{-# LANGUAGE CPP #-} {-# LANGUAGE NondecreasingIndentation #-} module Agda.TypeChecking.Rules.Application ( checkArguments , checkArguments_ , checkApplication , inferApplication ) where #if MIN_VERSION_base(4,11,0) import Prelude hiding ( (<>), null ) #else import Prelude hiding ( null ) #endif import Control.Arrow (first, second) import Control.Monad.Trans import Control.Monad.Trans.Maybe import Control.Monad.Reader import Data.Maybe import qualified Data.List as List import Data.Either (partitionEithers) import Data.Traversable (sequenceA) import Data.Void import qualified Data.IntSet as IntSet import Agda.Interaction.Highlighting.Generate (storeDisambiguatedName) import qualified Agda.Syntax.Abstract as A import Agda.Syntax.Abstract.Views as A import qualified Agda.Syntax.Info as A import Agda.Syntax.Concrete.Pretty () -- only Pretty instances import Agda.Syntax.Common import Agda.Syntax.Fixity import Agda.Syntax.Internal as I import Agda.Syntax.Position import Agda.TypeChecking.Conversion import Agda.TypeChecking.Constraints import Agda.TypeChecking.Datatypes import Agda.TypeChecking.Free import Agda.TypeChecking.Implicit import Agda.TypeChecking.Injectivity import Agda.TypeChecking.Irrelevance import Agda.TypeChecking.Level import Agda.TypeChecking.MetaVars import Agda.TypeChecking.Pretty import Agda.TypeChecking.Primitive import Agda.TypeChecking.Monad import Agda.TypeChecking.Monad.Builtin import Agda.TypeChecking.Pretty import Agda.TypeChecking.Records import Agda.TypeChecking.Reduce import Agda.TypeChecking.Rules.Def import Agda.TypeChecking.Rules.Term import Agda.TypeChecking.Substitute import Agda.TypeChecking.Telescope import Agda.Utils.Either import Agda.Utils.Except import Agda.Utils.Functor import Agda.Utils.List import Agda.Utils.Maybe import Agda.Utils.Null import Agda.Utils.NonemptyList import Agda.Utils.Pretty ( prettyShow ) import Agda.Utils.Size import Agda.Utils.Tuple #include "undefined.h" import Agda.Utils.Impossible ----------------------------------------------------------------------------- -- * Applications ----------------------------------------------------------------------------- -- | @checkApplication hd args e t@ checks an application. -- Precondition: @Application hs args = appView e@ -- -- @checkApplication@ disambiguates constructors -- (and continues to 'checkConstructorApplication') -- and resolves pattern synonyms. checkApplication :: A.Expr -> A.Args -> A.Expr -> Type -> TCM Term checkApplication hd args e t = do reportSDoc "tc.check.app" 20 $ vcat [ text "checkApplication" , nest 2 $ text "hd = " <+> prettyA hd , nest 2 $ text "args = " <+> sep (map prettyA args) , nest 2 $ text "e = " <+> prettyA e , nest 2 $ text "t = " <+> prettyTCM t ] reportSDoc "tc.check.app" 70 $ vcat [ text "checkApplication (raw)" , nest 2 $ text $ "hd = " ++ show hd , nest 2 $ text $ "args = " ++ show (deepUnscope args) , nest 2 $ text $ "e = " ++ show (deepUnscope e) , nest 2 $ text $ "t = " ++ show t ] case unScope hd of -- Subcase: unambiguous projection A.Proj _ p | Just _ <- getUnambiguous p -> checkHeadApplication e t hd args -- Subcase: ambiguous projection A.Proj o p -> checkProjApp e o (unAmbQ p) args t -- Subcase: unambiguous constructor A.Con ambC | Just c <- getUnambiguous ambC -> do -- augment c with record fields, but do not revert to original name con <- fromRightM (sigError __IMPOSSIBLE_VERBOSE__ (typeError $ AbstractConstructorNotInScope c)) $ getOrigConHead c checkConstructorApplication e t con args -- Subcase: ambiguous constructor A.Con (AmbQ cs0) -> disambiguateConstructor cs0 t >>= \ case Left unblock -> postponeTypeCheckingProblem (CheckExpr e t) unblock Right c -> checkConstructorApplication e t c args -- Subcase: pattern synonym A.PatternSyn n -> do (ns, p) <- lookupPatternSyn n p <- return $ setRange (getRange n) $ killRange $ vacuous p -- Pattern' Void -> Pattern' Expr -- Expand the pattern synonym by substituting for -- the arguments we have got and lambda-lifting -- over the ones we haven't. let meta r = A.Underscore $ A.emptyMetaInfo{ A.metaRange = r } -- TODO: name suggestion case A.insertImplicitPatSynArgs meta (getRange n) ns args of Nothing -> typeError $ BadArgumentsToPatternSynonym n Just (s, ns) -> do let p' = A.patternToExpr p e' = A.lambdaLiftExpr (map unArg ns) (A.substExpr s p') checkExpr e' t -- Subcase: macro A.Macro x -> do -- First go: no parameters TelV tel _ <- telView =<< normalise . defType =<< instantiateDef =<< getConstInfo x tTerm <- primAgdaTerm tName <- primQName let argTel = init $ telToList tel -- last argument is the hole term -- inspect macro type to figure out if arguments need to be wrapped in quote/quoteTerm mkArg :: Type -> NamedArg A.Expr -> NamedArg A.Expr mkArg t a | unEl t == tTerm = (fmap . fmap) (A.App (A.defaultAppInfo (getRange a)) (A.QuoteTerm A.exprNoRange) . defaultNamedArg) a mkArg t a | unEl t == tName = (fmap . fmap) (A.App (A.defaultAppInfo (getRange a)) (A.Quote A.exprNoRange) . defaultNamedArg) a mkArg t a | otherwise = a makeArgs :: [Dom (String, Type)] -> [NamedArg A.Expr] -> ([NamedArg A.Expr], [NamedArg A.Expr]) makeArgs [] args = ([], args) makeArgs _ [] = ([], []) makeArgs tel@(d : _) (arg : args) = case insertImplicit arg (map (fmap fst . argFromDom) tel) of ImpInsert is -> makeArgs (drop (length is) tel) (arg : args) BadImplicits -> (arg : args, []) -- fail later in checkHeadApplication NoSuchName{} -> (arg : args, []) -- ditto NoInsertNeeded -> first (mkArg (snd $ unDom d) arg :) $ makeArgs (tail tel) args (macroArgs, otherArgs) = makeArgs argTel args unq = A.App (A.defaultAppInfo $ fuseRange x args) (A.Unquote A.exprNoRange) . defaultNamedArg desugared = A.app (unq $ unAppView $ Application (A.Def x) $ macroArgs) otherArgs checkExpr desugared t -- Subcase: unquote A.Unquote _ | [arg] <- args -> do (_, hole) <- newValueMeta RunMetaOccursCheck t unquoteM (namedArg arg) hole t $ return hole | arg : args <- args -> do -- Example: unquote v a b : A -- Create meta H : (x : X) (y : Y x) → Z x y for the hole -- Check a : X, b : Y a -- Unify Z a b == A -- Run the tactic on H tel <- metaTel args -- (x : X) (y : Y x) target <- addContext tel newTypeMeta_ -- Z x y let holeType = telePi_ tel target -- (x : X) (y : Y x) → Z x y (Just vs, EmptyTel) <- mapFst allApplyElims <$> checkArguments_ ExpandLast (getRange args) args tel -- a b : (x : X) (y : Y x) let rho = reverse (map unArg vs) ++# IdS -- [x := a, y := b] equalType (applySubst rho target) t -- Z a b == A (_, hole) <- newValueMeta RunMetaOccursCheck holeType unquoteM (namedArg arg) hole holeType $ return $ apply hole vs where metaTel :: [Arg a] -> TCM Telescope metaTel [] = pure EmptyTel metaTel (arg : args) = do a <- newTypeMeta_ let dom = a <$ domFromArg arg ExtendTel dom . Abs "x" <$> addContext ("x", dom) (metaTel args) -- Subcase: defined symbol or variable. _ -> do v <- checkHeadApplication e t hd args reportSDoc "tc.term.app" 30 $ vcat [ text "checkApplication: checkHeadApplication returned" , nest 2 $ text "v = " <+> prettyTCM v ] return v -- | Precondition: @Application hd args = appView e@. inferApplication :: ExpandHidden -> A.Expr -> A.Args -> A.Expr -> TCM (Term, Type) inferApplication exh hd args e | not (defOrVar hd) = do t <- workOnTypes $ newTypeMeta_ v <- checkExpr e t return (v, t) inferApplication exh hd args e = case unScope hd of A.Proj o p | isAmbiguous p -> inferProjApp e o (unAmbQ p) args _ -> do (f, t0) <- inferHead hd let r = getRange hd res <- runExceptT $ checkArgumentsE exh (getRange hd) args t0 Nothing case res of Right (vs, t1, _) -> (,t1) <$> unfoldInlined (f vs) Left problem -> do t <- workOnTypes $ newTypeMeta_ v <- postponeArgs problem exh r args t $ \ vs _ _ -> unfoldInlined (f vs) return (v, t) ----------------------------------------------------------------------------- -- * Heads ----------------------------------------------------------------------------- inferHeadDef :: ProjOrigin -> QName -> TCM (Elims -> Term, Type) inferHeadDef o x = do proj <- isProjection x let app = case proj of Nothing -> \ args -> Def x $ map Apply args Just p -> \ args -> projDropParsApply p o args mapFst applyE <$> inferDef app x -- | Infer the type of a head thing (variable, function symbol, or constructor). -- We return a function that applies the head to arguments. -- This is because in case of a constructor we want to drop the parameters. inferHead :: A.Expr -> TCM (Elims -> Term, Type) inferHead e = do case e of A.Var x -> do -- traceCall (InferVar x) $ do (u, a) <- getVarInfo x reportSDoc "tc.term.var" 20 $ hsep [ text "variable" , prettyTCM x , text "(" , text (show u) , text ")" , text "has type:" , prettyTCM a ] when (unusableRelevance $ getRelevance a) $ typeError $ VariableIsIrrelevant x return (applyE u, unDom a) A.Def x -> inferHeadDef ProjPrefix x A.Proj o ambP | Just d <- getUnambiguous ambP -> inferHeadDef o d A.Proj{} -> __IMPOSSIBLE__ -- inferHead will only be called on unambiguous projections A.Con ambC | Just c <- getUnambiguous ambC -> do -- Constructors are polymorphic internally. -- So, when building the constructor term -- we should throw away arguments corresponding to parameters. -- First, inferDef will try to apply the constructor -- to the free parameters of the current context. We ignore that. con <- fromRightM (sigError __IMPOSSIBLE_VERBOSE__ (typeError $ AbstractConstructorNotInScope c)) $ getOrigConHead c (u, a) <- inferDef (\ _ -> Con con ConOCon []) c -- Next get the number of parameters in the current context. Constructor{conPars = n} <- theDef <$> (instantiateDef =<< getConstInfo c) reportSLn "tc.term.con" 7 $ unwords [prettyShow c, "has", show n, "parameters."] -- So when applying the constructor throw away the parameters. return (applyE u . drop n, a) A.Con{} -> __IMPOSSIBLE__ -- inferHead will only be called on unambiguous constructors A.QuestionMark i ii -> inferMeta (newQuestionMark ii) i A.Underscore i -> inferMeta (newValueMeta RunMetaOccursCheck) i e -> do (term, t) <- inferExpr e return (applyE term, t) inferDef :: (Args -> Term) -> QName -> TCM (Term, Type) inferDef mkTerm x = traceCall (InferDef x) $ do -- getConstInfo retrieves the *absolute* (closed) type of x -- instantiateDef relativizes it to the current context d <- instantiateDef =<< getConstInfo x -- irrelevant defs are only allowed in irrelevant position checkRelevance x (defRelevance d) -- since x is considered living in the top-level, we have to -- apply it to the current context vs <- freeVarsToApply x let t = defType d v = mkTerm vs -- applies x to vs, dropping parameters debug vs t v return (v, t) where debug vs t v = do reportSDoc "tc.term.def" 60 $ text "freeVarsToApply to def " <+> hsep (map (text . show) vs) reportSDoc "tc.term.def" 10 $ vcat [ text "inferred def " <+> prettyTCM x <+> hsep (map prettyTCM vs) , nest 2 $ text ":" <+> prettyTCM t , nest 2 $ text "-->" <+> prettyTCM v ] -- | The second argument is the relevance of the first. checkRelevance :: QName -> Relevance -> TCM () checkRelevance _ Relevant = return () -- relevance functions can be used in any context. checkRelevance x drel = do rel <- asks envRelevance reportSDoc "tc.irr" 50 $ vcat [ text "declaration relevance =" <+> text (show drel) , text "context relevance =" <+> text (show rel) ] unless (drel `moreRelevant` rel) $ typeError $ DefinitionIsIrrelevant x -- | @checkHeadApplication e t hd args@ checks that @e@ has type @t@, -- assuming that @e@ has the form @hd args@. The corresponding -- type-checked term is returned. -- -- If the head term @hd@ is a coinductive constructor, then a -- top-level definition @fresh tel = hd args@ (where the clause is -- delayed) is added, where @tel@ corresponds to the current -- telescope. The returned term is @fresh tel@. -- -- Precondition: The head @hd@ has to be unambiguous, and there should -- not be any need to insert hidden lambdas. checkHeadApplication :: A.Expr -> Type -> A.Expr -> [NamedArg A.Expr] -> TCM Term checkHeadApplication e t hd args = do sharp <- fmap nameOfSharp <$> coinductionKit case hd of -- Type checking #. The # that the user can write will be a Def, but the -- sharp we generate in the body of the wrapper is a Con. A.Def c | Just c == sharp -> checkSharpApplication e t c args _ -> defaultResult where defaultResult = defaultResult' Nothing defaultResult' mk = do (f, t0) <- inferHead hd expandLast <- asks envExpandLast checkArguments expandLast (getRange hd) args t0 t $ \ vs t1 checkedTarget -> do let check = do k <- mk as <- allApplyElims vs pure $ k as t1 v <- unfoldInlined (f vs) maybe id (\ ck m -> blockTerm t $ ck >> m) check $ coerce' checkedTarget v t1 t ----------------------------------------------------------------------------- -- * Spines ----------------------------------------------------------------------------- traceCallE :: Call -> ExceptT e TCM r -> ExceptT e TCM r traceCallE call m = do z <- lift $ traceCall call $ runExceptT m case z of Right e -> return e Left err -> throwError err -- | If we've already checked the target type we don't have to call coerce. coerce' :: CheckedTarget -> Term -> Type -> Type -> TCM Term coerce' NotCheckedTarget v inferred expected = coerce v inferred expected coerce' (CheckedTarget Nothing) v _ _ = return v coerce' (CheckedTarget (Just pid)) v _ expected = blockTermOnProblem expected v pid -- | Check a list of arguments: @checkArgs args t0 t1@ checks that -- @t0 = Delta -> t0'@ and @args : Delta@. Inserts hidden arguments to -- make this happen. Returns the evaluated arguments @vs@, the remaining -- type @t0'@ (which should be a subtype of @t1@) and any constraints @cs@ -- that have to be solved for everything to be well-formed. checkArgumentsE :: ExpandHidden -> Range -> [NamedArg A.Expr] -> Type -> Maybe Type -> ExceptT (Elims, [NamedArg A.Expr], Type) TCM (Elims, Type, CheckedTarget) checkArgumentsE = checkArgumentsE' NotCheckedTarget checkArgumentsE' :: CheckedTarget -> ExpandHidden -> Range -> [NamedArg A.Expr] -> Type -> Maybe Type -> ExceptT (Elims, [NamedArg A.Expr], Type) TCM (Elims, Type, CheckedTarget) -- Case: no arguments, do not insert trailing hidden arguments: We are done. checkArgumentsE' chk DontExpandLast _ [] t0 _ = return ([], t0, chk) -- Case: no arguments, but need to insert trailing hiddens. checkArgumentsE' chk ExpandLast r [] t0 mt1 = traceCallE (CheckArguments r [] t0 mt1) $ lift $ do mt1' <- traverse (unEl <.> reduce) mt1 (us, t) <- implicitArgs (-1) (expand mt1') t0 return (map Apply us, t, chk) where expand (Just (Pi dom _)) Hidden = not (hidden dom) expand _ Hidden = True expand (Just (Pi dom _)) Instance{} = not (isInstance dom) expand _ Instance{} = True expand _ NotHidden = False -- Case: argument given. checkArgumentsE' chk exh r args0@(arg@(Arg info e) : args) t0 mt1 = traceCallE (CheckArguments r args0 t0 mt1) $ do lift $ reportSDoc "tc.term.args" 30 $ sep [ text "checkArgumentsE" -- , text " args0 =" <+> prettyA args0 , nest 2 $ vcat [ text "e =" <+> prettyA e , text "t0 =" <+> prettyTCM t0 , text "t1 =" <+> maybe (text "Nothing") prettyTCM mt1 ] ] -- First, insert implicit arguments, depending on current argument @arg@. let hx = getHiding info -- hiding of current argument mx = fmap rangedThing $ nameOf e -- name of current argument -- do not insert visible arguments expand NotHidden y = False -- insert a hidden argument if arg is not hidden or has different name -- insert an instance argument if arg is not instance or has different name expand hy y = not (sameHiding hy hx) || maybe False (y /=) mx (nargs, t) <- lift $ implicitNamedArgs (-1) expand t0 -- Separate names from args. let (mxs, us) = unzip $ map (\ (Arg ai (Named mx u)) -> (mx, Apply $ Arg ai u)) nargs xs = catMaybes mxs -- We need a function type here, but we don't know which kind -- (implicit/explicit). But it might be possible to use injectivity to -- force a pi. t <- lift $ forcePiUsingInjectivity t -- We are done inserting implicit args. Now, try to check @arg@. ifBlockedType t (\ m t -> throwError (us, args0, t)) $ \ _ t0' -> do -- What can go wrong? -- 1. We ran out of function types. let shouldBePi -- a) It is an explicit argument, but we ran out of function types. | visible info = lift $ typeError $ ShouldBePi t0' -- b) It is an implicit argument, and we did not insert any implicits. -- Thus, the type was not a function type to start with. | null xs = lift $ typeError $ ShouldBePi t0' -- c) We did insert implicits, but we ran out of implicit function types. -- Then, we should inform the user that we did not find his one. | otherwise = lift $ typeError $ WrongNamedArgument arg -- 2. We have a function type left, but it is the wrong one. -- Our argument must be implicit, case a) is impossible. -- (Otherwise we would have ran out of function types instead.) let wrongPi -- b) We have not inserted any implicits. | null xs = lift $ typeError $ WrongHidingInApplication t0' -- c) We inserted implicits, but did not find his one. | otherwise = lift $ typeError $ WrongNamedArgument arg -- Check the target type if we can get away with it. chk' <- lift $ case (chk, mt1) of (NotCheckedTarget, Just t1) | all visible args0 -> do let n = length args0 TelV tel tgt <- telViewUpTo n t0' let dep = any (< n) $ IntSet.toList $ freeVars tgt vis = all visible (telToList tel) isRigid (El _ (Pi dom _)) = return $ visible dom isRigid (El _ (Def d _)) = theDef <$> getConstInfo d >>= return . \ case Axiom{} -> True AbstractDefn{} -> True Function{funClauses = cs} -> null cs Datatype{} -> True Record{} -> True Constructor{} -> __IMPOSSIBLE__ Primitive{} -> False isRigid _ = return False rigid <- isRigid tgt if | dep -> return chk -- must be non-dependent | not rigid -> return chk -- with a rigid target | not vis -> return chk -- and only visible arguments | otherwise -> do let tgt1 = applySubst (strengthenS __IMPOSSIBLE__ $ size tel) tgt reportSDoc "tc.term.args.target" 30 $ vcat [ text "Checking target types first" , nest 2 $ text "inferred =" <+> prettyTCM tgt1 , nest 2 $ text "expected =" <+> prettyTCM t1 ] traceCall (CheckTargetType (fuseRange r args0) tgt1 t1) $ CheckedTarget <$> ifNoConstraints_ (leqType tgt1 t1) (return Nothing) (return . Just) _ -> return chk -- t0' <- lift $ forcePi (getHiding info) (maybe "_" rangedThing $ nameOf e) t0' case unEl t0' of Pi (Dom{domInfo = info', unDom = a}) b | sameHiding info info' && (visible info || maybe True ((absName b ==) . rangedThing) (nameOf e)) -> do u <- lift $ applyRelevanceToContext (getRelevance info') $ do -- Andreas, 2014-05-30 experiment to check non-dependent arguments -- after the spine has been processed. Allows to propagate type info -- from ascribed type into extended-lambdas. Would solve issue 1159. -- However, leaves unsolved type checking problems in the test suite. -- I do not know what I am doing wrong here. -- Could be extreme order-sensitivity or my abuse of the postponing -- mechanism. -- Andreas, 2016-02-02: Ulf says unless there is actually some meta -- blocking a postponed type checking problem, we might never retry, -- since the trigger for retrying constraints is solving a meta. -- Thus, the following naive use violates some invariant. -- if not $ isBinderUsed b -- then postponeTypeCheckingProblem (CheckExpr (namedThing e) a) (return True) else let e' = e { nameOf = maybe (Just $ unranged $ absName b) Just (nameOf e) } checkNamedArg (Arg info' e') a -- save relevance info' from domain in argument addCheckedArgs us (Apply $ Arg info' u) $ checkArgumentsE' chk' exh (fuseRange r e) args (absApp b u) mt1 | otherwise -> do reportSDoc "error" 10 $ nest 2 $ vcat [ text $ "info = " ++ show info , text $ "info' = " ++ show info' , text $ "absName b = " ++ absName b , text $ "nameOf e = " ++ show (nameOf e) ] wrongPi _ -> shouldBePi where addCheckedArgs us u rec = do (vs, t, chk) <- rec return (us ++ u : vs, t, chk) `catchError` \ (vs, es, t) -> throwError (us ++ u : vs, es, t) -- | Check that a list of arguments fits a telescope. -- Inserts hidden arguments as necessary. -- Returns the type-checked arguments and the remaining telescope. checkArguments_ :: ExpandHidden -- ^ Eagerly insert trailing hidden arguments? -> Range -- ^ Range of application. -> [NamedArg A.Expr] -- ^ Arguments to check. -> Telescope -- ^ Telescope to check arguments against. -> TCM (Elims, Telescope) -- ^ Checked arguments and remaining telescope if successful. checkArguments_ exh r args tel = do z <- runExceptT $ checkArgumentsE exh r args (telePi tel typeDontCare) Nothing case z of Right (args, t, _) -> do let TelV tel' _ = telView' t return (args, tel') Left _ -> __IMPOSSIBLE__ -- type cannot be blocked as it is generated by telePi -- | @checkArguments exph r args t0 t k@ tries @checkArgumentsE exph args t0 t@. -- If it succeeds, it continues @k@ with the returned results. If it fails, -- it registers a postponed typechecking problem and returns the resulting new -- meta variable. -- -- Checks @e := ((_ : t0) args) : t@. checkArguments :: ExpandHidden -> Range -> [NamedArg A.Expr] -> Type -> Type -> (Elims -> Type -> CheckedTarget -> TCM Term) -> TCM Term checkArguments exph r args t0 t k = do z <- runExceptT $ checkArgumentsE exph r args t0 (Just t) case z of Right (vs, t1, pid) -> k vs t1 pid -- vs = evaluated args -- t1 = remaining type (needs to be subtype of t) Left problem -> postponeArgs problem exph r args t k -- if unsuccessful, postpone checking until t0 unblocks postponeArgs :: (Elims, [NamedArg A.Expr], Type) -> ExpandHidden -> Range -> [NamedArg A.Expr] -> Type -> (Elims -> Type -> CheckedTarget -> TCM Term) -> TCM Term postponeArgs (us, es, t0) exph r args t k = do reportSDoc "tc.term.expr.args" 80 $ sep [ text "postponed checking arguments" , nest 4 $ prettyList (map (prettyA . namedThing . unArg) args) , nest 2 $ text "against" , nest 4 $ prettyTCM t0 ] $$ sep [ text "progress:" , nest 2 $ text "checked" <+> prettyList (map prettyTCM us) , nest 2 $ text "remaining" <+> sep [ prettyList (map (prettyA . namedThing . unArg) es) , nest 2 $ text ":" <+> prettyTCM t0 ] ] postponeTypeCheckingProblem_ (CheckArgs exph r es t0 t $ \ vs t pid -> k (us ++ vs) t pid) ----------------------------------------------------------------------------- -- * Constructors ----------------------------------------------------------------------------- -- | Check the type of a constructor application. This is easier than -- a general application since the implicit arguments can be inserted -- without looking at the arguments to the constructor. checkConstructorApplication :: A.Expr -> Type -> ConHead -> [NamedArg A.Expr] -> TCM Term checkConstructorApplication org t c args = do reportSDoc "tc.term.con" 50 $ vcat [ text "entering checkConstructorApplication" , nest 2 $ vcat [ text "org =" <+> prettyTCM org , text "t =" <+> prettyTCM t , text "c =" <+> prettyTCM c , text "args =" <+> prettyTCM args ] ] let paramsGiven = checkForParams args if paramsGiven then fallback else do reportSDoc "tc.term.con" 50 $ text "checkConstructorApplication: no parameters explicitly supplied, continuing..." cdef <- getConInfo c let Constructor{conData = d, conPars = npars} = theDef cdef reportSDoc "tc.term.con" 50 $ nest 2 $ text "d =" <+> prettyTCM d -- Issue 661: t maybe an evaluated form of d .., so we evaluate d -- as well and then check wether we deal with the same datatype t0 <- reduce (Def d []) case (t0, unEl t) of -- Only fully applied constructors get special treatment (Def d0 _, Def d' es) -> do let ~(Just vs) = allApplyElims es reportSDoc "tc.term.con" 50 $ nest 2 $ text "d0 =" <+> prettyTCM d0 reportSDoc "tc.term.con" 50 $ nest 2 $ text "d' =" <+> prettyTCM d' reportSDoc "tc.term.con" 50 $ nest 2 $ text "vs =" <+> prettyTCM vs if d' /= d0 then fallback else do -- Issue 661: d' may take more parameters than d, in particular -- these additional parameters could be a module parameter telescope. -- Since we get the constructor type ctype from d but the parameters -- from t = Def d' vs, we drop the additional parameters. npars' <- getNumberOfParameters d' caseMaybe (sequenceA $ List2 (Just npars, npars')) fallback $ \ (List2 (n, n')) -> do reportSDoc "tc.term.con" 50 $ nest 2 $ text $ "n = " ++ show n reportSDoc "tc.term.con" 50 $ nest 2 $ text $ "n' = " ++ show n' when (n > n') -- preprocessor does not like ', so put on next line __IMPOSSIBLE__ let ps = take n $ drop (n' - n) vs ctype = defType cdef reportSDoc "tc.term.con" 20 $ vcat [ text "special checking of constructor application of" <+> prettyTCM c , nest 2 $ vcat [ text "ps =" <+> prettyTCM ps , text "ctype =" <+> prettyTCM ctype ] ] let ctype' = ctype `piApply` ps reportSDoc "tc.term.con" 20 $ nest 2 $ text "ctype' =" <+> prettyTCM ctype' -- get the parameter names let TelV ptel _ = telView'UpTo n ctype let pnames = map (fmap fst) $ telToList ptel -- drop the parameter arguments args' = dropArgs pnames args -- check the non-parameter arguments expandLast <- asks envExpandLast checkArguments expandLast (getRange c) args' ctype' t $ \ es t' targetCheck -> do let us = fromMaybe __IMPOSSIBLE__ (allApplyElims es) reportSDoc "tc.term.con" 20 $ nest 2 $ vcat [ text "us =" <+> prettyTCM us , text "t' =" <+> prettyTCM t' ] coerce' targetCheck (Con c ConOCon (map Apply us)) t' t _ -> do reportSDoc "tc.term.con" 50 $ nest 2 $ text "we are not at a datatype, falling back" fallback where fallback = checkHeadApplication org t (A.Con (unambiguous $ conName c)) args -- Check if there are explicitly given hidden arguments, -- in which case we fall back to default type checking. -- We could work harder, but let's not for now. -- -- Andreas, 2012-04-18: if all inital args are underscores, ignore them checkForParams args = let (hargs, rest) = span (not . visible) args notUnderscore A.Underscore{} = False notUnderscore _ = True in any notUnderscore $ map (unScope . namedArg) hargs -- Drop the constructor arguments that correspond to parameters. dropArgs [] args = args dropArgs ps [] = args dropArgs ps args@(arg : args') | Just p <- name, Just ps' <- namedPar p ps = dropArgs ps' args' | Nothing <- name, Just ps' <- unnamedPar h ps = dropArgs ps' args' | otherwise = args where name = fmap rangedThing . nameOf $ unArg arg h = getHiding arg namedPar x = dropPar ((x ==) . unDom) unnamedPar h = dropPar (sameHiding h) dropPar this (p : ps) | this p = Just ps | otherwise = dropPar this ps dropPar _ [] = Nothing -- | Returns an unblocking action in case of failure. disambiguateConstructor :: NonemptyList QName -> Type -> TCM (Either (TCM Bool) ConHead) disambiguateConstructor cs0 t = do reportSLn "tc.check.term" 40 $ "Ambiguous constructor: " ++ prettyShow cs0 -- Get the datatypes of the various constructors let getData Constructor{conData = d} = d getData _ = __IMPOSSIBLE__ reportSLn "tc.check.term" 40 $ " ranges before: " ++ show (getRange cs0) -- We use the reduced constructor when disambiguating, but -- the original constructor for type checking. This is important -- since they may have different types (different parameters). -- See issue 279. -- Andreas, 2017-08-13, issue #2686: ignore abstract constructors (cs, cons) <- unzip . snd . partitionEithers <$> do forM (toList cs0) $ \ c -> mapRight (c,) <$> getConForm c reportSLn "tc.check.term" 40 $ " reduced: " ++ prettyShow cons case cons of [] -> typeError $ AbstractConstructorNotInScope $ headNe cs0 [con] -> do let c = setConName (fromMaybe __IMPOSSIBLE__ $ headMaybe cs) con reportSLn "tc.check.term" 40 $ " only one non-abstract constructor: " ++ prettyShow c storeDisambiguatedName $ conName c return (Right c) _ -> do dcs <- zipWithM (\ c con -> (, setConName c con) . getData . theDef <$> getConInfo con) cs cons -- Type error let badCon t = typeError $ flip DoesNotConstructAnElementOf t $ fromMaybe __IMPOSSIBLE__ $ headMaybe cs -- Lets look at the target type at this point let getCon :: TCM (Maybe ConHead) getCon = do TelV tel t1 <- telView t addContext tel $ do reportSDoc "tc.check.term.con" 40 $ nest 2 $ text "target type: " <+> prettyTCM t1 ifBlockedType t1 (\ m t -> return Nothing) $ \ _ t' -> caseMaybeM (isDataOrRecord $ unEl t') (badCon t') $ \ d -> case [ c | (d', c) <- dcs, d == d' ] of [c] -> do reportSLn "tc.check.term" 40 $ " decided on: " ++ prettyShow c storeDisambiguatedName $ conName c return $ Just c [] -> badCon $ t' $> Def d [] cs -> typeError $ CantResolveOverloadedConstructorsTargetingSameDatatype d $ map conName cs getCon >>= \ case Nothing -> return $ Left $ isJust <$> getCon Just c -> return $ Right c --------------------------------------------------------------------------- -- * Projections --------------------------------------------------------------------------- -- | Inferring the type of an overloaded projection application. -- See 'inferOrCheckProjApp'. inferProjApp :: A.Expr -> ProjOrigin -> NonemptyList QName -> A.Args -> TCM (Term, Type) inferProjApp e o ds args0 = do (v, t, _) <- inferOrCheckProjApp e o ds args0 Nothing return (v, t) -- | Checking the type of an overloaded projection application. -- See 'inferOrCheckProjApp'. checkProjApp :: A.Expr -> ProjOrigin -> NonemptyList QName -> A.Args -> Type -> TCM Term checkProjApp e o ds args0 t = do (v, ti, targetCheck) <- inferOrCheckProjApp e o ds args0 (Just t) coerce' targetCheck v ti t -- | Inferring or Checking an overloaded projection application. -- -- The overloaded projection is disambiguated by inferring the type of its -- principal argument, which is the first visible argument. inferOrCheckProjApp :: A.Expr -- ^ The whole expression which constitutes the application. -> ProjOrigin -- ^ The origin of the projection involved in this projection application. -> NonemptyList QName -- ^ The projection name (potentially ambiguous). -> A.Args -- ^ The arguments to the projection. -> Maybe Type -- ^ The expected type of the expression (if 'Nothing', infer it). -> TCM (Term, Type, CheckedTarget) -- ^ The type-checked expression and its type (if successful). inferOrCheckProjApp e o ds args mt = do reportSDoc "tc.proj.amb" 20 $ vcat [ text "checking ambiguous projection" , text $ " ds = " ++ prettyShow ds , text " args = " <+> sep (map prettyTCM args) , text " t = " <+> caseMaybe mt (text "Nothing") prettyTCM ] let refuse :: String -> TCM a refuse reason = typeError $ GenericError $ "Cannot resolve overloaded projection " ++ prettyShow (A.nameConcrete $ A.qnameName $ headNe ds) ++ " because " ++ reason refuseNotApplied = refuse "it is not applied to a visible argument" refuseNoMatching = refuse "no matching candidate found" refuseNotRecordType = refuse "principal argument is not of record type" -- Postpone the whole type checking problem -- if type of principal argument (or the type where we get it from) -- is blocked by meta m. postpone m = do tc <- caseMaybe mt newTypeMeta_ return v <- postponeTypeCheckingProblem (CheckExpr e tc) $ isInstantiatedMeta m return (v, tc, NotCheckedTarget) -- The following cases need to be considered: -- 1. No arguments to the projection. -- 2. Arguments (parameters), but not the principal argument. -- 3. Argument(s) including the principal argument. -- For now, we only allow ambiguous projections if the first visible -- argument is the record value. case filter (visible . snd) $ zip [0..] args of -- Case: we have no visible argument to the projection. -- In inference mode, we really need the visible argument, postponing does not help [] -> caseMaybe mt refuseNotApplied $ \ t -> do -- If we have the type, we can try to get the type of the principal argument. -- It is the first visible argument. TelV _ptel core <- telViewUpTo' (-1) (not . visible) t ifBlockedType core (\ m _ -> postpone m) $ {-else-} \ _ core -> do ifNotPiType core (\ _ -> refuseNotApplied) $ {-else-} \ dom _b -> do ifBlockedType (unDom dom) (\ m _ -> postpone m) $ {-else-} \ _ ta -> do caseMaybeM (isRecordType ta) refuseNotRecordType $ \ (_q, _pars, defn) -> do case defn of Record { recFields = fs } -> do case catMaybes $ for fs $ \ (Arg _ f) -> List.find (f ==) (toList ds) of [] -> refuseNoMatching [d] -> do storeDisambiguatedName d -- checkHeadApplication will check the target type (, t, CheckedTarget Nothing) <$> checkHeadApplication e t (A.Proj o $ unambiguous d) args _ -> __IMPOSSIBLE__ _ -> __IMPOSSIBLE__ -- Case: we have a visible argument ((k, arg) : _) -> do (v0, ta) <- inferExpr $ namedArg arg reportSDoc "tc.proj.amb" 25 $ vcat [ text " principal arg " <+> prettyTCM arg , text " has type " <+> prettyTCM ta ] -- ta should be a record type (after introducing the hidden args in v0) (vargs, ta) <- implicitArgs (-1) (not . visible) ta let v = v0 `apply` vargs ifBlockedType ta (\ m _ -> postpone m) {-else-} $ \ _ ta -> do caseMaybeM (isRecordType ta) refuseNotRecordType $ \ (q, _pars0, _) -> do -- try to project it with all of the possible projections let try d = do reportSDoc "tc.proj.amb" 30 $ vcat [ text $ "trying projection " ++ prettyShow d , text " td = " <+> caseMaybeM (getDefType d ta) (text "Nothing") prettyTCM ] -- get the original projection name isP <- isProjection d reportSDoc "tc.proj.amb" 40 $ vcat $ [ text $ " isProjection = " ++ caseMaybe isP "no" (const "yes") ] ++ caseMaybe isP [] (\ Projection{ projProper = proper, projOrig = orig } -> [ text $ " proper = " ++ show proper , text $ " orig = " ++ prettyShow orig ]) -- Andreas, 2017-01-21, issue #2422 -- The scope checker considers inherited projections (from nested records) -- as projections and allows overloading. However, since they are defined -- as *composition* of projections, the type checker does *not* recognize them, -- and @isP@ will be @Nothing@. -- However, we can ignore this, as we only need the @orig@inal projection name -- for removing false ambiguity. Thus, we skip these checks: -- Projection{ projProper = proper, projOrig = orig } <- MaybeT $ return isP -- guard $ isJust proper let orig = caseMaybe isP d projOrig -- try to eliminate (dom, u, tb) <- MaybeT (projectTyped v ta o d `catchError` \ _ -> return Nothing) reportSDoc "tc.proj.amb" 30 $ vcat [ text " dom = " <+> prettyTCM dom , text " u = " <+> prettyTCM u , text " tb = " <+> prettyTCM tb ] (q', pars, _) <- MaybeT $ isRecordType $ unDom dom reportSDoc "tc.proj.amb" 30 $ vcat [ text " q = " <+> prettyTCM q , text " q' = " <+> prettyTCM q' ] guard (q == q') -- Get the type of the projection and check -- that the first visible argument is the record value. tfull <- lift $ defType <$> getConstInfo d TelV tel _ <- lift $ telViewUpTo' (-1) (not . visible) tfull reportSDoc "tc.proj.amb" 30 $ vcat [ text $ " size tel = " ++ show (size tel) , text $ " size pars = " ++ show (size pars) ] -- See issue 1960 for when the following assertion fails for -- the correct disambiguation. -- guard (size tel == size pars) return (orig, (d, (pars, (dom, u, tb)))) cands <- groupOn fst . catMaybes <$> mapM (runMaybeT . try) (toList ds) case cands of [] -> refuseNoMatching [[]] -> refuseNoMatching (_:_:_) -> refuse $ "several matching candidates found: " ++ prettyShow (map (fst . snd) $ concat cands) -- case: just one matching projection d -- the term u = d v -- the type tb is the type of this application [ (_orig, (d, (pars, (_dom,u,tb)))) : _ ] -> do storeDisambiguatedName d -- Check parameters tfull <- typeOfConst d (_,_) <- checkKnownArguments (take k args) pars tfull -- Check remaining arguments let r = getRange e args' = drop (k + 1) args z <- runExceptT $ checkArgumentsE ExpandLast r args' tb mt case z of Right (us, trest, targetCheck) -> return (u `applyE` us, trest, targetCheck) Left problem -> do -- In the inference case: -- To create a postponed type checking problem, -- we do not use typeDontCare, but create a meta. tc <- caseMaybe mt newTypeMeta_ return v <- postponeArgs problem ExpandLast r args' tc $ \ us trest targetCheck -> coerce' targetCheck (u `applyE` us) trest tc return (v, tc, NotCheckedTarget) ----------------------------------------------------------------------------- -- * Coinduction ----------------------------------------------------------------------------- checkSharpApplication :: A.Expr -> Type -> QName -> [NamedArg A.Expr] -> TCM Term checkSharpApplication e t c args = do arg <- case args of [a] | visible a -> return $ namedArg a _ -> typeError $ GenericError $ prettyShow c ++ " must be applied to exactly one argument." -- The name of the fresh function. i <- fresh :: TCM Int let name = filter (/= '_') (prettyShow $ A.nameConcrete $ A.qnameName c) ++ "-" ++ show i kit <- coinductionKit' let flat = nameOfFlat kit inf = nameOfInf kit -- Add the type signature of the fresh function to the -- signature. -- To make sure we can type check the generated function we have to make -- sure that its type is \inf. The reason for this is that we don't yet -- postpone checking of patterns when we don't know their types (Issue480). forcedType <- do lvl <- levelType (_, l) <- newValueMeta RunMetaOccursCheck lvl lv <- levelView l (_, a) <- newValueMeta RunMetaOccursCheck (sort $ Type lv) return $ El (Type lv) $ Def inf [Apply $ setHiding Hidden $ defaultArg l, Apply $ defaultArg a] wrapper <- inFreshModuleIfFreeParams $ do c' <- setRange (getRange c) <$> liftM2 qualify (killRange <$> currentModule) (freshName_ name) -- Define and type check the fresh function. rel <- asks envRelevance abs <- aModeToDef <$> asks envAbstractMode let info = A.mkDefInfo (A.nameConcrete $ A.qnameName c') noFixity' PublicAccess abs noRange core = A.LHSProj { A.lhsDestructor = unambiguous flat , A.lhsFocus = defaultNamedArg $ A.LHSHead c' [] , A.lhsPats = [] } clause = A.Clause (A.LHS empty core) [] (A.RHS arg Nothing) A.noWhereDecls False i <- currentOrFreshMutualBlock -- If we are in irrelevant position, add definition irrelevantly. -- TODO: is this sufficient? addConstant c' =<< do let ai = setRelevance rel defaultArgInfo useTerPragma $ (defaultDefn ai c' forcedType emptyFunction) { defMutual = i } checkFunDef NotDelayed info c' [clause] reportSDoc "tc.term.expr.coind" 15 $ do def <- theDef <$> getConstInfo c' vcat $ [ text "The coinductive wrapper" , nest 2 $ prettyTCM rel <> prettyTCM c' <+> text ":" , nest 4 $ prettyTCM t , nest 2 $ prettyA clause , text "The definition is" <+> text (show $ funDelayed def) <> text "." ] return c' -- The application of the fresh function to the relevant -- arguments. e' <- Def wrapper . map Apply <$> getContextArgs reportSDoc "tc.term.expr.coind" 15 $ vcat $ [ text "The coinductive constructor application" , nest 2 $ prettyTCM e , text "was translated into the application" , nest 2 $ prettyTCM e' ] blockTerm t $ e' <$ workOnTypes (leqType forcedType t)