{-# LANGUAGE CPP #-} module Agda.TypeChecking.Monad.Context where import Control.Monad.Reader import Control.Monad.State import qualified Data.List as List import Data.Map (Map) import qualified Data.Map as Map import Data.Monoid import Agda.Syntax.Abstract.Name import Agda.Syntax.Common import Agda.Syntax.Internal import Agda.Syntax.Scope.Monad (getLocalVars, setLocalVars) import Agda.TypeChecking.Monad.Base import Agda.TypeChecking.Monad.Debug import Agda.TypeChecking.Substitute import Agda.TypeChecking.Monad.Open import Agda.TypeChecking.Monad.Options import Agda.Utils.Except ( MonadError(catchError) ) import Agda.Utils.Functor import Agda.Utils.Lens import Agda.Utils.List ((!!!), downFrom) import Agda.Utils.Maybe import Agda.Utils.Monad import Agda.Utils.Pretty import Agda.Utils.Size import Agda.Utils.Impossible #include "undefined.h" -- * Modifying the context -- | Modify a 'Context' in a computation. {-# SPECIALIZE modifyContext :: (Context -> Context) -> TCM a -> TCM a #-} modifyContext :: MonadTCM tcm => (Context -> Context) -> tcm a -> tcm a modifyContext f = local $ \e -> e { envContext = f $ envContext e } -- | Change to top (=empty) context. Resets the checkpoints. {-# SPECIALIZE inTopContext :: TCM a -> TCM a #-} safeInTopContext :: MonadTCM tcm => tcm a -> tcm a safeInTopContext cont = do locals <- liftTCM $ getLocalVars liftTCM $ setLocalVars [] a <- modifyContext (const []) $ locally eCurrentCheckpoint (const 0) $ locally eCheckpoints (const $ Map.singleton 0 IdS) cont liftTCM $ setLocalVars locals return a -- | Change to top (=empty) context, but don't update the checkpoints. Totally -- not safe! {-# SPECIALIZE inTopContext :: TCM a -> TCM a #-} inTopContext :: MonadTCM tcm => tcm a -> tcm a inTopContext cont = do locals <- liftTCM $ getLocalVars liftTCM $ setLocalVars [] a <- modifyContext (const []) cont liftTCM $ setLocalVars locals return a -- | Delete the last @n@ bindings from the context. -- -- Doesn't update checkpoints!! Use `updateContext rho (drop n)` instead, -- for an appropriate substitution `rho`. {-# SPECIALIZE escapeContext :: Int -> TCM a -> TCM a #-} escapeContext :: MonadTCM tcm => Int -> tcm a -> tcm a escapeContext n = modifyContext $ drop n -- * Manipulating checkpoints -- -- | Add a new checkpoint. Do not use directly! checkpoint :: (MonadDebug tcm, MonadTCM tcm) => Substitution -> tcm a -> tcm a checkpoint sub k = do unlessDebugPrinting $ reportSLn "tc.cxt.checkpoint" 105 $ "New checkpoint {" old <- view eCurrentCheckpoint oldMods <- use stModuleCheckpoints chkpt <- fresh unlessDebugPrinting $ verboseS "tc.cxt.checkpoint" 105 $ do cxt <- getContextTelescope cps <- view eCheckpoints let cps' = Map.insert chkpt IdS $ fmap (applySubst sub) cps prCps cps = vcat [ pshow c <+> text ": " <+> pretty s | (c, s) <- Map.toList cps ] reportSDoc "tc.cxt.checkpoint" 105 $ return $ nest 2 $ vcat [ text "old =" <+> pshow old , text "new =" <+> pshow chkpt , text "sub =" <+> pretty sub , text "cxt =" <+> pretty cxt , text "old substs =" <+> prCps cps , text "new substs =" prCps cps' ] x <- flip local k $ \ env -> env { envCurrentCheckpoint = chkpt , envCheckpoints = Map.insert chkpt IdS $ fmap (applySubst sub) (envCheckpoints env) } newMods <- use stModuleCheckpoints -- Set the checkpoint for introduced modules to the old checkpoint when the -- new one goes out of scope. #2897: This isn't actually sound for modules -- created under refined parent parameters, but as long as those modules -- aren't named we shouldn't look at the checkpoint. The right thing to do -- would be to not store these modules in the checkpoint map, but todo.. stModuleCheckpoints .= Map.union oldMods (old <$ Map.difference newMods oldMods) unlessDebugPrinting $ reportSLn "tc.cxt.checkpoint" 105 "}" return x -- | Update the context. Requires a substitution from the old context to the -- new. updateContext :: (MonadDebug tcm, MonadTCM tcm) => Substitution -> (Context -> Context) -> tcm a -> tcm a updateContext sub f = modifyContext f . checkpoint sub -- | Get the substitution from the context at a given checkpoint to the current context. checkpointSubstitution :: MonadReader TCEnv tcm => CheckpointId -> tcm Substitution checkpointSubstitution chkpt = caseMaybeM (view (eCheckpoints . key chkpt)) __IMPOSSIBLE__ return -- | Get substitution @Γ ⊢ ρ : Γm@ where @Γ@ is the current context -- and @Γm@ is the module parameter telescope of module @m@. -- -- In case the we don't have a checkpoint for @m@ we return the identity -- substitution. -- This is ok for instance if we are outside module @m@ (in which case we -- have to supply all module parameters to any symbol defined within @m@ we -- want to refer). getModuleParameterSub :: (MonadReader TCEnv m, ReadTCState m) => ModuleName -> m Substitution getModuleParameterSub m = do mcp <- (^. stModuleCheckpoints . key m) <$> getTCState maybe (return IdS) checkpointSubstitution mcp -- * Adding to the context -- | @addCtx x arg cont@ add a variable to the context. -- -- Chooses an unused 'Name'. -- -- Warning: Does not update module parameter substitution! {-# SPECIALIZE addCtx :: Name -> Dom Type -> TCM a -> TCM a #-} addCtx :: (MonadDebug tcm, MonadTCM tcm) => Name -> Dom Type -> tcm a -> tcm a addCtx x a ret = do let ce = (x,) <$> a updateContext (raiseS 1) (ce :) ret -- let-bindings keep track of own their context -- | Pick a concrete name that doesn't shadow anything in the given list. unshadowedName :: [Name] -> Name -> Name unshadowedName xs x = head $ filter (notTaken $ map nameConcrete xs) $ iterate nextName x where notTaken xs x = isNoName x || nameConcrete x `notElem` xs -- | Pick a concrete name that doesn't shadow anything in the context. unshadowName :: MonadTCM tcm => Name -> tcm Name unshadowName x = do ctx <- map (fst . unDom) <$> getContext return $ unshadowedName ctx x -- | Various specializations of @addCtx@. {-# SPECIALIZE addContext :: b -> TCM a -> TCM a #-} class AddContext b where addContext :: (MonadTCM tcm, MonadDebug tcm) => b -> tcm a -> tcm a contextSize :: b -> Nat -- | Wrapper to tell 'addContext not to 'unshadowName's. Used when adding a -- user-provided, but already type checked, telescope to the context. newtype KeepNames a = KeepNames a instance {-# OVERLAPPABLE #-} AddContext a => AddContext [a] where addContext = flip (foldr addContext) contextSize = sum . map contextSize instance AddContext (Name, Dom Type) where addContext = uncurry addCtx contextSize _ = 1 instance AddContext (Dom (Name, Type)) where addContext = addContext . distributeF contextSize _ = 1 instance AddContext (Dom (String, Type)) where addContext = addContext . distributeF contextSize _ = 1 instance AddContext ([Name], Dom Type) where addContext (xs, dom) = addContext (bindsToTel' id xs dom) contextSize (xs, _) = length xs instance AddContext ([WithHiding Name], Dom Type) where addContext ([] , dom) = id addContext (WithHiding h x : xs, dom) = addContext (x , mapHiding (mappend h) dom) . addContext (xs, raise 1 dom) contextSize (xs, _) = length xs instance AddContext (String, Dom Type) where addContext (s, dom) ret = do x <- unshadowName =<< freshName_ s addCtx x dom ret contextSize _ = 1 instance AddContext (KeepNames String, Dom Type) where addContext (KeepNames s, dom) ret = do x <- freshName_ s addCtx x dom ret contextSize _ = 1 instance AddContext (Dom Type) where addContext dom = addContext ("_", dom) contextSize _ = 1 instance AddContext Name where addContext x = addContext (x, dummyDom) contextSize _ = 1 instance {-# OVERLAPPING #-} AddContext String where addContext s = addContext (s, dummyDom) contextSize _ = 1 instance AddContext (KeepNames Telescope) where addContext (KeepNames tel) ret = loop tel where loop EmptyTel = ret loop (ExtendTel t tel) = underAbstraction' KeepNames t tel loop contextSize (KeepNames tel) = size tel instance AddContext Telescope where addContext tel ret = loop tel where loop EmptyTel = ret loop (ExtendTel t tel) = underAbstraction' id t tel loop contextSize = size -- | Context entries without a type have this dummy type. dummyDom :: Dom Type dummyDom = defaultDom typeDontCare -- | Go under an abstraction. {-# SPECIALIZE underAbstraction :: Subst t a => Dom Type -> Abs a -> (a -> TCM b) -> TCM b #-} underAbstraction :: (Subst t a, MonadTCM tcm, MonadDebug tcm) => Dom Type -> Abs a -> (a -> tcm b) -> tcm b underAbstraction = underAbstraction' id underAbstraction' :: (Subst t a, MonadTCM tcm, MonadDebug tcm, AddContext (name, Dom Type)) => (String -> name) -> Dom Type -> Abs a -> (a -> tcm b) -> tcm b underAbstraction' _ _ (NoAbs _ v) k = k v underAbstraction' wrap t a k = addContext (wrap $ realName $ absName a, t) $ k $ absBody a where realName s = if isNoName s then "x" else argNameToString s -- | Go under an abstract without worrying about the type to add to the context. {-# SPECIALIZE underAbstraction_ :: Subst t a => Abs a -> (a -> TCM b) -> TCM b #-} underAbstraction_ :: (Subst t a, MonadTCM tcm, MonadDebug tcm) => Abs a -> (a -> tcm b) -> tcm b underAbstraction_ = underAbstraction dummyDom -- | Add a let bound variable. {-# SPECIALIZE addLetBinding :: ArgInfo -> Name -> Term -> Type -> TCM a -> TCM a #-} addLetBinding :: MonadTCM tcm => ArgInfo -> Name -> Term -> Type -> tcm a -> tcm a addLetBinding info x v t0 ret = do let t = Dom info t0 vt <- liftTCM $ makeOpen (v, t) flip local ret $ \e -> e { envLetBindings = Map.insert x vt $ envLetBindings e } -- * Querying the context -- | Get the current context. {-# SPECIALIZE getContext :: TCM [Dom (Name, Type)] #-} getContext :: MonadReader TCEnv m => m [Dom (Name, Type)] getContext = asks envContext -- | Get the size of the current context. {-# SPECIALIZE getContextSize :: TCM Nat #-} getContextSize :: (Applicative m, MonadReader TCEnv m) => m Nat getContextSize = length <$> asks envContext -- | Generate @[var (n - 1), ..., var 0]@ for all declarations in the context. {-# SPECIALIZE getContextArgs :: TCM Args #-} getContextArgs :: (Applicative m, MonadReader TCEnv m) => m Args getContextArgs = reverse . zipWith mkArg [0..] <$> getContext where mkArg i (Dom info _) = Arg info $ var i -- | Generate @[var (n - 1), ..., var 0]@ for all declarations in the context. {-# SPECIALIZE getContextTerms :: TCM [Term] #-} getContextTerms :: (Applicative m, MonadReader TCEnv m) => m [Term] getContextTerms = map var . downFrom <$> getContextSize -- | Get the current context as a 'Telescope'. {-# SPECIALIZE getContextTelescope :: TCM Telescope #-} getContextTelescope :: (Applicative m, MonadReader TCEnv m) => m Telescope getContextTelescope = telFromList' nameToArgName . reverse <$> getContext -- | Get the names of all declarations in the context. {-# SPECIALIZE getContextNames :: TCM [Name] #-} getContextNames :: (Applicative m, MonadReader TCEnv m) => m [Name] getContextNames = map (fst . unDom) <$> getContext -- | get type of bound variable (i.e. deBruijn index) -- {-# SPECIALIZE lookupBV :: Nat -> TCM (Dom (Name, Type)) #-} lookupBV :: MonadReader TCEnv m => Nat -> m (Dom (Name, Type)) lookupBV n = do ctx <- getContext let failure = fail $ "de Bruijn index out of scope: " ++ show n ++ " in context " ++ prettyShow (map (fst . unDom) ctx) maybe failure (return . fmap (raise $ n + 1)) $ ctx !!! n {-# SPECIALIZE typeOfBV' :: Nat -> TCM (Dom Type) #-} typeOfBV' :: (Applicative m, MonadReader TCEnv m) => Nat -> m (Dom Type) typeOfBV' n = fmap snd <$> lookupBV n {-# SPECIALIZE typeOfBV :: Nat -> TCM Type #-} typeOfBV :: (Applicative m, MonadReader TCEnv m) => Nat -> m Type typeOfBV i = unDom <$> typeOfBV' i {-# SPECIALIZE nameOfBV :: Nat -> TCM Name #-} nameOfBV :: (Applicative m, MonadReader TCEnv m) => Nat -> m Name nameOfBV n = fst . unDom <$> lookupBV n -- | Get the term corresponding to a named variable. If it is a lambda bound -- variable the deBruijn index is returned and if it is a let bound variable -- its definition is returned. {-# SPECIALIZE getVarInfo :: Name -> TCM (Term, Dom Type) #-} getVarInfo :: MonadReader TCEnv m => Name -> m (Term, Dom Type) getVarInfo x = do ctx <- getContext def <- asks envLetBindings case List.findIndex ((==x) . fst . unDom) ctx of Just n -> do t <- typeOfBV' n return (var n, t) _ -> case Map.lookup x def of Just vt -> getOpen vt _ -> fail $ "unbound variable " ++ prettyShow (nameConcrete x)