{-# LANGUAGE BangPatterns #-} {-# LANGUAGE CPP #-} {-# LANGUAGE UndecidableInstances #-} -- | Check that a datatype is strictly positive. module Agda.TypeChecking.Positivity where #if MIN_VERSION_base(4,11,0) import Prelude hiding ( (<>), null ) #else import Prelude hiding ( null ) #endif import Control.Applicative hiding (empty) import Control.DeepSeq import Control.Monad.Reader import Control.Monad.State (get) import Data.Either import qualified Data.Foldable as Fold import Data.Function import Data.Graph (SCC(..), flattenSCC) import Data.IntMap (IntMap) import qualified Data.IntMap as IntMap import qualified Data.List as List import Data.Map (Map) import qualified Data.Map as Map import Data.Monoid (mconcat) import qualified Data.Sequence as DS import Data.Set (Set) import qualified Data.Set as Set import Debug.Trace import Agda.Syntax.Common import qualified Agda.Syntax.Info as Info import Agda.Syntax.Internal import Agda.Syntax.Internal.Pattern import Agda.Syntax.Position (fuseRange, Range, HasRange(..), noRange) import Agda.TypeChecking.Datatypes ( isDataOrRecordType ) import Agda.TypeChecking.Functions import Agda.TypeChecking.Monad import Agda.TypeChecking.Monad.Builtin (primInf, CoinductionKit(..), coinductionKit) import Agda.TypeChecking.Positivity.Occurrence import Agda.TypeChecking.Pretty import Agda.TypeChecking.Records import Agda.TypeChecking.Reduce import Agda.TypeChecking.Substitute import Agda.TypeChecking.Telescope import Agda.TypeChecking.Warnings import qualified Agda.Utils.Graph.AdjacencyMap.Unidirectional as Graph import Agda.Utils.Function (applyUnless) import Agda.Utils.Functor import Agda.Utils.List import Agda.Utils.Maybe import Agda.Utils.Monad import Agda.Utils.Null import qualified Agda.Utils.Permutation as Perm import qualified Agda.Utils.Pretty as P import Agda.Utils.Pretty (Pretty, prettyShow) import Agda.Utils.SemiRing import Agda.Utils.Singleton import Agda.Utils.Size #include "undefined.h" import Agda.Utils.Impossible type Graph n e = Graph.Graph n e -- | Check that the datatypes in the mutual block containing the given -- declarations are strictly positive. -- -- Also add information about positivity and recursivity of records -- to the signature. checkStrictlyPositive :: Info.MutualInfo -> Set QName -> TCM () checkStrictlyPositive mi qset = disableDestructiveUpdate $ do -- compute the occurrence graph for qs let qs = Set.toList qset reportSDoc "tc.pos.tick" 100 $ text "positivity of" <+> prettyTCM qs g <- buildOccurrenceGraph qset let (gstar, sccs) = Graph.gaussJordanFloydWarshallMcNaughtonYamada $ fmap occ g reportSDoc "tc.pos.tick" 100 $ text "constructed graph" reportSLn "tc.pos.graph" 5 $ "Positivity graph: N=" ++ show (size $ Graph.nodes g) ++ " E=" ++ show (length $ Graph.edges g) reportSDoc "tc.pos.graph" 10 $ vcat [ text "positivity graph for" <+> (fsep $ map prettyTCM qs) , nest 2 $ prettyTCM g ] reportSLn "tc.pos.graph" 5 $ "Positivity graph (completed): E=" ++ show (length $ Graph.edges gstar) reportSDoc "tc.pos.graph" 50 $ vcat [ text "transitive closure of positivity graph for" <+> prettyTCM qs , nest 2 $ prettyTCM gstar ] -- remember argument occurrences for qs in the signature setArgOccs qset qs gstar reportSDoc "tc.pos.tick" 100 $ text "set args" -- check positivity for all strongly connected components of the graph for qs reportSDoc "tc.pos.graph.sccs" 10 $ do let (triv, others) = partitionEithers $ for sccs $ \case AcyclicSCC v -> Left v CyclicSCC vs -> Right vs sep [ text $ show (length triv) ++ " trivial sccs" , text $ show (length others) ++ " non-trivial sccs with lengths " ++ show (map length others) ] reportSLn "tc.pos.graph.sccs" 15 $ " sccs = " ++ prettyShow [ scc | CyclicSCC scc <- sccs ] forM_ sccs $ \case -- If the mutuality information has never been set, we set it to [] AcyclicSCC (DefNode q) -> whenM (isNothing <$> getMutual q) $ do reportSLn "tc.pos.mutual" 10 $ "setting " ++ prettyShow q ++ " to non-recursive" -- Andreas, 2017-04-26, issue #2555 -- We should not have @DefNode@s pointing outside our formal mutual block. unless (Set.member q qset) __IMPOSSIBLE__ setMutual q [] AcyclicSCC (ArgNode{}) -> return () CyclicSCC scc -> setMut [ q | DefNode q <- scc ] mapM_ (checkPos g gstar) qs reportSDoc "tc.pos.tick" 100 $ text "checked positivity" where checkPos :: Graph Node Edge -> Graph Node Occurrence -> QName -> TCM () checkPos g gstar q = inConcreteOrAbstractMode q $ \ _def -> do -- we check positivity only for data or record definitions whenJustM (isDatatype q) $ \ dr -> do reportSDoc "tc.pos.check" 10 $ text "Checking positivity of" <+> prettyTCM q let loop :: Maybe Occurrence loop = Graph.lookup (DefNode q) (DefNode q) gstar -- Note the property -- Agda.Utils.Graph.AdjacencyMap.Unidirectional.Tests.prop_productOfEdgesInBoundedWalk, -- which relates productOfEdgesInBoundedWalk to -- gaussJordanFloydWarshallMcNaughtonYamada. reason bound = case productOfEdgesInBoundedWalk occ g (DefNode q) (DefNode q) bound of Just (Edge _ how) -> how Nothing -> __IMPOSSIBLE__ how :: String -> Occurrence -> TCM Doc how msg bound = fsep $ [prettyTCM q] ++ pwords "is" ++ pwords (msg ++ ", because it occurs") ++ [prettyTCM (reason bound)] -- if we have a negative loop, raise error -- ASR (23 December 2015). We don't raise a strictly positive -- error if the NO_POSITIVITY_CHECK pragma was set on in the -- mutual block. See Issue 1614. when (Info.mutualPositivityCheck mi) $ whenM positivityCheckEnabled $ case loop of Just o | o <= JustPos -> warning $ NotStrictlyPositive q (reason JustPos) _ -> return () -- if we find an unguarded record, mark it as such when (dr == IsRecord) $ case loop of Just o | o <= StrictPos -> do reportSDoc "tc.pos.record" 5 $ how "not guarded" StrictPos unguardedRecord q checkInduction q -- otherwise, if the record is recursive, mark it as well Just o | o <= GuardPos -> do reportSDoc "tc.pos.record" 5 $ how "recursive" GuardPos recursiveRecord q checkInduction q -- If the record is not recursive, switch on eta -- unless it is coinductive or a no-eta-equality record. Nothing -> do reportSDoc "tc.pos.record" 10 $ text "record type " <+> prettyTCM q <+> text "is not recursive" nonRecursiveRecord q _ -> return () checkInduction :: QName -> TCM () checkInduction q = -- ASR (01 January 2016). We don't raise this error if the -- NO_POSITIVITY_CHECK pragma was set on in the record. See -- Issue 1760. when (Info.mutualPositivityCheck mi) $ whenM positivityCheckEnabled $ do -- Check whether the recursive record has been declared as -- 'Inductive' or 'Coinductive'. Otherwise, error. unlessM (isJust . recInduction . theDef <$> getConstInfo q) $ setCurrentRange (nameBindingSite $ qnameName q) $ typeError . GenericDocError =<< text "Recursive record" <+> prettyTCM q <+> text "needs to be declared as either inductive or coinductive" occ (Edge o _) = o isDatatype :: QName -> TCM (Maybe DataOrRecord) isDatatype q = do def <- theDef <$> getConstInfo q return $ case def of Datatype{dataClause = Nothing} -> Just IsData Record {recClause = Nothing} -> Just IsRecord _ -> Nothing -- Set the mutually recursive identifiers for a SCC. setMut :: [QName] -> TCM () setMut [] = return () -- nothing to do setMut qs = forM_ qs $ \ q -> do reportSLn "tc.pos.mutual" 10 $ "setting " ++ prettyShow q ++ " to (mutually) recursive" setMutual q qs -- TODO: The previous line produces data of quadratic size -- (which has to be processed upon serialization). Presumably qs is -- usually short, but in some cases (for instance for generated -- code) it may be long. Wouldn't it be better to assign a -- unique identifier to each SCC, and avoid storing lists? -- Set the polarity of the arguments to a couple of definitions setArgOccs :: Set QName -> [QName] -> Graph Node Occurrence -> TCM () setArgOccs qset qs g = do -- Andreas, 2018-05-11, issue #3049: we need to be pessimistic about -- argument polarity beyond the formal arity of the function. -- -- -- Compute a map from each name in q to the maximal argument index -- let maxs = Map.fromListWith max -- [ (q, i) | ArgNode q i <- Set.toList $ Graph.nodes g, q `Set.member` qset ] forM_ qs $ \ q -> inConcreteOrAbstractMode q $ \ def -> do reportSDoc "tc.pos.args" 10 $ text "checking args of" <+> prettyTCM q n <- getDefArity def -- If there is no outgoing edge @ArgNode q i@, all @n@ arguments are @Unused@. -- Otherwise, we obtain the occurrences from the Graph. let findOcc i = fromMaybe Unused $ Graph.lookup (ArgNode q i) (DefNode q) g args = -- caseMaybe (Map.lookup q maxs) (replicate n Unused) $ \ m -> map findOcc [0 .. n-1] -- [0 .. max m (n - 1)] -- triggers issue #3049 reportSDoc "tc.pos.args" 10 $ sep [ text "args of" <+> prettyTCM q <+> text "=" , nest 2 $ prettyList $ map prettyTCM args ] -- The list args can take a long time to compute, but contains -- small elements, and is stored in the interface (right?), so -- it is computed deep-strictly. setArgOccurrences q $!! args getDefArity :: Definition -> TCM Int getDefArity def = do let dropped = case theDef def of defn@Function{} -> projectionArgs defn _ -> 0 -- TODO: instantiateFull followed by arity could perhaps be -- optimised, presumably the instantiation can be performed -- lazily. subtract dropped . arity <$> instantiateFull (defType def) -- Operations on occurrences ------------------------------------------- -- See also Agda.TypeChecking.Positivity.Occurrence. (>*<) :: OccursWhere -> OccursWhere -> OccursWhere Unknown >*< _ = Unknown Known _ _ >*< Unknown = Unknown Known r1 os1 >*< Known r2 os2 = Known (fuseRange r1 r2) (os1 DS.>< os2) instance PrettyTCM OccursWhere where prettyTCM o = prettyOs $ map maxOneLeftOfArrow $ uniq $ splitOnDef o where nth 0 = pwords "first" nth 1 = pwords "second" nth 2 = pwords "third" nth n = pwords $ show (n + 1) ++ "th" -- remove consecutive duplicates uniq = map head . List.group prettyOs [] = __IMPOSSIBLE__ prettyOs [o] = prettyO o <> text "." prettyOs (o:os) = prettyO o <> text ", which occurs" $$ prettyOs os prettyO Unknown = empty prettyO (Known _ ws) = Fold.foldrM (\w d -> return d $$ fsep (prettyW w)) empty ws prettyW w = case w of LeftOfArrow -> pwords "to the left of an arrow" DefArg q i -> pwords "in the" ++ nth i ++ pwords "argument to" ++ [prettyTCM q] UnderInf -> pwords "under" ++ [do -- this cannot fail if an 'UnderInf' has been generated Def inf _ <- primInf prettyTCM inf] VarArg -> pwords "in an argument to a bound variable" MetaArg -> pwords "in an argument to a metavariable" ConArgType c -> pwords "in the type of the constructor" ++ [prettyTCM c] IndArgType c -> pwords "in an index of the target type of the constructor" ++ [prettyTCM c] InClause i -> pwords "in the" ++ nth i ++ pwords "clause" Matched -> pwords "as matched against" InDefOf d -> pwords "in the definition of" ++ [prettyTCM d] maxOneLeftOfArrow Unknown = Unknown maxOneLeftOfArrow (Known r ws) = Known r $ noArrows DS.>< case DS.viewl startsWithArrow of DS.EmptyL -> DS.empty w DS.:< ws -> w DS.<| DS.filter (not . isArrow) ws where (noArrows, startsWithArrow) = DS.breakl isArrow ws isArrow LeftOfArrow{} = True isArrow _ = False splitOnDef Unknown = [Unknown] splitOnDef (Known r ws) = split ws DS.empty where split ws acc = case DS.viewl ws of w@InDefOf{} DS.:< ws -> let rest = split ws (DS.singleton w) in if DS.null acc then rest else Known r acc : rest w DS.:< ws -> split ws (acc DS.|> w) DS.EmptyL -> [Known r acc] instance Sized OccursWhere where size Unknown = 1 size (Known _ ws) = 1 + size ws -- Computing occurrences -------------------------------------------------- data Item = AnArg Nat | ADef QName deriving (Eq, Ord, Show) instance HasRange Item where getRange (AnArg _) = noRange getRange (ADef qn) = getRange qn type Occurrences = Map Item [OccursWhere] -- | Used to build 'Occurrences' and occurrence graphs. data OccurrencesBuilder = Concat [OccurrencesBuilder] | OccursAs Where OccurrencesBuilder | OccursHere Item | OnlyVarsUpTo Nat OccurrencesBuilder -- ^ @OnlyVarsUpTo n occs@ discards occurrences of de Bruijn index -- @>= n@. -- | Used to build 'Occurrences' and occurrence graphs. data OccurrencesBuilder' = Concat' [OccurrencesBuilder'] | OccursAs' Where OccurrencesBuilder' | OccursHere' Item OccursWhere emptyOB :: OccurrencesBuilder emptyOB = Concat [] (>+<) :: OccurrencesBuilder -> OccurrencesBuilder -> OccurrencesBuilder occs1 >+< occs2 = Concat [occs1, occs2] -- | Removes 'OnlyVarsUpTo' entries and adds 'OccursWhere' entries. -- -- WARNING: There can be lots of sharing between the generated -- 'OccursWhere' entries. Traversing all of these entries could be -- expensive. (See 'computeEdges' for an example.) preprocess :: OccurrencesBuilder -> OccurrencesBuilder' preprocess ob = case pp Nothing DS.empty ob of Nothing -> Concat' [] Just ob -> ob where pp :: Maybe Nat -- ^ Variables larger than or equal to this number, if any, -- are not retained. -> DS.Seq Where -> OccurrencesBuilder -> Maybe OccurrencesBuilder' pp !m ws (Concat obs) = case catMaybes $ map (pp m ws) obs of [] -> Nothing obs -> return (Concat' obs) pp m ws (OccursAs w ob) = OccursAs' w <$> pp m (ws DS.|> w) ob pp m ws (OnlyVarsUpTo n ob) = pp (Just $! maybe n (min n) m) ws ob pp m ws (OccursHere i) = do guard keep return (OccursHere' i (Known (getRange i) ws)) where keep = case (m, i) of (Nothing, _) -> True (_, ADef _) -> True (Just m, AnArg i) -> i < m -- | A type used locally in 'flatten'. data OccursWheres = OccursWheres :++ OccursWheres | Occurs OccursWhere -- | An interpreter for 'OccurrencesBuilder'. -- -- WARNING: There can be lots of sharing between the generated -- 'OccursWhere' entries. Traversing all of these entries could be -- expensive. (See 'computeEdges' for an example.) flatten :: OccurrencesBuilder -> Occurrences flatten = fmap (flip flatten'' []) . Map.fromListWith (:++) . flip flatten' [] . preprocess where flatten' :: OccurrencesBuilder' -> [(Item, OccursWheres)] -> [(Item, OccursWheres)] flatten' (Concat' obs) = foldr (\occs f -> flatten' occs . f) id obs flatten' (OccursAs' _ ob) = flatten' ob flatten' (OccursHere' i o) = ((i, Occurs o) :) flatten'' (os1 :++ os2) = flatten'' os1 . flatten'' os2 flatten'' (Occurs o) = (o :) -- | Context for computing occurrences. data OccEnv = OccEnv { vars :: [Maybe Item] -- ^ Items corresponding to the free variables. -- -- Potential invariant: It seems as if the list has the form -- @'genericReplicate' n 'Nothing' ++ 'map' ('Just' . 'AnArg') is@, -- for some @n@ and @is@, where @is@ is decreasing -- (non-strictly). , inf :: Maybe QName -- ^ Name for ∞ builtin. } -- | Monad for computing occurrences. type OccM = Reader OccEnv withExtendedOccEnv :: Maybe Item -> OccM a -> OccM a withExtendedOccEnv i = withExtendedOccEnv' [i] withExtendedOccEnv' :: [Maybe Item] -> OccM a -> OccM a withExtendedOccEnv' is = local $ \ e -> e { vars = is ++ vars e } -- | Running the monad getOccurrences :: (Show a, PrettyTCM a, ComputeOccurrences a) => [Maybe Item] -> a -> TCM OccurrencesBuilder getOccurrences vars a = do reportSDoc "tc.pos.occ" 70 $ text "computing occurrences in " <+> text (show a) reportSDoc "tc.pos.occ" 20 $ text "computing occurrences in " <+> prettyTCM a kit <- coinductionKit return $ runReader (occurrences a) $ OccEnv vars $ fmap nameOfInf kit class ComputeOccurrences a where occurrences :: a -> OccM OccurrencesBuilder instance ComputeOccurrences Clause where occurrences cl = do let ps = namedClausePats cl items = IntMap.elems $ patItems ps -- sorted from low to high DBI (Concat (mapMaybe matching (zip [0..] ps)) >+<) <$> withExtendedOccEnv' items (occurrences $ clauseBody cl) where matching (i, p) | properlyMatching (namedThing $ unArg p) = Just $ OccursAs Matched $ OccursHere $ AnArg i | otherwise = Nothing -- @patItems ps@ creates a map from the pattern variables of @ps@ -- to the index of the argument they are bound in. patItems ps = mconcat $ zipWith patItem [0..] ps -- @patItem i p@ assigns index @i@ to each pattern variable in @p@ patItem :: Int -> NamedArg DeBruijnPattern -> IntMap (Maybe Item) patItem i p = Fold.foldMap makeEntry ixs where ixs = map dbPatVarIndex $ lefts $ map unArg $ patternVars $ namedThing <$> p makeEntry x = singleton (x, Just $ AnArg i) instance ComputeOccurrences Term where occurrences v = case unSpine v of Var i args -> do vars <- asks vars occs <- occurrences args -- Apparently some development version of GHC chokes if the -- following line is replaced by vars ! i. let mi | i < length vars = vars !! i | otherwise = flip trace __IMPOSSIBLE__ $ "impossible: occurrence of de Bruijn index " ++ show i ++ " in vars " ++ show vars ++ " is unbound" return $ maybe emptyOB OccursHere mi >+< OccursAs VarArg occs Def d args -> do inf <- asks inf let occsAs = if Just d /= inf then OccursAs . DefArg d else \ n -> -- the principal argument of builtin INF (∞) is the second (n==1) -- the first is a level argument (n==0, counting from 0!) if n == 1 then OccursAs UnderInf else OccursAs (DefArg d n) occs <- mapM occurrences args return $ OccursHere (ADef d) >+< Concat (zipWith occsAs [0..] occs) Con _ _ args -> occurrences args MetaV _ args -> OccursAs MetaArg <$> occurrences args Pi a b -> do oa <- occurrences a ob <- occurrences b return $ OccursAs LeftOfArrow oa >+< ob Lam _ b -> occurrences b Level l -> occurrences l Lit{} -> return emptyOB Sort{} -> return emptyOB DontCare _ -> return emptyOB -- Andreas, 2011-09-09: do we need to check for negative occurrences in irrelevant positions? instance ComputeOccurrences Level where occurrences (Max as) = occurrences as instance ComputeOccurrences PlusLevel where occurrences ClosedLevel{} = return emptyOB occurrences (Plus _ l) = occurrences l instance ComputeOccurrences LevelAtom where occurrences l = case l of MetaLevel x es -> occurrences $ MetaV x es -- Andreas, 2016-07-25, issue 2108 -- NOT: OccursAs MetaArg <$> occurrences vs -- since we need to unSpine! -- (Otherwise, we run into __IMPOSSIBLE__ at Proj elims) BlockedLevel _ v -> occurrences v NeutralLevel _ v -> occurrences v UnreducedLevel v -> occurrences v instance ComputeOccurrences Type where occurrences (El _ v) = occurrences v instance ComputeOccurrences a => ComputeOccurrences (Tele a) where occurrences EmptyTel = return emptyOB occurrences (ExtendTel a b) = occurrences (a, b) instance ComputeOccurrences a => ComputeOccurrences (Abs a) where occurrences (Abs _ b) = withExtendedOccEnv Nothing $ occurrences b occurrences (NoAbs _ b) = occurrences b instance ComputeOccurrences a => ComputeOccurrences (Elim' a) where occurrences Proj{} = __IMPOSSIBLE__ occurrences (Apply a) = occurrences a instance ComputeOccurrences a => ComputeOccurrences (Arg a) where occurrences = occurrences . unArg instance ComputeOccurrences a => ComputeOccurrences (Dom a) where occurrences = occurrences . unDom instance ComputeOccurrences a => ComputeOccurrences [a] where occurrences vs = Concat <$> mapM occurrences vs instance ComputeOccurrences a => ComputeOccurrences (Maybe a) where occurrences (Just v) = occurrences v occurrences Nothing = return emptyOB instance (ComputeOccurrences a, ComputeOccurrences b) => ComputeOccurrences (a, b) where occurrences (x, y) = do ox <- occurrences x oy <- occurrences y return $ ox >+< oy -- | Computes the occurrences in the given definition. -- -- WARNING: There can be lots of sharing between the 'OccursWhere' -- entries. Traversing all of these entries could be expensive. (See -- 'computeEdges' for an example.) computeOccurrences :: QName -> TCM Occurrences computeOccurrences q = flatten <$> computeOccurrences' q -- | Computes the occurrences in the given definition. computeOccurrences' :: QName -> TCM OccurrencesBuilder computeOccurrences' q = inConcreteOrAbstractMode q $ \ def -> do reportSDoc "tc.pos" 25 $ do let a = defAbstract def m <- asks envAbstractMode cur <- asks envCurrentModule text "computeOccurrences" <+> prettyTCM q <+> text (show a) <+> text (show m) <+> prettyTCM cur OccursAs (InDefOf q) <$> case theDef def of Function{funClauses = cs} -> do cs <- mapM etaExpandClause =<< instantiateFull cs Concat . zipWith (OccursAs . InClause) [0..] <$> mapM (getOccurrences []) cs Datatype{dataClause = Just c} -> getOccurrences [] =<< instantiateFull c Datatype{dataPars = np0, dataCons = cs} -> do -- Andreas, 2013-02-27: first, each data index occurs as matched on. TelV tel t <- telView $ defType def -- Andreas, 2017-04-26, issue #2554: count first index as parameter if it has type Size. -- We compute sizeIndex=1 if first first index has type Size, otherwise sizeIndex==0 sizeIndex <- caseMaybe (headMaybe $ drop np0 $ telToList tel) (return 0) $ \ dom -> do caseMaybeM (isSizeType dom) (return 0) $ \ _ -> return 1 let np = np0 + sizeIndex let xs = [np .. size tel - 1] -- argument positions corresponding to indices ioccs = Concat $ map (OccursHere . AnArg) [np0 .. np - 1] ++ map (OccursAs Matched . OccursHere . AnArg) xs -- Then, we compute the occurrences in the constructor types. let conOcc c = do a <- defType <$> getConstInfo c TelV tel t <- telView' <$> normalise a -- normalization needed e.g. for test/succeed/Bush.agda let indices = case unEl t of Def _ vs -> drop np vs _ -> __IMPOSSIBLE__ let tel' = telFromList $ drop np $ telToList tel vars np = map (Just . AnArg) $ downFrom np (>+<) <$> (OccursAs (ConArgType c) <$> getOccurrences (vars np) tel') <*> (OccursAs (IndArgType c) . OnlyVarsUpTo np <$> getOccurrences (vars $ size tel) indices) (>+<) ioccs <$> (Concat <$> mapM conOcc cs) Record{recClause = Just c} -> getOccurrences [] =<< instantiateFull c Record{recPars = np, recTel = tel} -> do let tel' = telFromList $ drop np $ telToList tel vars = map (Just . AnArg) $ downFrom np getOccurrences vars =<< normalise tel' -- Andreas, 2017-01-01, issue #1899, treat like data types -- Arguments to other kinds of definitions are hard-wired. Constructor{} -> return emptyOB Axiom{} -> return emptyOB Primitive{} -> return emptyOB AbstractDefn{}-> __IMPOSSIBLE__ -- Building the occurrence graph ------------------------------------------ data Node = DefNode !QName | ArgNode !QName !Nat deriving (Eq, Ord) instance Pretty Node where pretty = \case DefNode q -> P.pretty q ArgNode q i -> P.pretty q P.<> P.text ("." ++ show i) instance PrettyTCM Node where prettyTCM = return . P.pretty instance PrettyTCM n => PrettyTCM (WithNode n Edge) where prettyTCM (WithNode n (Edge o w)) = vcat [ prettyTCM o <+> prettyTCM n , nest 2 $ return $ P.pretty w ] -- | Edge labels for the positivity graph. data Edge = Edge !Occurrence OccursWhere deriving (Eq, Ord, Show) instance Null Edge where null (Edge o _) = null o empty = Edge empty Unknown -- | These operations form a semiring if we quotient by the relation -- \"the 'Occurrence' components are equal\". instance SemiRing Edge where ozero = Edge ozero Unknown oone = Edge oone Unknown oplus _ e@(Edge Mixed _) = e -- dominant oplus e@(Edge Mixed _) _ = e oplus (Edge Unused _) e = e -- neutral oplus e (Edge Unused _) = e oplus (Edge JustNeg _) e@(Edge JustNeg _) = e oplus _ e@(Edge JustNeg w) = Edge Mixed w oplus e@(Edge JustNeg w) _ = Edge Mixed w oplus _ e@(Edge JustPos _) = e -- dominates strict pos. oplus e@(Edge JustPos _) _ = e oplus _ e@(Edge StrictPos _) = e -- dominates 'GuardPos' oplus e@(Edge StrictPos _) _ = e oplus (Edge GuardPos _) e@(Edge GuardPos _) = e otimes (Edge o1 w1) (Edge o2 w2) = Edge (otimes o1 o2) (w1 >*< w2) -- | As 'OccursWhere' does not have an 'oplus' we cannot do something meaningful -- for the @OccursWhere@ here. -- -- E.g. @ostar (Edge JustNeg w) = Edge Mixed (w `oplus` (w >*< w))@ -- would probably more sense, if we could do it. instance StarSemiRing Edge where ostar (Edge o w) = Edge (ostar o) w -- | WARNING: There can be lots of sharing between the 'OccursWhere' -- entries in the edges. Traversing all of these entries could be -- expensive. (See 'computeEdges' for an example.) buildOccurrenceGraph :: Set QName -> TCM (Graph Node Edge) buildOccurrenceGraph qs = Graph.fromEdgesWith oplus . concat <$> mapM defGraph (Set.toList qs) where defGraph :: QName -> TCM [Graph.Edge Node Edge] defGraph q = inConcreteOrAbstractMode q $ \ _def -> do occs <- computeOccurrences' q reportSDoc "tc.pos.occs" 40 $ (text "Occurrences in" <+> prettyTCM q <> text ":") $+$ (nest 2 $ vcat $ map (\(i, (n, s)) -> text (show i) <> text ":" <+> text (show n) <+> text "occurrences, of total size" <+> text (show s)) $ List.sortBy (compare `on` fst . snd) $ map (\(i, os) -> (i, (length os, sum $ map size os))) $ Map.toList (flatten occs)) reportSDoc "tc.pos.occs" 50 $ (nest 2 $ vcat $ map (\(i, os) -> (text (show i) <> text ":") $+$ (nest 2 $ vcat $ map (return . P.pretty) os)) (Map.toList (flatten occs))) -- Placing this line before the reportSDoc lines above creates a -- space leak: occs is retained for too long. es <- computeEdges qs q occs reportSDoc "tc.pos.occs.edges" 60 $ text "Edges:" $+$ (nest 2 $ vcat $ map (\e -> let Edge o w = Graph.label e in prettyTCM (Graph.source e) <+> text "-[" <+> return (P.pretty o) <> text "," <+> return (P.pretty w) <+> text "]->" <+> prettyTCM (Graph.target e)) es) return es -- | Computes all non-'ozero' occurrence graph edges represented by -- the given 'OccurrencesBuilder'. -- -- WARNING: There can be lots of sharing between the 'OccursWhere' -- entries in the edges. Traversing all of these entries could be -- expensive. For instance, for the function @F@ in -- @benchmark/misc/SlowOccurrences.agda@ a large number of edges from -- the argument @X@ to the function @F@ are computed. These edges have -- polarity 'StrictPos', 'JustNeg' or 'JustPos', and contain the -- following 'OccursWhere' elements: -- -- * @'Known' ('DS.fromList' ['InDefOf' "F", 'InClause' 0])@, -- -- * @'Known' ('DS.fromList' ['InDefOf' "F", 'InClause' 0, 'LeftOfArrow'])@, -- -- * @'Known' ('DS.fromList' ['InDefOf' "F", 'InClause' 0, 'LeftOfArrow', 'LeftOfArrow'])@, -- -- * @'Known' ('DS.fromList' ['InDefOf' "F", 'InClause' 0, 'LeftOfArrow', 'LeftOfArrow', 'LeftOfArrow'])@, -- -- * and so on. computeEdges :: Set QName -- ^ The names in the current mutual block. -> QName -- ^ The current name. -> OccurrencesBuilder -> TCM [Graph.Edge Node Edge] computeEdges muts q ob = ($ []) <$> mkEdge __IMPOSSIBLE__ StrictPos (preprocess ob) where mkEdge to !pol ob = case ob of Concat' obs -> foldr (liftM2 (.)) (return id) [ mkEdge to pol ob | ob <- obs ] OccursAs' w ob -> do (to, pol) <- mkEdge' to pol w mkEdge to pol ob OccursHere' (AnArg i) o -> return $ applyUnless (null pol) (Graph.Edge { Graph.source = ArgNode q i , Graph.target = to , Graph.label = Edge pol o } :) OccursHere' (ADef q') o -> -- Andreas, 2017-04-26, issue #2555 -- Skip nodes pointing outside the mutual block. return $ applyUnless (null pol || Set.notMember q' muts) (Graph.Edge { Graph.source = DefNode q' , Graph.target = to , Graph.label = Edge pol o } :) mkEdge' to !pol w = case w of VarArg -> mixed MetaArg -> mixed LeftOfArrow -> negative DefArg d i -> do pol' <- isGuarding d if Set.member d muts then return (ArgNode d i, pol') else addPol =<< otimes pol' <$> getArgOccurrence d i UnderInf -> addPol GuardPos -- Andreas, 2012-06-09: ∞ is guarding ConArgType _ -> keepGoing IndArgType _ -> mixed InClause _ -> keepGoing Matched -> mixed -- consider arguments matched against as used InDefOf d -> do pol' <- isGuarding d return (DefNode d, pol') where keepGoing = return (to, pol) mixed = return (to, Mixed) negative = return (to, otimes pol JustNeg) addPol pol' = return (to, otimes pol pol') isGuarding d = do isDR <- isDataOrRecordType d return $ case isDR of Just IsData -> GuardPos -- a datatype is guarding _ -> StrictPos