiguous p -> return x A.Proj _ x -> err "ambiguous projection" A.Con c | Just x <- getUnambiguous c -> return x A.Con x -> err "ambiguous constructor" A.PatternSyn{} -> err "pattern synonym" A.Var{} -> err "local variable" _ -> __IMPOSSIBLE__ return [ A.CompilePragma b y s ] toAbstract (C.StaticPragma _ x) = do e <- toAbstract $ OldQName x Nothing y <- case e of A.Def x -> return x A.Proj _ p | Just x <- getUnambiguous p -> return x A.Proj _ x -> genericError $ "STATIC used on ambiguous name " ++ prettyShow x _ -> genericError "Target of STATIC pragma should be a function" return [ A.StaticPragma y ] toAbstract (C.InjectivePragma _ x) = do e <- toAbstract $ OldQName x Nothing y <- case e of A.Def x -> return x A.Proj _ p | Just x <- getUnambiguous p -> return x A.Proj _ x -> genericError $ "INJECTIVE used on ambiguous name " ++ prettyShow x _ -> genericError "Target of INJECTIVE pragma should be a defined symbol" return [ A.InjectivePragma y ] toAbstract (C.InlinePragma _ b x) = do e <- toAbstract $ OldQName x Nothing let sINLINE = if b then "INLINE" else "NOINLINE" y <- case e of A.Def x -> return x A.Proj _ p | Just x <- getUnambiguous p -> return x A.Proj _ x -> genericError $ sINLINE ++ " used on ambiguous name " ++ prettyShow x _ -> genericError $ "Target of " ++ sINLINE ++ " pragma should be a function" return [ A.InlinePragma b y ] toAbstract (C.BuiltinPragma _ b q) | isUntypedBuiltin b = do bindUntypedBuiltin b =<< toAbstract (ResolveQName q) return [] toAbstract (C.BuiltinPragma _ b q) = do -- Andreas, 2015-02-14 -- Some builtins cannot be given a valid Agda type, -- thus, they do not come with accompanying postulate or definition. if b `elem` builtinsNoDef then do case q of C.QName x -> do unlessM ((UnknownName ==) <$> resolveName q) $ genericError $ "BUILTIN " ++ b ++ " declares an identifier " ++ "(no longer expects an already defined identifier)" y <- freshAbstractQName noFixity' x bindName PublicAccess DefName x y return [ A.BuiltinNoDefPragma b y ] _ -> genericError $ "Pragma BUILTIN " ++ b ++ ": expected unqualified identifier, " ++ "but found " ++ prettyShow q else do q <- toAbstract $ ResolveQName q return [ A.BuiltinPragma b q ] toAbstract (C.ImportPragma _ i) = do addHaskellImport i return [] toAbstract (C.ImportUHCPragma _ i) = do addHaskellImportUHC i return [] toAbstract (C.HaskellCodePragma _ s) = do addInlineHaskell s return [] toAbstract (C.EtaPragma _ x) = do e <- toAbstract $ OldQName x Nothing case e of A.Def x -> return [ A.EtaPragma x ] _ -> do e <- showA e genericError $ "Pragma ETA: expected identifier, " ++ "but found expression " ++ e toAbstract (C.DisplayPragma _ lhs rhs) = withLocalVars $ do let err = genericError "DISPLAY pragma left-hand side must have form 'f e1 .. en'" getHead (C.IdentP x) = return x getHead (C.RawAppP _ (p : _)) = getHead p getHead _ = err top <- getHead lhs (isPatSyn, hd) <- do qx <- resolveName' allKindsOfNames Nothing top case qx of VarName x' _ -> return . (False,) $ A.qnameFromList [x'] DefinedName _ d -> return . (False,) $ anameName d FieldName (d :! []) -> return . (False,) $ anameName d FieldName ds -> genericError $ "Ambiguous projection " ++ prettyShow top ++ ": " ++ prettyShow (fmap anameName ds) ConstructorName (d :! []) -> return . (False,) $ anameName d ConstructorName ds -> genericError $ "Ambiguous constructor " ++ prettyShow top ++ ": " ++ prettyShow (fmap anameName ds) UnknownName -> notInScope top PatternSynResName (d :! []) -> return . (True,) $ anameName d PatternSynResName ds -> genericError $ "Ambiguous pattern synonym" ++ prettyShow top ++ ": " ++ prettyShow (fmap anameName ds) lhs <- toAbstract $ LeftHandSide top lhs ps <- case lhs of A.LHS _ (A.LHSHead _ ps) -> return ps _ -> err -- Andreas, 2016-08-08, issue #2132 -- Remove pattern synonyms on lhs (hd, ps) <- do let mkP | isPatSyn = A.PatternSynP (PatRange $ getRange lhs) (unambiguous hd) | otherwise = A.DefP (PatRange $ getRange lhs) (unambiguous hd) p <- expandPatternSynonyms $ mkP ps case p of A.DefP _ f ps | Just hd <- getUnambiguous f -> return (hd, ps) A.ConP _ c ps | Just hd <- getUnambiguous c -> return (hd, ps) A.PatternSynP{} -> __IMPOSSIBLE__ _ -> err rhs <- toAbstract rhs return [A.DisplayPragma hd ps rhs] toAbstract (C.WarningOnUsage _ oqn str) = do qn <- toAbstract $ OldName oqn stUserWarnings %= Map.insert qn str pure [] -- Termination checking pragmes are handled by the nicifier toAbstract C.TerminationCheckPragma{} = __IMPOSSIBLE__ toAbstract C.CatchallPragma{} = __IMPOSSIBLE__ -- No positivity checking pragmas are handled by the nicifier. toAbstract C.NoPositivityCheckPragma{} = __IMPOSSIBLE__ -- Polarity pragmas are handled by the niceifier. toAbstract C.PolarityPragma{} = __IMPOSSIBLE__ instance ToAbstract C.Clause A.Clause where toAbstract (C.Clause top catchall lhs@(C.LHS p eqs with) rhs wh wcs) = withLocalVars $ do -- Andreas, 2012-02-14: need to reset local vars before checking subclauses vars <- getLocalVars let wcs' = for wcs $ \ c -> setLocalVars vars $> c lhs' <- toAbstract $ LeftHandSide (C.QName top) p printLocals 10 "after lhs:" let (whname, whds) = case wh of NoWhere -> (Nothing, []) -- Andreas, 2016-07-17 issues #2081 and #2101 -- where-declarations are automatically private. -- This allows their type signature to be checked InAbstractMode. AnyWhere ds -> (Nothing, [C.Private noRange Inserted ds]) -- Named where-modules do not default to private. SomeWhere m a ds -> (Just (m, a), ds) let isTerminationPragma :: C.Declaration -> Bool isTerminationPragma (C.Private _ _ ds) = any isTerminationPragma ds isTerminationPragma (C.Pragma (TerminationCheckPragma _ _)) = True isTerminationPragma _ = False if not (null eqs) then do rhs <- toAbstract =<< toAbstractCtx TopCtx (RightHandSide eqs with wcs' rhs whds) return $ A.Clause lhs' [] rhs A.noWhereDecls catchall else do -- ASR (16 November 2015) Issue 1137: We ban termination -- pragmas inside `where` clause. when (any isTerminationPragma whds) $ genericError "Termination pragmas are not allowed inside where clauses" -- the right hand side is checked inside the module of the local definitions (rhs, ds) <- whereToAbstract (getRange wh) whname whds $ toAbstractCtx TopCtx (RightHandSide eqs with wcs' rhs []) rhs <- toAbstract rhs -- #2897: we need to restrict named where modules in refined contexts, -- so remember whether it was named here return $ A.Clause lhs' [] rhs ds catchall whereToAbstract :: Range -> Maybe (C.Name, Access) -> [C.Declaration] -> ScopeM a -> ScopeM (a, A.WhereDeclarations) whereToAbstract _ whname [] inner = (, A.noWhereDecls) <$> inner whereToAbstract r whname whds inner = do -- Create a fresh concrete name if there isn't (a proper) one. (m, acc) <- do case whname of Just (m, acc) | not (isNoName m) -> return (m, acc) _ -> fresh <&> \ x -> (C.NoName (getRange whname) x, PrivateAccess Inserted) -- unnamed where's are private let tel = [] old <- getCurrentModule am <- toAbstract (NewModuleName m) (scope, ds) <- scopeCheckModule r (C.QName m) am tel $ toAbstract whds setScope scope x <- inner setCurrentModule old bindModule acc m am -- Issue 848: if the module was anonymous (module _ where) open it public let anonymousSomeWhere = maybe False (isNoName . fst) whname when anonymousSomeWhere $ void $ -- We can ignore the returned default A.ImportDirective. openModule_ (C.QName m) $ defaultImportDir { publicOpen = True } return (x, A.WhereDecls (am <$ whname) ds) data RightHandSide = RightHandSide { rhsRewriteEqn :: [C.RewriteEqn] -- ^ @rewrite e@ (many) , rhsWithExpr :: [C.WithExpr] -- ^ @with e@ (many) , rhsSubclauses :: [ScopeM C.Clause] -- ^ the subclauses spawned by a with (monadic because we need to reset the local vars before checking these clauses) , rhs :: C.RHS , rhsWhereDecls :: [C.Declaration] } data AbstractRHS = AbsurdRHS' | WithRHS' [A.Expr] [ScopeM C.Clause] -- ^ The with clauses haven't been translated yet | RHS' A.Expr C.Expr | RewriteRHS' [A.Expr] AbstractRHS A.WhereDeclarations qualifyName_ :: A.Name -> ScopeM A.QName qualifyName_ x = do m <- getCurrentModule return $ A.qualify m x withFunctionName :: String -> ScopeM A.QName withFunctionName s = do NameId i _ <- fresh qualifyName_ =<< freshName_ (s ++ show i) instance ToAbstract AbstractRHS A.RHS where toAbstract AbsurdRHS' = return A.AbsurdRHS toAbstract (RHS' e c) = return $ A.RHS e $ Just c toAbstract (RewriteRHS' eqs rhs wh) = do auxs <- replicateM (length eqs) $ withFunctionName "rewrite-" rhs <- toAbstract rhs return $ RewriteRHS (zip auxs eqs) [] rhs wh toAbstract (WithRHS' es cs) = do aux <- withFunctionName "with-" A.WithRHS aux es <$> do toAbstract =<< sequence cs instance ToAbstract RightHandSide AbstractRHS where toAbstract (RightHandSide eqs@(_:_) es cs rhs wh) = do eqs <- toAbstractCtx TopCtx eqs -- TODO: remember named where (rhs, ds) <- whereToAbstract (getRange wh) Nothing wh $ toAbstract (RightHandSide [] es cs rhs []) return $ RewriteRHS' eqs rhs ds toAbstract (RightHandSide [] [] (_ : _) _ _) = __IMPOSSIBLE__ toAbstract (RightHandSide [] (_ : _) _ (C.RHS _) _) = typeError $ BothWithAndRHS toAbstract (RightHandSide [] [] [] rhs []) = toAbstract rhs toAbstract (RightHandSide [] es cs C.AbsurdRHS []) = do es <- toAbstractCtx TopCtx es return $ WithRHS' es cs -- TODO: some of these might be possible toAbstract (RightHandSide [] (_ : _) _ C.AbsurdRHS (_ : _)) = __IMPOSSIBLE__ toAbstract (RightHandSide [] [] [] (C.RHS _) (_ : _)) = __IMPOSSIBLE__ toAbstract (RightHandSide [] [] [] C.AbsurdRHS (_ : _)) = __IMPOSSIBLE__ instance ToAbstract C.RHS AbstractRHS where toAbstract C.AbsurdRHS = return $ AbsurdRHS' toAbstract (C.RHS e) = RHS' <$> toAbstract e <*> pure e data LeftHandSide = LeftHandSide C.QName C.Pattern instance ToAbstract LeftHandSide A.LHS where toAbstract (LeftHandSide top lhs) = traceCall (ScopeCheckLHS top lhs) $ do lhscore <- parseLHS top lhs reportSLn "scope.lhs" 5 $ "parsed lhs: " ++ show lhscore printLocals 10 "before lhs:" -- error if copattern parsed but --no-copatterns option unlessM (optCopatterns <$> pragmaOptions) $ when (hasCopatterns lhscore) $ typeError $ NeedOptionCopatterns -- scope check patterns except for dot patterns lhscore <- toAbstract lhscore bindVarsToBind reportSLn "scope.lhs" 5 $ "parsed lhs patterns: " ++ show lhscore printLocals 10 "checked pattern:" -- scope check dot patterns lhscore <- toAbstract lhscore reportSLn "scope.lhs" 5 $ "parsed lhs dot patterns: " ++ show lhscore printLocals 10 "checked dots:" return $ A.LHS (LHSRange $ getRange lhs) lhscore -- does not check pattern linearity instance ToAbstract C.LHSCore (A.LHSCore' C.Expr) where toAbstract (C.LHSHead x ps) = do x <- withLocalVars $ do setLocalVars [] toAbstract (OldName x) A.LHSHead x <$> toAbstract ps toAbstract (C.LHSProj d ps1 l ps2) = do unless (null ps1) $ typeError $ GenericDocError $ P.text "Ill-formed projection pattern" P.<+> P.pretty (foldl C.AppP (C.IdentP d) ps1) qx <- resolveName d ds <- case qx of FieldName ds -> return $ fmap anameName ds UnknownName -> notInScope d _ -> genericError $ "head of copattern needs to be a field identifier, but " ++ prettyShow d ++ " isn't one" A.LHSProj (AmbQ ds) <$> toAbstract l <*> toAbstract ps2 toAbstract (C.LHSWith core wps ps) = do liftA3 A.LHSWith (toAbstract core) (toAbstract wps) (toAbstract ps) instance ToAbstract c a => ToAbstract (WithHiding c) (WithHiding a) where toAbstract (WithHiding h a) = WithHiding h <$> toAbstractHiding h a instance ToAbstract c a => ToAbstract (Arg c) (Arg a) where toAbstract (Arg info e) = Arg info <$> toAbstractHiding info e instance ToAbstract c a => ToAbstract (Named name c) (Named name a) where toAbstract (Named n e) = Named n <$> toAbstract e {- DOES NOT WORK ANYMORE with pattern synonyms instance ToAbstract c a => ToAbstract (A.LHSCore' c) (A.LHSCore' a) where toAbstract = mapM toAbstract -} instance ToAbstract (A.LHSCore' C.Expr) (A.LHSCore' A.Expr) where toAbstract (A.LHSHead f ps) = A.LHSHead f <$> mapM toAbstract ps toAbstract (A.LHSProj d lhscore ps) = A.LHSProj d <$> mapM toAbstract lhscore <*> mapM toAbstract ps toAbstract (A.LHSWith core wps ps) = liftA3 A.LHSWith (toAbstract core) (toAbstract wps) (toAbstract ps) -- Patterns are done in two phases. First everything but the dot patterns, and -- then the dot patterns. This is because dot patterns can refer to variables -- bound anywhere in the pattern. instance ToAbstract (A.Pattern' C.Expr) (A.Pattern' A.Expr) where toAbstract = traverse $ insideDotPattern . toAbstractCtx DotPatternCtx -- Issue #3033 resolvePatternIdentifier :: Range -> C.QName -> Maybe (Set A.Name) -> ScopeM (A.Pattern' C.Expr) resolvePatternIdentifier r x ns = do reportSLn "scope.pat" 60 $ "resolvePatternIdentifier " ++ show x ++ " at source position " ++ show r px <- toAbstract (PatName x ns) case px of VarPatName y -> do reportSLn "scope.pat" 60 $ " resolved to VarPatName " ++ show y ++ " with range " ++ show (getRange y) return $ VarP $ A.BindName y ConPatName ds -> return $ ConP (ConPatInfo ConOCon (PatRange r) False) (AmbQ $ fmap anameName ds) [] PatternSynPatName ds -> return $ PatternSynP (PatRange r) (AmbQ $ fmap anameName ds) [] instance ToAbstract C.Pattern (A.Pattern' C.Expr) where toAbstract (C.IdentP x) = resolvePatternIdentifier (getRange x) x Nothing toAbstract (AppP (QuoteP _) p) | IdentP x <- namedArg p, visible p = do e <- toAbstract (OldQName x Nothing) let quoted (A.Def x) = return x quoted (A.Macro x) = return x quoted (A.Proj _ p) | Just x <- getUnambiguous p = return x | otherwise = genericError $ "quote: Ambigous name: " ++ prettyShow (unAmbQ p) quoted (A.Con c) | Just x <- getUnambiguous c = return x | otherwise = genericError $ "quote: Ambigous name: " ++ prettyShow (unAmbQ c) quoted (A.ScopedExpr _ e) = quoted e quoted _ = genericError $ "quote: not a defined name" A.LitP . LitQName (getRange x) <$> quoted e toAbstract (QuoteP r) = genericError "quote must be applied to an identifier" toAbstract p0@(AppP p q) = do reportSLn "scope.pat" 50 $ "distributeDots before = " ++ show p p <- distributeDots p reportSLn "scope.pat" 50 $ "distributeDots after = " ++ show p (p', q') <- toAbstract (p, q) case p' of ConP i x as -> return $ ConP (i {patInfo = info}) x (as ++ [q']) ProjP i o x -> fail DefP _ x as -> return $ DefP info x (as ++ [q']) PatternSynP _ x as -> return $ PatternSynP info x (as ++ [q']) A.DotP i e -> case e of Ident x -> resolveName x >>= \case ConstructorName ds -> do let cpi = ConPatInfo ConOCon i True c = AmbQ (fmap anameName ds) return $ ConP cpi c [q'] _ -> fail _ -> fail _ -> fail where r = getRange p0 info = PatRange r fail = typeError $ InvalidPattern p0 distributeDots :: C.Pattern -> ScopeM C.Pattern distributeDots p@(C.DotP r e) = distributeDotsExpr r e distributeDots p = return p distributeDotsExpr :: Range -> C.Expr -> ScopeM C.Pattern distributeDotsExpr r e = parseRawApp e >>= \case C.App r e a -> AppP <$> distributeDotsExpr r e <*> (traverse . traverse) (distributeDotsExpr r) a OpApp r q ns as -> case (traverse . traverse . traverse) fromNoPlaceholder as of Just as -> OpAppP r q ns <$> (traverse . traverse . traverse) (distributeDotsExpr r) as Nothing -> return $ C.DotP r e Paren r e -> ParenP r <$> distributeDotsExpr r e _ -> return $ C.DotP r e fromNoPlaceholder :: MaybePlaceholder (OpApp a) -> Maybe a fromNoPlaceholder (NoPlaceholder _ (Ordinary e)) = Just e fromNoPlaceholder _ = Nothing parseRawApp :: C.Expr -> ScopeM C.Expr parseRawApp (RawApp r es) = parseApplication es parseRawApp e = return e toAbstract p0@(OpAppP r op ns ps) = do p <- resolvePatternIdentifier (getRange op) op (Just ns) ps <- toAbstract ps case p of ConP i x as -> return $ ConP (i {patInfo = info}) x (as ++ ps) DefP _ x as -> return $ DefP info x (as ++ ps) PatternSynP _ x as -> return $ PatternSynP info x (as ++ ps) _ -> __IMPOSSIBLE__ where info = PatRange r -- Removed when parsing toAbstract (HiddenP _ _) = __IMPOSSIBLE__ toAbstract (InstanceP _ _) = __IMPOSSIBLE__ toAbstract (RawAppP _ _) = __IMPOSSIBLE__ toAbstract (EllipsisP _) = __IMPOSSIBLE__ toAbstract p@(C.WildP r) = return $ A.WildP (PatRange r) -- Andreas, 2015-05-28 futile attempt to fix issue 819: repeated variable on lhs "_" -- toAbstract p@(C.WildP r) = A.VarP <$> freshName r "_" toAbstract (C.ParenP _ p) = toAbstract p toAbstract (C.LitP l) = return $ A.LitP l toAbstract p0@(C.AsP r x p) = do x <- toAbstract (NewName PatternBound x) p <- toAbstract p return $ A.AsP (PatRange r) (A.BindName x) p -- we have to do dot patterns at the end toAbstract p0@(C.DotP r e) = return $ A.DotP (PatRange r) e toAbstract p0@(C.AbsurdP r) = return $ A.AbsurdP (PatRange r) toAbstract (C.RecP r fs) = A.RecP (PatRange r) <$> mapM (traverse toAbstract) fs toAbstract (C.WithP r p) = A.WithP (PatRange r) <$> toAbstract p -- | An argument @OpApp C.Expr@ to an operator can have binders, -- in case the operator is some @syntax@-notation. -- For these binders, we have to create lambda-abstractions. toAbstractOpArg :: Precedence -> OpApp C.Expr -> ScopeM A.Expr toAbstractOpArg ctx (Ordinary e) = toAbstractCtx ctx e toAbstractOpArg ctx (SyntaxBindingLambda r bs e) = toAbstractLam r bs e ctx -- | Turn an operator application into abstract syntax. Make sure to -- record the right precedences for the various arguments. toAbstractOpApp :: C.QName -> Set A.Name -> [NamedArg (MaybePlaceholder (OpApp C.Expr))] -> ScopeM A.Expr toAbstractOpApp op ns es = do -- Replace placeholders with bound variables. (binders, es) <- replacePlaceholders es -- Get the notation for the operator. nota <- getNotation op ns let parts = notation nota -- We can throw away the @BindingHoles@, since binders -- have been preprocessed into @OpApp C.Expr@. let nonBindingParts = filter (not . isBindingHole) parts -- We should be left with as many holes as we have been given args @es@. -- If not, crash. unless (length (filter isAHole nonBindingParts) == length es) __IMPOSSIBLE__ -- Translate operator and its arguments (each in the right context). op <- toAbstract (OldQName op (Just ns)) es <- left (notaFixity nota) nonBindingParts es -- Prepend the generated section binders (if any). let body = foldl' app op es return $ foldr (A.Lam (ExprRange (getRange body))) body binders where -- Build an application in the abstract syntax, with correct Range. app e (pref, arg) = A.App info e arg where info = (defaultAppInfo r) { appOrigin = getOrigin arg , appParens = pref } r = fuseRange e arg inferParenPref :: NamedArg (Either A.Expr (OpApp C.Expr)) -> ParenPreference inferParenPref e = case namedArg e of Right (Ordinary e) -> inferParenPreference e Left{} -> PreferParenless -- variable inserted by section expansion Right{} -> PreferParenless -- syntax lambda -- Translate an argument. Returns the paren preference for the argument, so -- we can build the correct info for the A.App node. toAbsOpArg :: Precedence -> NamedArg (Either A.Expr (OpApp C.Expr)) -> ScopeM (ParenPreference, NamedArg A.Expr) toAbsOpArg cxt e = (pref,) <$> (traverse . traverse) (either return (toAbstractOpArg cxt)) e where pref = inferParenPref e -- The hole left to the first @IdPart@ is filled with an expression in @LeftOperandCtx@. left f (IdPart _ : xs) es = inside f xs es left f (_ : xs) (e : es) = do e <- toAbsOpArg (LeftOperandCtx f) e es <- inside f xs es return (e : es) left f (_ : _) [] = __IMPOSSIBLE__ left f [] _ = __IMPOSSIBLE__ -- The holes in between the @IdPart@s is filled with an expression in @InsideOperandCtx@. inside f [x] es = right f x es inside f (IdPart _ : xs) es = inside f xs es inside f (_ : xs) (e : es) = do e <- toAbsOpArg InsideOperandCtx e es <- inside f xs es return (e : es) inside _ (_ : _) [] = __IMPOSSIBLE__ inside _ [] _ = __IMPOSSIBLE__ -- The hole right of the last @IdPart@ is filled with an expression in @RightOperandCtx@. right _ (IdPart _) [] = return [] right f _ [e] = do let pref = inferParenPref e e <- toAbsOpArg (RightOperandCtx f pref) e return [e] right _ _ _ = __IMPOSSIBLE__ replacePlaceholders :: [NamedArg (MaybePlaceholder (OpApp e))] -> ScopeM ([A.LamBinding], [NamedArg (Either A.Expr (OpApp e))]) replacePlaceholders [] = return ([], []) replacePlaceholders (a : as) = case namedArg a of NoPlaceholder _ x -> mapSnd (set (Right x) a :) <$> replacePlaceholders as Placeholder _ -> do x <- freshName noRange "section" let i = setOrigin Inserted $ argInfo a (ls, ns) <- replacePlaceholders as return ( A.DomainFree i (A.BindName x) : ls , set (Left (Var x)) a : ns ) where set :: a -> NamedArg b -> NamedArg a set x arg = fmap (fmap (const x)) arg {-------------------------------------------------------------------------- Things we parse but are not part of the Agda file syntax --------------------------------------------------------------------------} -- | Content of interaction hole. instance ToAbstract C.HoleContent A.HoleContent where toAbstract = mapM toAbstract