{-# LANGUAGE CPP #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} -- | Code which replaces pattern matching on record constructors with -- uses of projection functions. module Agda.TypeChecking.RecordPatterns ( translateRecordPatterns , translateCompiledClauses , translateSplitTree , recordPatternToProjections ) where import Control.Arrow (first, second) import Control.Monad.Fix import Control.Monad.Reader import Control.Monad.State import qualified Data.List as List import Data.Maybe import qualified Data.Map as Map import qualified Data.Traversable import Agda.Syntax.Common import Agda.Syntax.Internal as I import Agda.Syntax.Internal.Pattern as I import Agda.Syntax.Literal import Agda.TypeChecking.CompiledClause import Agda.TypeChecking.Coverage.SplitTree import Agda.TypeChecking.EtaContract import Agda.TypeChecking.Datatypes import Agda.TypeChecking.Monad import Agda.TypeChecking.Pretty hiding (pretty) import Agda.TypeChecking.Records import Agda.TypeChecking.Reduce import Agda.TypeChecking.Substitute import Agda.TypeChecking.Telescope import Agda.Interaction.Options import Agda.Utils.Either import Agda.Utils.Functor import Agda.Utils.List import qualified Agda.Utils.Map as Map import Agda.Utils.Maybe import Agda.Utils.Permutation hiding (dropFrom) import Agda.Utils.Pretty (Pretty(..)) import qualified Agda.Utils.Pretty as P import Agda.Utils.Size #include "undefined.h" import Agda.Utils.Impossible --------------------------------------------------------------------------- -- * Record pattern translation for let bindings --------------------------------------------------------------------------- -- | Take a record pattern @p@ and yield a list of projections -- corresponding to the pattern variables, from left to right. -- -- E.g. for @(x , (y , z))@ we return @[ fst, fst . snd, snd . snd ]@. -- -- If it is not a record pattern, error 'ShouldBeRecordPattern' is raised. recordPatternToProjections :: DeBruijnPattern -> TCM [Term -> Term] recordPatternToProjections p = case p of VarP{} -> return [ \ x -> x ] LitP{} -> typeError $ ShouldBeRecordPattern p DotP{} -> typeError $ ShouldBeRecordPattern p ConP c ci ps -> do whenNothing (conPRecord ci) $ typeError $ ShouldBeRecordPattern p let t = unArg $ fromMaybe __IMPOSSIBLE__ $ conPType ci reportSDoc "tc.rec" 45 $ vcat [ text "recordPatternToProjections: " , nest 2 $ text "constructor pattern " <+> prettyTCM p <+> text " has type " <+> prettyTCM t ] reportSLn "tc.rec" 70 $ " type raw: " ++ show t fields <- getRecordTypeFields t concat <$> zipWithM comb (map proj fields) (map namedArg ps) ProjP{} -> __IMPOSSIBLE__ -- copattern cannot appear here where proj p = (`applyE` [Proj ProjSystem $ unArg p]) comb :: (Term -> Term) -> DeBruijnPattern -> TCM [Term -> Term] comb prj p = map (\ f -> f . prj) <$> recordPatternToProjections p --------------------------------------------------------------------------- -- * Record pattern translation for compiled clauses --------------------------------------------------------------------------- -- | Take a matrix of booleans (at least one row!) and summarize the columns -- using conjunction. conjColumns :: [[Bool]] -> [Bool] conjColumns = foldl1 (zipWith (&&)) -- | @insertColumn i a m@ inserts a column before the @i@th column in -- matrix @m@ and fills it with value @a@. insertColumn :: Int -> a -> [[a]] -> [[a]] insertColumn i a rows = map ins rows where ins row = let (init, last) = splitAt i row in init ++ a : last {- UNUSED -- | @cutColumn i m@ removes the @i@th column from matrix @m@. cutColumn :: Int -> [[a]] -> [[a]] cutColumn i rows = map cut rows where cut row = let (init, _:last) = splitAt i row in init ++ last -- | @cutColumns i n xss = (yss, xss')@ cuts out a submatrix @yss@ -- of width @n@ from @xss@, starting at column @i@. cutColumns :: Int -> Int -> [[a]] -> ([[a]], [[a]]) cutColumns i n rows = unzip (map (cutSublist i n) rows) -} -- | @cutSublist i n xs = (xs', ys, xs'')@ cuts out a sublist @ys@ -- of width @n@ from @xs@, starting at column @i@. cutSublist :: Int -> Int -> [a] -> ([a], [a], [a]) cutSublist i n row = let (init, rest) = splitAt i row (mid , last) = splitAt n rest in (init, mid, last) getEtaAndArity :: SplitTag -> TCM (Bool, Nat) getEtaAndArity (SplitCon c) = for (getConstructorInfo c) $ \case DataCon n -> (False, n) RecordCon eta fs -> (eta == YesEta, size fs) getEtaAndArity (SplitLit l) = return (False, 0) getEtaAndArity SplitCatchall = return (False, 1) translateCompiledClauses :: CompiledClauses -> TCM CompiledClauses translateCompiledClauses cc = do reportSDoc "tc.cc.record" 20 $ vcat [ text "translate record patterns in compiled clauses" , nest 2 $ return $ pretty cc ] cc <- loop cc reportSDoc "tc.cc.record" 20 $ vcat [ text "translated compiled clauses (no eta record patterns):" , nest 2 $ return $ pretty cc ] cc <- recordExpressionsToCopatterns cc reportSDoc "tc.cc.record" 20 $ vcat [ text "translated compiled clauses (record expressions to copatterns):" , nest 2 $ return $ pretty cc ] return cc where loop :: CompiledClauses -> TCM (CompiledClauses) loop cc = case cc of Fail -> return cc Done{} -> return cc Case i cs -> loops i cs loops :: Arg Int -- ^ split variable -> Case CompiledClauses -- ^ original split tree -> TCM CompiledClauses loops i cs@Branches{ projPatterns = comatch , conBranches = conMap , etaBranch = eta , litBranches = litMap , catchAllBranch = catchAll , lazyMatch = lazy } = do catchAll <- traverse loop catchAll litMap <- traverse loop litMap (conMap, eta) <- do let noEtaCase = (, Nothing) <$> (traverse . traverse) loop conMap yesEtaCase ch b = (Map.empty,) . Just . (ch,) <$> traverse loop b case Map.toList conMap of -- This is already an eta match. Still need to recurse though. -- This can happen (#2981) when we -- 'revisitRecordPatternTranslation' in Rules.Decl, due to -- inferred eta. _ | Just (ch, b) <- eta -> yesEtaCase ch b [(c, b)] | not comatch -> -- possible eta-match getConstructorInfo c >>= \ case RecordCon YesEta fs -> let ch = ConHead c Inductive $ map unArg fs in yesEtaCase ch b _ -> noEtaCase _ -> noEtaCase return $ Case i cs{ conBranches = conMap , etaBranch = eta , litBranches = litMap , catchAllBranch = catchAll } {- UNUSED instance Monoid CompiledClauses where mempty = __IMPOSSIBLE__ mappend (Case n c) (Case n' c') | n == n' = Case n $ mappend c c' mappend _ _ = __IMPOSSIBLE__ mergeCatchAll :: CompiledClauses -> Maybe CompiledClauses -> CompiledClauses mergeCatchAll cc ca = maybe cc (mappend cc) ca {- case (cc, ca) of (_ , Nothing) -> cc (Case n c, Just (Case n' c')) | n == n' -> Case n $ mappend c c' _ -> __IMPOSSIBLE__ -- this would mean non-determinism -} -} -- | Transform definitions returning record expressions to use copatterns -- instead. This prevents terms from blowing up when reduced. recordExpressionsToCopatterns :: CompiledClauses -> TCM CompiledClauses recordExpressionsToCopatterns cc = case cc of Case i bs -> Case i <$> traverse recordExpressionsToCopatterns bs Fail -> return cc Done xs (Con c i es) | i == ConORec -> do -- don't translate if using the record constructor Constructor{conData = d, conArity = ar} <- theDef <$> getConstInfo (conName c) ddef <- theDef <$> getConstInfo d irrProj <- optIrrelevantProjections <$> pragmaOptions getConstructorInfo (conName c) >>= \ case RecordCon YesEta fs | ar <- length fs, ar > 0, -- only for eta-records with at least one field length es == ar, -- where the constructor application is saturated irrProj || not (any isIrrelevant fs) -> do -- and irrelevant projections (if any) are allowed let body (Apply v) = WithArity 0 $ Done xs (unArg v) body _ = __IMPOSSIBLE__ bs = Branches True (Map.fromList $ zip (map unArg fs) (map body es)) Nothing Map.empty Nothing False -- translate new cases recursively (there might be nested record expressions) Case (defaultArg $ length xs) <$> traverse recordExpressionsToCopatterns bs _ -> return cc Done{} -> return cc -- | @replaceByProjections i projs cc@ replaces variables @i..i+n-1@ -- (counted from left) by projections @projs_1 i .. projs_n i@. -- -- If @n==0@, we matched on a zero-field record, which means that -- we are actually introduce a new variable, increasing split -- positions greater or equal to @i@ by one. -- Otherwise, we have to lower -- replaceByProjections :: Arg Int -> [QName] -> CompiledClauses -> CompiledClauses replaceByProjections (Arg ai i) projs cc = let n = length projs loop :: Int -> CompiledClauses -> CompiledClauses loop i cc = case cc of Case j cs -- if j < i, we leave j untouched, but we increase i by the number -- of variables replacing j in the branches | unArg j < i -> Case j $ loops i cs -- if j >= i then we shrink j by (n-1) | otherwise -> Case (j <&> \ k -> k - (n-1)) $ fmap (loop i) cs Done xs v -> -- we have to delete (n-1) variables from xs -- and instantiate v suitably with the projections let (xs0,xs1,xs2) = cutSublist i n xs names | null xs1 = ["r"] | otherwise = map unArg xs1 x = Arg ai $ foldr1 appendArgNames names xs' = xs0 ++ x : xs2 us = map (\ p -> Var 0 [Proj ProjSystem p]) (reverse projs) -- go from level (i + n - 1) to index (subtract from |xs|-1) index = length xs - (i + n) in Done xs' $ applySubst (liftS (length xs2) $ us ++# raiseS 1) v -- The body is NOT guarded by lambdas! -- WRONG: underLambdas i (flip apply) (map defaultArg us) v Fail -> Fail loops :: Int -> Case CompiledClauses -> Case CompiledClauses loops i bs@Branches{ conBranches = conMap , litBranches = litMap , catchAllBranch = catchAll } = bs{ conBranches = fmap (\ (WithArity n c) -> WithArity n $ loop (i + n - 1) c) conMap , litBranches = fmap (loop (i - 1)) litMap , catchAllBranch = fmap (loop i) catchAll } in loop i cc -- | Check if a split is on a record constructor, and return the projections -- if yes. isRecordCase :: Case c -> TCM (Maybe ([QName], c)) isRecordCase (Branches { conBranches = conMap , litBranches = litMap , catchAllBranch = Nothing }) | Map.null litMap , [(con, WithArity _ br)] <- Map.toList conMap = do isRC <- isRecordConstructor con case isRC of Just (r, Record { recFields = fs }) -> return $ Just (map unArg fs, br) Just (r, _) -> __IMPOSSIBLE__ Nothing -> return Nothing isRecordCase _ = return Nothing --------------------------------------------------------------------------- -- * Record pattern translation for split trees --------------------------------------------------------------------------- -- | Split tree annotation. data RecordSplitNode = RecordSplitNode { splitTag :: SplitTag -- ^ Constructor name/literal for this branch. , splitArity :: Int -- ^ Arity of the constructor. , splitRecordPattern :: Bool -- ^ Should we translate this split away? } -- | Split tree annotated for record pattern translation. type RecordSplitTree = SplitTree' RecordSplitNode type RecordSplitTrees = SplitTrees' RecordSplitNode -- | Bottom-up procedure to annotate split tree. recordSplitTree :: SplitTree -> TCM RecordSplitTree recordSplitTree t = snd <$> loop t where loop :: SplitTree -> TCM ([Bool], RecordSplitTree) loop t = case t of SplittingDone n -> return (replicate n True, SplittingDone n) SplitAt i ts -> do (xs, ts) <- loops (unArg i) ts return (xs, SplitAt i ts) loops :: Int -> SplitTrees -> TCM ([Bool], RecordSplitTrees) loops i ts = do (xss, ts) <- unzip <$> do forM ts $ \ (c, t) -> do (xs, t) <- loop t (isRC, n) <- getEtaAndArity c let (xs0, rest) = splitAt i xs (xs1, xs2) = splitAt n rest x = isRC && and xs1 xs' = xs0 ++ x : xs2 return (xs, (RecordSplitNode c n x, t)) return (foldl1 (zipWith (&&)) xss, ts) -- | Bottom-up procedure to record-pattern-translate split tree. translateSplitTree :: SplitTree -> TCM SplitTree translateSplitTree t = snd <$> loop t where -- @loop t = return (xs, t')@ returns the translated split tree @t'@ -- plus the status @xs@ of the clause variables -- True = variable will never be split on in @t'@ (virgin variable) -- False = variable will be spilt on in @t'@ loop :: SplitTree -> TCM ([Bool], SplitTree) loop t = case t of SplittingDone n -> -- start with n virgin variables return (replicate n True, SplittingDone n) SplitAt i ts -> do (x, xs, ts) <- loops (unArg i) ts -- if we case on record constructor, drop case let t' = if x then case ts of [(c,t)] -> t _ -> __IMPOSSIBLE__ -- else retain case else SplitAt i ts return (xs, t') -- @loops i ts = return (x, xs, ts')@ cf. @loop@ -- @x@ says wether at arg @i@ we have a record pattern split -- that can be removed loops :: Int -> SplitTrees -> TCM (Bool, [Bool], SplitTrees) loops i ts = do -- note: ts not empty (rs, xss, ts) <- unzip3 <$> do forM ts $ \ (c, t) -> do (xs, t) <- loop t (isRC, n) <- getEtaAndArity c -- now drop variables from i to i+n-1 let (xs0, rest) = splitAt i xs (xs1, xs2) = splitAt n rest -- if all dropped variables are virgins and we are record cons. -- then new variable x is also virgin -- and we can translate away the split x = isRC && and xs1 -- xs' = updated variables xs' = xs0 ++ x : xs2 -- delete splits from t if record match t' = if x then dropFrom i (n - 1) t else t return (x, xs', (c, t')) -- x = did we split on a record constructor? let x = and rs -- invariant: if record constructor, then exactly one constructor if x then unless (rs == [True]) __IMPOSSIBLE__ -- else no record constructor else unless (or rs == False) __IMPOSSIBLE__ return (x, conjColumns xss, ts) -- | @dropFrom i n@ drops arguments @j@ with @j < i + n@ and @j >= i@. -- NOTE: @n@ can be negative, in which case arguments are inserted. class DropFrom a where dropFrom :: Int -> Int -> a -> a instance DropFrom (SplitTree' c) where dropFrom i n t = case t of SplittingDone m -> SplittingDone (m - n) SplitAt x@(Arg ai j) ts | j >= i + n -> SplitAt (Arg ai $ j - n) $ dropFrom i n ts | j < i -> SplitAt x $ dropFrom i n ts | otherwise -> __IMPOSSIBLE__ instance DropFrom (c, SplitTree' c) where dropFrom i n (c, t) = (c, dropFrom i n t) instance DropFrom a => DropFrom [a] where dropFrom i n ts = map (dropFrom i n) ts {- -- | Check if a split is on a record constructor, and return the projections -- if yes. isRecordSplit :: SplitTrees -> TCM (Maybe ([QName], c)) isRecordSplit (Branches { conBranches = conMap , litBranches = litMap , catchAllBranch = Nothing }) | Map.null litBranches , [(con,br)] <- Map.toList conMap = do isRC <- isRecordConstructor con case isRC of Just (r, Record { recFields = fs }) -> return $ Just (map unArg fs, br) Just (r, _) -> __IMPOSSIBLE__ Nothing -> return Nothing isRecordSplit _ = return Nothing -} --------------------------------------------------------------------------- -- * Record pattern translation for function definitions --------------------------------------------------------------------------- -- | Replaces pattern matching on record constructors with uses of -- projection functions. Does not remove record constructor patterns -- which have sub-patterns containing non-record constructor or -- literal patterns. translateRecordPatterns :: Clause -> TCM Clause translateRecordPatterns clause = do -- ps: New patterns, in left-to-right order, in the context of the -- old RHS. -- s: Partial substitution taking the old pattern variables -- (including dot patterns; listed from left to right) to terms in -- the context of the new RHS. -- cs: List of changes, with types in the context of the old -- telescope. (ps, s, cs) <- runRecPatM $ translatePatterns $ unnumberPatVars $ namedClausePats clause let -- Number of variables + dot patterns in new clause. noNewPatternVars = size cs s' = reverse s mkSub s = s ++# raiseS noNewPatternVars -- Substitution used to convert terms in the old RHS's -- context to terms in the new RHS's context. rhsSubst = mkSub s' -- Substitution used to convert terms in the old telescope's -- context to terms in the new RHS's context. perm = fromMaybe __IMPOSSIBLE__ $ clausePerm clause rhsSubst' = mkSub $ permute (reverseP perm) s' -- TODO: Is it OK to replace the definition above with the -- following one? -- -- rhsSubst' = mkSub $ permute (clausePerm clause) s -- The old telescope, flattened and in textual left-to-right -- order (i.e. the type signature for the variable which occurs -- first in the list of patterns comes first). flattenedOldTel = permute (invertP __IMPOSSIBLE__ $ compactP perm) $ zip (teleNames $ clauseTel clause) $ flattenTel $ clauseTel clause -- The new telescope, still flattened, with types in the context -- of the new RHS, in textual left-to-right order, and with -- Nothing in place of dot patterns. substTel = map . fmap . second . applySubst newTel' = substTel rhsSubst' $ translateTel cs $ flattenedOldTel -- Permutation taking the new variable and dot patterns to the -- new telescope. newPerm = adjustForDotPatterns $ reorderTel_ $ map (maybe dummyDom snd) newTel' -- It is important that dummyDom does not mention any variable -- (see the definition of reorderTel). where isDotP n = case List.genericIndex cs n of Left DotP{} -> True _ -> False adjustForDotPatterns (Perm n is) = Perm n (filter (not . isDotP) is) -- Substitution used to convert terms in the new RHS's context -- to terms in the new telescope's context. lhsSubst' = {-'-} renaming __IMPOSSIBLE__ (reverseP newPerm) -- Substitution used to convert terms in the old telescope's -- context to terms in the new telescope's context. lhsSubst = applySubst lhsSubst' rhsSubst' -- The new telescope. newTel = uncurry unflattenTel . unzip $ map (fromMaybe __IMPOSSIBLE__) $ permute newPerm $ substTel lhsSubst' $ newTel' -- New clause. c = clause { clauseTel = newTel , namedClausePats = numberPatVars __IMPOSSIBLE__ newPerm $ applySubst lhsSubst ps , clauseBody = applySubst lhsSubst $ clauseBody clause } reportSDoc "tc.lhs.recpat" 20 $ vcat [ text "Original clause:" , nest 2 $ inTopContext $ vcat [ text "delta =" <+> prettyTCM (clauseTel clause) , text "pats =" <+> text (show $ clausePats clause) ] , text "Intermediate results:" , nest 2 $ vcat [ text "ps =" <+> text (show ps) , text "s =" <+> prettyTCM s , text "cs =" <+> prettyTCM cs , text "flattenedOldTel =" <+> (text . show) flattenedOldTel , text "newTel' =" <+> (text . show) newTel' , text "newPerm =" <+> prettyTCM newPerm ] ] reportSDoc "tc.lhs.recpat" 20 $ vcat [ text "lhsSubst' =" <+> (text . show) lhsSubst' , text "lhsSubst =" <+> (text . show) lhsSubst , text "newTel =" <+> prettyTCM newTel ] reportSDoc "tc.lhs.recpat" 10 $ escapeContext (size $ clauseTel clause) $ vcat [ text "Translated clause:" , nest 2 $ vcat [ text "delta =" <+> prettyTCM (clauseTel c) , text "ps =" <+> text (show $ clausePats c) , text "body =" <+> text (show $ clauseBody c) , text "body =" <+> addContext (clauseTel c) (maybe (text "_|_") prettyTCM (clauseBody c)) ] ] return c ------------------------------------------------------------------------ -- Record pattern monad -- | A monad used to translate record patterns. -- -- The state records the number of variables produced so far, the -- reader records the total number of variables produced by the entire -- computation. Functions using this monad need to be sufficiently -- lazy in the reader component. newtype RecPatM a = RecPatM (TCMT (ReaderT Nat (StateT Nat IO)) a) deriving (Functor, Applicative, Monad, MonadIO, MonadTCM, HasOptions, MonadDebug, MonadReader TCEnv, MonadState TCState) -- | Runs a computation in the 'RecPatM' monad. runRecPatM :: RecPatM a -> TCM a runRecPatM (RecPatM m) = mapTCMT (\m -> do (x, noVars) <- mfix $ \ ~(_, noVars) -> runStateT (runReaderT m noVars) 0 return x) m -- | Returns the next pattern variable, and the corresponding term. nextVar :: RecPatM (Pattern, Term) nextVar = RecPatM $ do n <- lift get lift $ put $ succ n noVars <- lift ask return (varP "r", var $ noVars - n - 1) ------------------------------------------------------------------------ -- Types used to record changes to a clause -- | @VarPat@ stands for variable patterns, and @DotPat@ for dot -- patterns. data Kind = VarPat | DotPat deriving Eq -- | @'Left' p@ means that a variable (corresponding to the pattern -- @p@, a variable or dot pattern) should be kept unchanged. @'Right' -- (n, x, t)@ means that @n 'VarPat'@ variables, and @n 'DotPat'@ dot -- patterns, should be removed, and a new variable, with the name @x@, -- inserted instead. The type of the new variable is @t@. type Change = Either Pattern (Kind -> Nat, ArgName, Dom Type) type Changes = [Change] instance Pretty (Kind -> Nat) where pretty f = P.text "(VarPat:" P.<+> P.text (show $ f VarPat) P.<+> P.text "DotPat:" P.<+> P.text (show $ f DotPat) P.<> P.text ")" instance PrettyTCM (Kind -> Nat) where prettyTCM = return . pretty instance PrettyTCM Change where prettyTCM (Left p) = prettyTCM p prettyTCM (Right (f, x, t)) = text "Change" <+> prettyTCM f <+> text x <+> prettyTCM t -- | Record pattern trees. data RecordTree = Leaf Pattern -- ^ Corresponds to variable and dot patterns; contains the -- original pattern. | RecCon (Arg Type) [(Term -> Term, RecordTree)] -- ^ @RecCon t args@ stands for a record constructor application: -- @t@ is the type of the application, and the list contains a -- projection function and a tree for every argument. ------------------------------------------------------------------------ -- Record pattern trees -- | @projections t@ returns a projection for every non-dot leaf -- pattern in @t@. The term is the composition of the projection -- functions from the leaf to the root. -- -- Every term is tagged with its origin: a variable pattern or a dot -- pattern. projections :: RecordTree -> [(Term -> Term, Kind)] projections (Leaf (DotP{})) = [(id, DotPat)] projections (Leaf (VarP{})) = [(id, VarPat)] projections (Leaf _) = __IMPOSSIBLE__ projections (RecCon _ args) = concatMap (\ (p, t) -> map (first (. p)) $ projections t) args -- | Converts a record tree to a single pattern along with information -- about the deleted pattern variables. removeTree :: RecordTree -> RecPatM (Pattern, [Term], Changes) removeTree tree = do (pat, x) <- nextVar let ps = projections tree s = map (\(p, _) -> p x) ps count k = length $ filter ((== k) . snd) ps return $ case tree of Leaf p -> (p, s, [Left p]) RecCon t _ -> (pat, s, [Right (count, "r", domFromArg t)]) ------------------------------------------------------------------------ -- Translation of patterns -- | Removes record constructors from patterns. -- -- Returns the following things: -- -- * The new pattern. -- -- * A substitution which maps the /old/ pattern variables (in the -- order they occurred in the pattern; not including dot patterns) -- to terms (either the new name of the variable, or a projection -- applied to a new pattern variable). -- -- * A list explaining the changes to the variables bound in the -- pattern. -- -- Record patterns containing non-record constructor patterns are not -- translated (though their sub-patterns may be). -- -- Example: The pattern @rec1 (con1 a) (rec2 b c) (rec3 d)@ should -- yield the pattern @rec1 (con1 x) y z@, along with a substitution -- similar to @[x, proj2-1 y, proj2-2 y, proj3-1 z]@. -- -- This function assumes that literals are never of record type. translatePattern :: Pattern -> RecPatM (Pattern, [Term], Changes) translatePattern p@(ConP c ci ps) -- Andreas, 2015-05-28 only translate implicit record patterns | Just PatOSystem <- conPRecord ci = do r <- recordTree p case r of Left r -> r Right t -> removeTree t | otherwise = do (ps, s, cs) <- translatePatterns ps return (ConP c ci ps, s, cs) translatePattern p@VarP{} = removeTree (Leaf p) translatePattern p@DotP{} = removeTree (Leaf p) translatePattern p@LitP{} = return (p, [], []) translatePattern p@ProjP{}= return (p, [], []) translatePatterns :: [NamedArg Pattern] -> RecPatM ([NamedArg Pattern], [Term], Changes) translatePatterns ps = do (ps', ss, cs) <- unzip3 <$> mapM (translatePattern . namedArg) ps return (zipWith (\p -> fmap (p <$)) ps' ps, concat ss, concat cs) -- | Traverses a pattern and returns one of two things: -- -- * If there is no non-record constructor in the pattern, then -- @'Right' ps@ is returned, where @ps@ contains one projection for -- every variable in the input pattern (in the order they are -- encountered). -- -- * Otherwise the output is a computation returning the same kind of -- result as that coming from 'translatePattern'. (Computations are -- returned rather than values to ensure that variable numbers are -- allocated in the right order.) -- -- Assumes that literals are never of record type. recordTree :: Pattern -> RecPatM (Either (RecPatM (Pattern, [Term], Changes)) RecordTree) -- Andreas, 2015-05-28 only translate implicit record patterns recordTree p@(ConP c ci ps) | Just PatOSystem <- conPRecord ci = do let t = fromMaybe __IMPOSSIBLE__ $ conPType ci rs <- mapM (recordTree . namedArg) ps case allRight rs of Nothing -> return $ Left $ do (ps', ss, cs) <- unzip3 <$> mapM (either id removeTree) rs return (ConP c ci (ps' `withNamedArgsFrom` ps), concat ss, concat cs) Just ts -> liftTCM $ do t <- reduce t reportSDoc "tc.rec" 45 $ vcat [ text "recordTree: " , nest 2 $ text "constructor pattern " <+> prettyTCM p <+> text " has type " <+> prettyTCM t ] -- Andreas, 2018-03-03, see #2989: -- The content of an @Arg@ might not be reduced (if @Arg@ is @Irrelevant@). fields <- getRecordTypeFields =<< reduce (unArg t) -- let proj p = \x -> Def (unArg p) [defaultArg x] let proj p = (`applyE` [Proj ProjSystem $ unArg p]) return $ Right $ RecCon t $ zip (map proj fields) ts recordTree p@(ConP _ ci _) = return $ Left $ translatePattern p recordTree p@VarP{} = return (Right (Leaf p)) recordTree p@DotP{} = return (Right (Leaf p)) recordTree p@LitP{} = return $ Left $ translatePattern p recordTree p@ProjP{}= return $ Left $ translatePattern p ------------------------------------------------------------------------ -- Translation of the clause telescope and body -- | Translates the telescope. translateTel :: Changes -- ^ Explanation of how the telescope should be changed. Types -- should be in the context of the old telescope. -> [(ArgName, Dom Type)] -- ^ Old telescope, flattened, in textual left-to-right -- order. -> [Maybe (ArgName, Dom Type)] -- ^ New telescope, flattened, in textual left-to-right order. -- 'Nothing' is used to indicate the locations of dot patterns. translateTel (Left (DotP{}) : rest) tel = Nothing : translateTel rest tel translateTel (Right (n, x, t) : rest) tel = Just (x, t) : translateTel rest (drop (n VarPat) tel) translateTel (Left _ : rest) (t : tel) = Just t : translateTel rest tel translateTel [] [] = [] translateTel (Left _ : _) [] = __IMPOSSIBLE__ translateTel [] (_ : _) = __IMPOSSIBLE__