{-# LANGUAGE GeneralizedNewtypeDeriving #-} {- | Construct a graph from constraints @ x + n <= y becomes x ---(-n)---> y x <= n + y becomes x ---(+n)---> y @ the default edge (= no edge) is labelled with infinity. Building the graph involves keeping track of the node names. We do this in a finite map, assigning consecutive numbers to nodes. -} module Agda.Utils.Warshall where import Control.Monad.State import Data.Maybe import Data.Array import qualified Data.List as List import Data.Map (Map) import qualified Data.Map as Map import Agda.Syntax.Common (Nat) import Agda.Utils.SemiRing type Matrix a = Array (Int,Int) a -- assuming a square matrix warshall :: SemiRing a => Matrix a -> Matrix a warshall a0 = loop r a0 where b@((r,c),(r',c')) = bounds a0 -- assuming r == c and r' == c' loop k a | k <= r' = loop (k+1) (array b [ ((i,j), (a!(i,j)) `oplus` ((a!(i,k)) `otimes` (a!(k,j)))) | i <- [r..r'], j <- [c..c'] ]) | otherwise = a type AdjList node edge = Map node [(node, edge)] -- | Warshall's algorithm on a graph represented as an adjacency list. warshallG :: (SemiRing edge, Ord node) => AdjList node edge -> AdjList node edge warshallG g = fromMatrix $ warshall m where nodes = zip (List.nub $ Map.keys g ++ map fst (concat $ Map.elems g)) [0..] len = length nodes b = ((0,0), (len - 1,len - 1)) edge i j = do es <- Map.lookup i g foldr oplus Nothing [ Just v | (j', v) <- es, j == j' ] m = array b [ ((n, m), edge i j) | (i, n) <- nodes, (j, m) <- nodes ] fromMatrix matrix = Map.fromList $ do (i, n) <- nodes let es = [ (fst (nodes !! m), e) | m <- [0..len - 1] , Just e <- [matrix ! (n, m)] ] return (i, es) -- | Edge weight in the graph, forming a semi ring. data Weight = Finite Int | Infinite deriving (Eq) inc :: Weight -> Int -> Weight inc Infinite n = Infinite inc (Finite k) n = Finite (k + n) instance Show Weight where show (Finite i) = show i show Infinite = "." instance Ord Weight where a <= Infinite = True Infinite <= b = False Finite a <= Finite b = a <= b instance SemiRing Weight where ozero = Infinite oone = Finite 0 oplus = min otimes Infinite _ = Infinite otimes _ Infinite = Infinite otimes (Finite a) (Finite b) = Finite (a + b) -- constraints --------------------------------------------------- -- | Nodes of the graph are either -- - flexible variables (with identifiers drawn from @Int@), -- - rigid variables (also identified by @Int@s), or -- - constants (like 0, infinity, or anything between). data Node = Rigid Rigid | Flex FlexId deriving (Eq, Ord) data Rigid = RConst Weight | RVar RigidId deriving (Eq, Ord, Show) type NodeId = Int type RigidId = Int type FlexId = Int type Scope = RigidId -> Bool -- ^ Which rigid variables a flex may be instatiated to. instance Show Node where show (Flex i) = "?" ++ show i show (Rigid (RVar i)) = "v" ++ show i show (Rigid (RConst Infinite)) = "#" show (Rigid (RConst (Finite n))) = show n infinite :: Rigid -> Bool infinite (RConst Infinite) = True infinite _ = False -- | @isBelow r w r'@ -- checks, if @r@ and @r'@ are connected by @w@ (meaning @w@ not infinite), -- whether @r + w <= r'@. -- Precondition: not the same rigid variable. isBelow :: Rigid -> Weight -> Rigid -> Bool isBelow _ Infinite _ = True isBelow _ n (RConst Infinite) = True isBelow (RConst (Finite i)) (Finite n) (RConst (Finite j)) = i + n <= j isBelow _ _ _ = False -- rigid variables are not related -- | A constraint is an edge in the graph. data Constraint = NewFlex FlexId Scope | Arc Node Int Node -- ^ For @Arc v1 k v2@ at least one of @v1@ or @v2@ is a @MetaV@ (Flex), -- the other a @MetaV@ or a @Var@ (Rigid). -- If @k <= 0@ this means @suc^(-k) v1 <= v2@ -- otherwise @v1 <= suc^k v3@. instance Show Constraint where show (NewFlex i s) = "SizeMeta(?" ++ show i ++ ")" show (Arc v1 k v2) | k == 0 = show v1 ++ "<=" ++ show v2 | k < 0 = show v1 ++ "+" ++ show (-k) ++ "<=" ++ show v2 | otherwise = show v1 ++ "<=" ++ show v2 ++ "+" ++ show k type Constraints = [Constraint] emptyConstraints :: Constraints emptyConstraints = [] -- graph (matrix) ------------------------------------------------ data Graph = Graph { flexScope :: Map FlexId Scope -- ^ Scope for each flexible var. , nodeMap :: Map Node NodeId -- ^ Node labels to node numbers. , intMap :: Map NodeId Node -- ^ Node numbers to node labels. , nextNode :: NodeId -- ^ Number of nodes @n@. , graph :: NodeId -> NodeId -> Weight -- ^ The edges (restrict to @[0..n[@). } -- | The empty graph: no nodes, edges are all undefined (infinity weight). initGraph :: Graph initGraph = Graph Map.empty Map.empty Map.empty 0 (\ x y -> Infinite) -- | The Graph Monad, for constructing a graph iteratively. type GM = State Graph -- | Add a size meta node. addFlex :: FlexId -> Scope -> GM () addFlex x scope = do modify $ \ st -> st { flexScope = Map.insert x scope (flexScope st) } _ <- addNode (Flex x) return () -- | Lookup identifier of a node. -- If not present, it is added first. addNode :: Node -> GM Int addNode n = do st <- get case Map.lookup n (nodeMap st) of Just i -> return i Nothing -> do let i = nextNode st put $ st { nodeMap = Map.insert n i (nodeMap st) , intMap = Map.insert i n (intMap st) , nextNode = i + 1 } return i -- | @addEdge n1 k n2@ -- improves the weight of egde @n1->n2@ to be at most @k@. -- Also adds nodes if not yet present. addEdge :: Node -> Int -> Node -> GM () addEdge n1 k n2 = do i1 <- addNode n1 i2 <- addNode n2 st <- get let graph' x y = if (x,y) == (i1,i2) then Finite k `oplus` (graph st) x y else graph st x y put $ st { graph = graph' } addConstraint :: Constraint -> GM () addConstraint (NewFlex x scope) = addFlex x scope addConstraint (Arc n1 k n2) = addEdge n1 k n2 buildGraph :: Constraints -> Graph buildGraph cs = execState (mapM_ addConstraint cs) initGraph mkMatrix :: Int -> (Int -> Int -> Weight) -> Matrix Weight mkMatrix n g = array ((0,0),(n-1,n-1)) [ ((i,j), g i j) | i <- [0..n-1], j <- [0..n-1]] -- displaying matrices with row and column labels -------------------- -- | A matrix with row descriptions in @b@ and column descriptions in @c@. data LegendMatrix a b c = LegendMatrix { matrix :: Matrix a , rowdescr :: Int -> b , coldescr :: Int -> c } instance (Show a, Show b, Show c) => Show (LegendMatrix a b c) where show (LegendMatrix m rd cd) = -- first show column description let ((r,c),(r',c')) = bounds m in foldr (\ j s -> "\t" ++ show (cd j) ++ s) "" [c .. c'] ++ -- then output rows foldr (\ i s -> "\n" ++ show (rd i) ++ foldr (\ j t -> "\t" ++ show (m!(i,j)) ++ t) (s) [c .. c']) "" [r .. r'] -- solving the constraints ------------------------------------------- -- | A solution assigns to each flexible variable a size expression -- which is either a constant or a @v + n@ for a rigid variable @v@. type Solution = Map Int SizeExpr emptySolution :: Solution emptySolution = Map.empty extendSolution :: Solution -> Int -> SizeExpr -> Solution extendSolution subst k v = Map.insert k v subst data SizeExpr = SizeVar RigidId Int -- ^ e.g. x + 5 | SizeConst Weight -- ^ a number or infinity instance Show SizeExpr where show (SizeVar n 0) = show (Rigid (RVar n)) show (SizeVar n k) = show (Rigid (RVar n)) ++ "+" ++ show k show (SizeConst w) = show w -- | @sizeRigid r n@ returns the size expression corresponding to @r + n@ sizeRigid :: Rigid -> Int -> SizeExpr sizeRigid (RConst k) n = SizeConst (inc k n) sizeRigid (RVar i) n = SizeVar i n {- apply :: SizeExpr -> Solution -> SizeExpr apply e@(SizeExpr (Rigid _) _) phi = e apply e@(SizeExpr (Flex x) i) phi = case Map.lookup x phi of Nothing -> e Just (SizeExpr v j) -> SizeExpr v (i + j) after :: Solution -> Solution -> Solution after psi phi = Map.map (\ e -> e `apply` phi) psi -} {- compute solution a solution CANNOT exist if v < v for a rigid variable v -- Andreas, 2012-09-19 OUTDATED are: -- v <= v' for rigid variables v,v' -- x < v for a flexible variable x and a rigid variable v thus, for each flexible x, only one of the following cases is possible r+n <= x+m <= infty for a unique rigid r (meaning r --(m-n)--> x) x <= r+n for a unique rigid r (meaning x --(n)--> r) we are looking for the least values for flexible variables that solve the constraints. Algorithm while flexible variables and rigid rows left find a rigid variable row i for all flexible columns j if i --n--> j with n<=0 (meaning i+n <= j) then j = i + n while flexible variables j left search the row j for entry i if j --n--> i with n >= 0 (meaning j <= i + n) then j = i + n -} solve :: Constraints -> Maybe Solution solve cs = -- trace (show cs) $ -- trace (show lm0) $ -- trace (show lm) $ -- trace (show d) $ let solution = if solvable then loop1 flexs rigids emptySolution else Nothing in -- trace (show solution) $ solution where -- compute the graph and its transitive closure m gr = buildGraph cs n = nextNode gr -- number of nodes m0 = mkMatrix n (graph gr) m = warshall m0 -- tracing only: build output version of transitive graph legend i = fromJust $ Map.lookup i (intMap gr) -- trace only lm0 = LegendMatrix m0 legend legend -- trace only lm = LegendMatrix m legend legend -- trace only -- compute the sets of flexible and rigid node numbers ns = Map.keys (nodeMap gr) -- a set of flexible variables flexs = List.foldl' (\ l -> \case (Flex i ) -> i : l (Rigid _) -> l) [] ns -- a set of rigid variables rigids = List.foldl' (\ l -> \case (Flex _ ) -> l (Rigid i) -> i : l) [] ns -- rigid matrix indices rInds = List.foldl' (\ l r -> let Just i = Map.lookup (Rigid r) (nodeMap gr) in i : l) [] rigids -- check whether there is a solution -- d = [ m!(i,i) | i <- [0 .. (n-1)] ] -- diagonal -- a rigid variable might not be less than it self, so no -.. on the -- rigid part of the diagonal solvable = all (\ x -> x >= Finite 0) [ m!(i,i) | i <- rInds ] && True {- Andreas, 2012-09-19 We now can have constraints between rigid variables, like i < j. Thus we skip the following two test. However, a solution must be checked for consistency with the constraints on rigid vars. -- a rigid variable might not be bounded below by infinity or -- bounded above by a constant -- it might not be related to another rigid variable all (\ (r, r') -> r == r' || let Just row = (Map.lookup (Rigid r) (nodeMap gr)) Just col = (Map.lookup (Rigid r') (nodeMap gr)) edge = m!(row,col) in isBelow r edge r' ) [ (r,r') | r <- rigids, r' <- rigids ] && -- a flexible variable might not be strictly below a rigid variable all (\ (x, v) -> let Just row = (Map.lookup (Flex x) (nodeMap gr)) Just col = (Map.lookup (Rigid (RVar v)) (nodeMap gr)) edge = m!(row,col) in edge >= Finite 0) [ (x,v) | x <- flexs, (RVar v) <- rigids ] -} inScope :: FlexId -> Rigid -> Bool inScope x (RConst _) = True inScope x (RVar v) = scope v where Just scope = Map.lookup x (flexScope gr) {- loop1 while flexible variables and rigid rows left find a rigid variable row i for all flexible columns j if i --n--> j with n<=0 (meaning i + n <= j) then j = i + n -} loop1 :: [FlexId] -> [Rigid] -> Solution -> Maybe Solution loop1 [] rgds subst = Just subst loop1 flxs [] subst = loop2 flxs subst loop1 flxs (r:rgds) subst = let row = fromJust $ Map.lookup (Rigid r) (nodeMap gr) (flxs',subst') = List.foldl' (\ (flx,sub) f -> let col = fromJust $ Map.lookup (Flex f) (nodeMap gr) in case (inScope f r, m!(row,col)) of -- Finite z | z <= 0 -> (True, Finite z) -> let trunc z | z >= 0 = 0 | otherwise = -z in (flx, extendSolution sub f (sizeRigid r (trunc z))) _ -> (f : flx, sub) ) ([], subst) flxs in loop1 flxs' rgds subst' {- loop2 while flexible variables j left search the row j for entry i if j --n--> i with n >= 0 (meaning j <= i + n) then j = i -} loop2 :: [FlexId] -> Solution -> Maybe Solution loop2 [] subst = Just subst loop2 (f:flxs) subst = loop3 0 subst where row = fromJust $ Map.lookup (Flex f) (nodeMap gr) loop3 col subst | col >= n = -- default to infinity loop2 flxs (extendSolution subst f (SizeConst Infinite)) loop3 col subst = case Map.lookup col (intMap gr) of Just (Rigid r) | not (infinite r) -> case (inScope f r, m!(row,col)) of (True, Finite z) | z >= 0 -> loop2 flxs (extendSolution subst f (sizeRigid r z)) (_, Infinite) -> loop3 (col+1) subst _ -> -- trace ("unusable rigid: " ++ show r ++ " for flex " ++ show f) Nothing -- NOT: loop3 (col+1) subst _ -> loop3 (col+1) subst