{-# LANGUAGE CPP #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} -- | Preprocess 'Agda.Syntax.Concrete.Declaration's, producing 'NiceDeclaration's. -- -- * Attach fixity and syntax declarations to the definition they refer to. -- -- * Distribute the following attributes to the individual definitions: -- @abstract@, -- @instance@, -- @postulate@, -- @primitive@, -- @private@, -- termination pragmas. -- -- * Gather the function clauses belonging to one function definition. -- -- * Expand ellipsis @...@ in function clauses following @with@. -- -- * Infer mutual blocks. -- A block starts when a lone signature is encountered, and ends when -- all lone signatures have seen their definition. -- -- * Report basic well-formedness error, -- when one of the above transformation fails. -- When possible, errors should be deferred to the scope checking phase -- (ConcreteToAbstract), where we are in the TCM and can produce more -- informative error messages. module Agda.Syntax.Concrete.Definitions ( NiceDeclaration(..) , NiceConstructor, NiceTypeSignature , Clause(..) , DeclarationException(..) , DeclarationWarning(..) , Nice, runNice , niceDeclarations , notSoNiceDeclarations , niceHasAbstract , Measure , declarationWarningName ) where import Prelude hiding (null) import Control.Arrow ((&&&), (***), first, second) import Control.Applicative hiding (empty) import Control.Monad.Except import Control.Monad.State import Data.Either ( partitionEithers ) import Data.Function ( on ) import qualified Data.Map as Map import Data.Map (Map) import Data.Maybe import Data.Monoid ( Monoid, mempty, mappend ) import Data.Semigroup ( Semigroup, (<>) ) import qualified Data.List as List import qualified Data.Set as Set import Data.Traversable (Traversable, traverse) import qualified Data.Traversable as Trav import Data.Data (Data) import Agda.Syntax.Concrete import Agda.Syntax.Concrete.Pattern import Agda.Syntax.Common hiding (TerminationCheck()) import qualified Agda.Syntax.Common as Common import Agda.Syntax.Position import Agda.Syntax.Fixity import Agda.Syntax.Notation import Agda.Syntax.Concrete.Pretty () import Agda.Syntax.Concrete.Fixity import Agda.Interaction.Options.Warnings import Agda.Utils.AffineHole import Agda.Utils.Except ( MonadError(throwError,catchError) ) import Agda.Utils.Function import Agda.Utils.Functor import Agda.Utils.Lens import Agda.Utils.List (caseList, headMaybe, isSublistOf) import Agda.Utils.Maybe import Agda.Utils.Monad import Agda.Utils.Null import qualified Agda.Utils.Pretty as Pretty import Agda.Utils.Pretty hiding ((<>)) import Agda.Utils.Singleton import Agda.Utils.Three import Agda.Utils.Tuple import Agda.Utils.Update #include "undefined.h" import Agda.Utils.Impossible {-------------------------------------------------------------------------- Types --------------------------------------------------------------------------} {-| The nice declarations. No fixity declarations and function definitions are contained in a single constructor instead of spread out between type signatures and clauses. The @private@, @postulate@, @abstract@ and @instance@ modifiers have been distributed to the individual declarations. Observe the order of components: Range Fixity' Access IsAbstract IsInstance TerminationCheck PositivityCheck further attributes (Q)Name content (Expr, Declaration ...) -} data NiceDeclaration = Axiom Range Access IsAbstract IsInstance ArgInfo Name Expr -- ^ 'IsAbstract' argument: We record whether a declaration was made in an @abstract@ block. -- -- 'ArgInfo' argument: Axioms and functions can be declared irrelevant. -- ('Hiding' should be 'NotHidden'.) | NiceField Range Access IsAbstract IsInstance Name (Arg Expr) | PrimitiveFunction Range Access IsAbstract Name Expr | NiceMutual Range TerminationCheck PositivityCheck [NiceDeclaration] | NiceModule Range Access IsAbstract QName Telescope [Declaration] | NiceModuleMacro Range Access Name ModuleApplication OpenShortHand ImportDirective | NiceOpen Range QName ImportDirective | NiceImport Range QName (Maybe AsName) OpenShortHand ImportDirective | NicePragma Range Pragma | NiceRecSig Range Access IsAbstract PositivityCheck UniverseCheck Name [LamBinding] Expr | NiceDataSig Range Access IsAbstract PositivityCheck UniverseCheck Name [LamBinding] Expr | NiceFunClause Range Access IsAbstract TerminationCheck Catchall Declaration -- ^ An uncategorized function clause, could be a function clause -- without type signature or a pattern lhs (e.g. for irrefutable let). -- The 'Declaration' is the actual 'FunClause'. | FunSig Range Access IsAbstract IsInstance IsMacro ArgInfo TerminationCheck Name Expr | FunDef Range [Declaration] IsAbstract IsInstance TerminationCheck Name [Clause] -- ^ Block of function clauses (we have seen the type signature before). -- The 'Declaration's are the original declarations that were processed -- into this 'FunDef' and are only used in 'notSoNiceDeclaration'. -- Andreas, 2017-01-01: Because of issue #2372, we add 'IsInstance' here. -- An alias should know that it is an instance. | NiceDataDef Range Origin IsAbstract PositivityCheck UniverseCheck Name [LamBinding] [NiceConstructor] | NiceRecDef Range Origin IsAbstract PositivityCheck UniverseCheck Name (Maybe (Ranged Induction)) (Maybe HasEta) (Maybe (Name, IsInstance)) [LamBinding] [Declaration] | NicePatternSyn Range Name [Arg Name] Pattern | NiceGeneralize Range Access ArgInfo Name Expr | NiceUnquoteDecl Range Access IsAbstract IsInstance TerminationCheck [Name] Expr | NiceUnquoteDef Range Access IsAbstract TerminationCheck [Name] Expr deriving (Data, Show) type TerminationCheck = Common.TerminationCheck Measure -- | Termination measure is, for now, a variable name. type Measure = Name type Catchall = Bool -- | Only 'Axiom's. type NiceConstructor = NiceTypeSignature -- | Only 'Axiom's. type NiceTypeSignature = NiceDeclaration -- | One clause in a function definition. There is no guarantee that the 'LHS' -- actually declares the 'Name'. We will have to check that later. data Clause = Clause Name Catchall LHS RHS WhereClause [Clause] deriving (Data, Show) -- | The exception type. data DeclarationException = MultipleEllipses Pattern | InvalidName Name | DuplicateDefinition Name | MissingWithClauses Name LHS | WrongDefinition Name DataRecOrFun DataRecOrFun | Codata Range | DeclarationPanic String | WrongContentBlock KindOfBlock Range | AmbiguousFunClauses LHS [Name] -- ^ in a mutual block, a clause could belong to any of the @[Name]@ type signatures | InvalidMeasureMutual Range -- ^ In a mutual block, all or none need a MEASURE pragma. -- Range is of mutual block. | UnquoteDefRequiresSignature [Name] | BadMacroDef NiceDeclaration deriving (Data, Show) -- | Non-fatal errors encountered in the Nicifier data DeclarationWarning = EmptyAbstract Range -- ^ Empty @abstract@ block. | EmptyInstance Range -- ^ Empty @instance@ block | EmptyMacro Range -- ^ Empty @macro@ block. | EmptyMutual Range -- ^ Empty @mutual@ block. | EmptyPostulate Range -- ^ Empty @postulate@ block. | EmptyPrivate Range -- ^ Empty @private@ block. | EmptyGeneralize Range -- ^ Empty @variable@ block. | EmptyPrimitive Range -- ^ Empty @primitive@ block. | InvalidCatchallPragma Range -- ^ A {-\# CATCHALL \#-} pragma -- that does not precede a function clause. | InvalidNoPositivityCheckPragma Range -- ^ A {-\# NO_POSITIVITY_CHECK \#-} pragma -- that does not apply to any data or record type. | InvalidNoUniverseCheckPragma Range -- ^ A {-\# NO_UNIVERSE_CHECK \#-} pragma -- that does not apply to a data or record type. | InvalidTerminationCheckPragma Range -- ^ A {-\# TERMINATING \#-} and {-\# NON_TERMINATING \#-} pragma -- that does not apply to any function. | MissingDefinitions [Name] | NotAllowedInMutual Range String | PolarityPragmasButNotPostulates [Name] | PragmaNoTerminationCheck Range -- ^ Pragma @{-\# NO_TERMINATION_CHECK \#-}@ has been replaced -- by @{-\# TERMINATING \#-}@ and @{-\# NON_TERMINATING \#-}@. | PragmaCompiled Range -- ^ @COMPILE@ pragmas are not allowed in safe mode | UnknownFixityInMixfixDecl [Name] | UnknownNamesInFixityDecl [Name] | UnknownNamesInPolarityPragmas [Name] | UselessAbstract Range | UselessInstance Range | UselessPrivate Range deriving (Data, Show) declarationWarningName :: DeclarationWarning -> WarningName declarationWarningName dw = case dw of EmptyAbstract{} -> EmptyAbstract_ EmptyInstance{} -> EmptyInstance_ EmptyMacro{} -> EmptyMacro_ EmptyMutual{} -> EmptyMutual_ EmptyPrivate{} -> EmptyPrivate_ EmptyPostulate{} -> EmptyPostulate_ EmptyGeneralize{} -> EmptyGeneralize_ EmptyPrimitive{} -> EmptyPrimitive_ InvalidCatchallPragma{} -> InvalidCatchallPragma_ InvalidNoPositivityCheckPragma{} -> InvalidNoPositivityCheckPragma_ InvalidNoUniverseCheckPragma{} -> InvalidNoUniverseCheckPragma_ InvalidTerminationCheckPragma{} -> InvalidTerminationCheckPragma_ MissingDefinitions{} -> MissingDefinitions_ NotAllowedInMutual{} -> NotAllowedInMutual_ PolarityPragmasButNotPostulates{} -> PolarityPragmasButNotPostulates_ PragmaNoTerminationCheck{} -> PragmaNoTerminationCheck_ PragmaCompiled{} -> PragmaCompiled_ UnknownFixityInMixfixDecl{} -> UnknownFixityInMixfixDecl_ UnknownNamesInFixityDecl{} -> UnknownNamesInFixityDecl_ UnknownNamesInPolarityPragmas{} -> UnknownNamesInPolarityPragmas_ UselessAbstract{} -> UselessAbstract_ UselessInstance{} -> UselessInstance_ UselessPrivate{} -> UselessPrivate_ -- | Several declarations expect only type signatures as sub-declarations. These are: data KindOfBlock = PostulateBlock -- ^ @postulate@ | PrimitiveBlock -- ^ @primitive@. Ensured by parser. | InstanceBlock -- ^ @instance@. Actually, here all kinds of sub-declarations are allowed a priori. | FieldBlock -- ^ @field@. Ensured by parser. | DataBlock -- ^ @data ... where@. Here we got a bad error message for Agda-2.5 (Issue 1698). deriving (Data, Eq, Ord, Show) instance HasRange DeclarationException where getRange (MultipleEllipses d) = getRange d getRange (InvalidName x) = getRange x getRange (DuplicateDefinition x) = getRange x getRange (MissingWithClauses x lhs) = getRange lhs getRange (WrongDefinition x k k') = getRange x getRange (AmbiguousFunClauses lhs xs) = getRange lhs getRange (Codata r) = r getRange (DeclarationPanic _) = noRange getRange (WrongContentBlock _ r) = r getRange (InvalidMeasureMutual r) = r getRange (UnquoteDefRequiresSignature x) = getRange x getRange (BadMacroDef d) = getRange d instance HasRange DeclarationWarning where getRange (UnknownNamesInFixityDecl xs) = getRange . head $ xs getRange (UnknownFixityInMixfixDecl xs) = getRange . head $ xs getRange (UnknownNamesInPolarityPragmas xs) = getRange . head $ xs getRange (PolarityPragmasButNotPostulates xs) = getRange . head $ xs getRange (MissingDefinitions xs) = getRange . head $ xs getRange (UselessPrivate r) = r getRange (NotAllowedInMutual r x) = r getRange (UselessAbstract r) = r getRange (UselessInstance r) = r getRange (EmptyMutual r) = r getRange (EmptyAbstract r) = r getRange (EmptyPrivate r) = r getRange (EmptyInstance r) = r getRange (EmptyMacro r) = r getRange (EmptyPostulate r) = r getRange (EmptyGeneralize r) = r getRange (EmptyPrimitive r) = r getRange (InvalidTerminationCheckPragma r) = r getRange (InvalidNoPositivityCheckPragma r) = r getRange (InvalidCatchallPragma r) = r getRange (InvalidNoUniverseCheckPragma r) = r getRange (PragmaNoTerminationCheck r) = r getRange (PragmaCompiled r) = r instance HasRange NiceDeclaration where getRange (Axiom r _ _ _ _ _ _) = r getRange (NiceField r _ _ _ _ _) = r getRange (NiceMutual r _ _ _) = r getRange (NiceModule r _ _ _ _ _ ) = r getRange (NiceModuleMacro r _ _ _ _ _) = r getRange (NiceOpen r _ _) = r getRange (NiceImport r _ _ _ _) = r getRange (NicePragma r _) = r getRange (PrimitiveFunction r _ _ _ _) = r getRange (FunSig r _ _ _ _ _ _ _ _) = r getRange (FunDef r _ _ _ _ _ _) = r getRange (NiceDataDef r _ _ _ _ _ _ _) = r getRange (NiceRecDef r _ _ _ _ _ _ _ _ _ _) = r getRange (NiceRecSig r _ _ _ _ _ _ _) = r getRange (NiceDataSig r _ _ _ _ _ _ _) = r getRange (NicePatternSyn r _ _ _) = r getRange (NiceGeneralize r _ _ _ _) = r getRange (NiceFunClause r _ _ _ _ _) = r getRange (NiceUnquoteDecl r _ _ _ _ _ _) = r getRange (NiceUnquoteDef r _ _ _ _ _) = r instance Pretty NiceDeclaration where pretty = \case Axiom _ _ _ _ _ x _ -> text "postulate" <+> pretty x <+> colon <+> text "_" NiceField _ _ _ _ x _ -> text "field" <+> pretty x PrimitiveFunction _ _ _ x _ -> text "primitive" <+> pretty x NiceMutual{} -> text "mutual" NiceModule _ _ _ x _ _ -> text "module" <+> pretty x <+> text "where" NiceModuleMacro _ _ x _ _ _ -> text "module" <+> pretty x <+> text "= ..." NiceOpen _ x _ -> text "open" <+> pretty x NiceImport _ x _ _ _ -> text "import" <+> pretty x NicePragma{} -> text "{-# ... #-}" NiceRecSig _ _ _ _ _ x _ _ -> text "record" <+> pretty x NiceDataSig _ _ _ _ _ x _ _ -> text "data" <+> pretty x NiceFunClause{} -> text "" FunSig _ _ _ _ _ _ _ x _ -> pretty x <+> colon <+> text "_" FunDef _ _ _ _ _ x _ -> pretty x <+> text "= _" NiceDataDef _ _ _ _ _ x _ _ -> text "data" <+> pretty x <+> text "where" NiceRecDef _ _ _ _ _ x _ _ _ _ _ -> text "record" <+> pretty x <+> text "where" NicePatternSyn _ x _ _ -> text "pattern" <+> pretty x NiceGeneralize _ _ _ x _ -> text "variable" <+> pretty x NiceUnquoteDecl _ _ _ _ _ xs _ -> text "" NiceUnquoteDef _ _ _ _ xs _ -> text "" -- These error messages can (should) be terminated by a dot ".", -- there is no error context printed after them. instance Pretty DeclarationException where pretty (MultipleEllipses p) = fsep $ pwords "Multiple ellipses in left-hand side" ++ [pretty p] pretty (InvalidName x) = fsep $ pwords "Invalid name:" ++ [pretty x] pretty (DuplicateDefinition x) = fsep $ pwords "Duplicate definition of" ++ [pretty x] pretty (MissingWithClauses x lhs) = fsep $ pwords "Missing with-clauses for function" ++ [pretty x] pretty (WrongDefinition x k k') = fsep $ pretty x : pwords ("has been declared as a " ++ show k ++ ", but is being defined as a " ++ show k') pretty (AmbiguousFunClauses lhs xs) = sep [ fsep $ pwords "More than one matching type signature for left hand side " ++ [pretty lhs] ++ pwords "it could belong to any of:" , vcat $ map (pretty . PrintRange) xs ] pretty (WrongContentBlock b _) = fsep . pwords $ case b of PostulateBlock -> "A postulate block can only contain type signatures, possibly under keyword instance" DataBlock -> "A data definition can only contain type signatures, possibly under keyword instance" _ -> "Unexpected declaration" pretty (InvalidMeasureMutual _) = fsep $ pwords "In a mutual block, either all functions must have the same (or no) termination checking pragma." pretty (UnquoteDefRequiresSignature xs) = fsep $ pwords "Missing type signatures for unquoteDef" ++ map pretty xs pretty (BadMacroDef nd) = fsep $ [text $ declName nd] ++ pwords "are not allowed in macro blocks" pretty (Codata _) = text $ "The codata construction has been removed. " ++ "Use the INFINITY builtin instead." pretty (DeclarationPanic s) = text s instance Pretty DeclarationWarning where pretty (UnknownNamesInFixityDecl xs) = fsep $ pwords "The following names are not declared in the same scope as their syntax or fixity declaration (i.e., either not in scope at all, imported from another module, or declared in a super module):" ++ punctuate comma (map pretty xs) pretty (UnknownFixityInMixfixDecl xs) = fsep $ pwords "The following mixfix names do not have an associated fixity declaration:" ++ punctuate comma (map pretty xs) pretty (UnknownNamesInPolarityPragmas xs) = fsep $ pwords "The following names are not declared in the same scope as their polarity pragmas (they could for instance be out of scope, imported from another module, or declared in a super module):" ++ punctuate comma (map pretty xs) pretty (MissingDefinitions xs) = fsep $ pwords "The following names are declared but not accompanied by a definition:" ++ punctuate comma (map pretty xs) pretty (NotAllowedInMutual r nd) = fsep $ [text nd] ++ pwords "in mutual blocks are not supported. Suggestion: get rid of mutual block by manually ordering declarations" pretty (PolarityPragmasButNotPostulates xs) = fsep $ pwords "Polarity pragmas have been given for the following identifiers which are not postulates:" ++ punctuate comma (map pretty xs) pretty (UselessPrivate _) = fsep $ pwords "Using private here has no effect. Private applies only to declarations that introduce new identifiers into the module, like type signatures and data, record, and module declarations." pretty (UselessAbstract _) = fsep $ pwords "Using abstract here has no effect. Abstract applies to only definitions like data definitions, record type definitions and function clauses." pretty (UselessInstance _) = fsep $ pwords "Using instance here has no effect. Instance applies only to declarations that introduce new identifiers into the module, like type signatures and axioms." pretty (EmptyMutual _) = fsep $ pwords "Empty mutual block." pretty (EmptyAbstract _) = fsep $ pwords "Empty abstract block." pretty (EmptyPrivate _) = fsep $ pwords "Empty private block." pretty (EmptyInstance _) = fsep $ pwords "Empty instance block." pretty (EmptyMacro _) = fsep $ pwords "Empty macro block." pretty (EmptyPostulate _) = fsep $ pwords "Empty postulate block." pretty (EmptyGeneralize _) = fsep $ pwords "Empty variable block." pretty (EmptyPrimitive _) = fsep $ pwords "Empty primitive block." pretty (InvalidTerminationCheckPragma _) = fsep $ pwords "Termination checking pragmas can only precede a function definition or a mutual block (that contains a function definition)." pretty (InvalidNoPositivityCheckPragma _) = fsep $ pwords "NO_POSITIVITY_CHECKING pragmas can only precede a data/record definition or a mutual block (that contains a data/record definition)." pretty (InvalidCatchallPragma _) = fsep $ pwords "The CATCHALL pragma can only precede a function clause." pretty (InvalidNoUniverseCheckPragma _) = fsep $ pwords "NO_UNIVERSE_CHECKING pragmas can only precede a data/record definition." pretty (PragmaNoTerminationCheck _) = fsep $ pwords "Pragma {-# NO_TERMINATION_CHECK #-} has been removed. To skip the termination check, label your definitions either as {-# TERMINATING #-} or {-# NON_TERMINATING #-}." pretty (PragmaCompiled _) = fsep $ pwords "COMPILE pragma not allowed in safe mode." declName :: NiceDeclaration -> String declName Axiom{} = "Postulates" declName NiceField{} = "Fields" declName NiceMutual{} = "Mutual blocks" declName NiceModule{} = "Modules" declName NiceModuleMacro{} = "Modules" declName NiceOpen{} = "Open declarations" declName NiceImport{} = "Import statements" declName NicePragma{} = "Pragmas" declName PrimitiveFunction{} = "Primitive declarations" declName NicePatternSyn{} = "Pattern synonyms" declName NiceGeneralize{} = "Generalized variables" declName NiceUnquoteDecl{} = "Unquoted declarations" declName NiceUnquoteDef{} = "Unquoted definitions" declName NiceRecSig{} = "Records" declName NiceDataSig{} = "Data types" declName NiceFunClause{} = "Functions without a type signature" declName FunSig{} = "Type signatures" declName FunDef{} = "Function definitions" declName NiceRecDef{} = "Records" declName NiceDataDef{} = "Data types" {-------------------------------------------------------------------------- The niceifier --------------------------------------------------------------------------} data InMutual = InMutual -- ^ we are nicifying a mutual block | NotInMutual -- ^ we are nicifying decls not in a mutual block deriving (Eq, Show) -- | The kind of the forward declaration. data DataRecOrFun = DataName { kindPosCheck :: PositivityCheck , kindUniCheck :: UniverseCheck } -- ^ Name of a data type | RecName { kindPosCheck :: PositivityCheck , kindUniCheck :: UniverseCheck } -- ^ Name of a record type | FunName TerminationCheck -- ^ Name of a function. deriving Data -- Ignore pragmas when checking equality instance Eq DataRecOrFun where DataName{} == DataName{} = True RecName{} == RecName{} = True FunName{} == FunName{} = True _ == _ = False instance Show DataRecOrFun where show DataName{} = "data type" show RecName{} = "record type" show FunName{} = "function" isFunName :: DataRecOrFun -> Bool isFunName (FunName{}) = True isFunName _ = False sameKind :: DataRecOrFun -> DataRecOrFun -> Bool sameKind = (==) terminationCheck :: DataRecOrFun -> TerminationCheck terminationCheck (FunName tc) = tc terminationCheck _ = TerminationCheck positivityCheck :: DataRecOrFun -> PositivityCheck positivityCheck (DataName pc _) = pc positivityCheck (RecName pc _) = pc positivityCheck _ = True universeCheck :: DataRecOrFun -> UniverseCheck universeCheck (DataName _ uc) = uc universeCheck (RecName _ uc) = uc universeCheck _ = YesUniverseCheck -- | Check that declarations in a mutual block are consistently -- equipped with MEASURE pragmas, or whether there is a -- NO_TERMINATION_CHECK pragma. combineTermChecks :: Range -> [TerminationCheck] -> Nice TerminationCheck combineTermChecks r tcs = loop tcs where loop :: [TerminationCheck] -> Nice TerminationCheck loop [] = return TerminationCheck loop (tc : tcs) = do let failure r = throwError $ InvalidMeasureMutual r tc' <- loop tcs case (tc, tc') of (TerminationCheck , tc' ) -> return tc' (tc , TerminationCheck ) -> return tc (NonTerminating , NonTerminating ) -> return NonTerminating (NoTerminationCheck , NoTerminationCheck ) -> return NoTerminationCheck (NoTerminationCheck , Terminating ) -> return Terminating (Terminating , NoTerminationCheck ) -> return Terminating (Terminating , Terminating ) -> return Terminating (TerminationMeasure{} , TerminationMeasure{} ) -> return tc (TerminationMeasure r _, NoTerminationCheck ) -> failure r (TerminationMeasure r _, Terminating ) -> failure r (NoTerminationCheck , TerminationMeasure r _) -> failure r (Terminating , TerminationMeasure r _) -> failure r (TerminationMeasure r _, NonTerminating ) -> failure r (NonTerminating , TerminationMeasure r _) -> failure r (NoTerminationCheck , NonTerminating ) -> failure r (Terminating , NonTerminating ) -> failure r (NonTerminating , NoTerminationCheck ) -> failure r (NonTerminating , Terminating ) -> failure r -- | Nicifier monad. -- Preserve the state when throwing an exception. newtype Nice a = Nice { unNice :: ExceptT DeclarationException (State NiceEnv) a } deriving ( Functor, Applicative, Monad , MonadState NiceEnv, MonadError DeclarationException ) -- | Run a Nicifier computation, return result and warnings -- (in chronological order). runNice :: Nice a -> (Either DeclarationException a, NiceWarnings) runNice m = second (reverse . niceWarn) $ runExceptT (unNice m) `runState` initNiceEnv -- | Nicifier state. data NiceEnv = NiceEnv { _loneSigs :: LoneSigs -- ^ Lone type signatures that wait for their definition. , _termChk :: TerminationCheck -- ^ Termination checking pragma waiting for a definition. , _posChk :: PositivityCheck -- ^ Positivity checking pragma waiting for a definition. , _uniChk :: UniverseCheck -- ^ Universe checking pragma waiting for a data/rec signature or definition. , _catchall :: Catchall -- ^ Catchall pragma waiting for a function clause. , niceWarn :: NiceWarnings -- ^ Stack of warnings. Head is last warning. } type LoneSigs = Map Name DataRecOrFun type NiceWarnings = [DeclarationWarning] -- ^ Stack of warnings. Head is last warning. -- | Initial nicifier state. initNiceEnv :: NiceEnv initNiceEnv = NiceEnv { _loneSigs = empty , _termChk = TerminationCheck , _posChk = True , _uniChk = YesUniverseCheck , _catchall = False , niceWarn = [] } -- * Handling the lone signatures, stored to infer mutual blocks. -- | Lens for field '_loneSigs'. loneSigs :: Lens' LoneSigs NiceEnv loneSigs f e = f (_loneSigs e) <&> \ s -> e { _loneSigs = s } -- | Adding a lone signature to the state. addLoneSig :: Name -> DataRecOrFun -> Nice () addLoneSig x k = loneSigs %== \ s -> do let (mr, s') = Map.insertLookupWithKey (\ k new old -> new) x k s case mr of Nothing -> return s' Just{} -> throwError $ DuplicateDefinition x -- | Remove a lone signature from the state. removeLoneSig :: Name -> Nice () removeLoneSig x = loneSigs %= Map.delete x -- | Search for forward type signature. getSig :: Name -> Nice (Maybe DataRecOrFun) getSig x = Map.lookup x <$> use loneSigs -- | Check that no lone signatures are left in the state. noLoneSigs :: Nice Bool noLoneSigs = null <$> use loneSigs -- | Ensure that all forward declarations have been given a definition. checkLoneSigs :: Map Name DataRecOrFun -> Nice () checkLoneSigs xs = do loneSigs .= Map.empty unless (Map.null xs) (niceWarning $ MissingDefinitions $ Map.keys xs) -- | Lens for field '_termChk'. terminationCheckPragma :: Lens' TerminationCheck NiceEnv terminationCheckPragma f e = f (_termChk e) <&> \ s -> e { _termChk = s } withTerminationCheckPragma :: TerminationCheck -> Nice a -> Nice a withTerminationCheckPragma tc f = do tc_old <- use terminationCheckPragma terminationCheckPragma .= tc result <- f terminationCheckPragma .= tc_old return result -- | Lens for field '_posChk'. positivityCheckPragma :: Lens' PositivityCheck NiceEnv positivityCheckPragma f e = f (_posChk e) <&> \ s -> e { _posChk = s } withPositivityCheckPragma :: PositivityCheck -> Nice a -> Nice a withPositivityCheckPragma pc f = do pc_old <- use positivityCheckPragma positivityCheckPragma .= pc result <- f positivityCheckPragma .= pc_old return result -- | Lens for field '_uniChk'. universeCheckPragma :: Lens' UniverseCheck NiceEnv universeCheckPragma f e = f (_uniChk e) <&> \ s -> e { _uniChk = s } withUniverseCheckPragma :: UniverseCheck -> Nice a -> Nice a withUniverseCheckPragma uc f = do uc_old <- use universeCheckPragma universeCheckPragma .= uc result <- f universeCheckPragma .= uc_old return result -- | Get universe check pragma from a data/rec signature. -- Defaults to 'YesUniverseCheck'. getUniverseCheckFromSig :: Name -> Nice UniverseCheck getUniverseCheckFromSig x = maybe YesUniverseCheck universeCheck <$> getSig x -- | Lens for field '_catchall'. catchallPragma :: Lens' Catchall NiceEnv catchallPragma f e = f (_catchall e) <&> \ s -> e { _catchall = s } -- | Get current catchall pragma, and reset it for the next clause. popCatchallPragma :: Nice Catchall popCatchallPragma = do ca <- use catchallPragma catchallPragma .= False return ca withCatchallPragma :: Catchall -> Nice a -> Nice a withCatchallPragma ca f = do ca_old <- use catchallPragma catchallPragma .= ca result <- f catchallPragma .= ca_old return result -- | Add a new warning. niceWarning :: DeclarationWarning -> Nice () niceWarning w = modify $ \ st -> st { niceWarn = w : niceWarn st } data DeclKind = LoneSig DataRecOrFun Name | LoneDefs DataRecOrFun [Name] | OtherDecl deriving (Eq, Show) declKind :: NiceDeclaration -> DeclKind declKind (FunSig _ _ _ _ _ _ tc x _) = LoneSig (FunName tc) x declKind (NiceRecSig _ _ _ pc uc x pars _) = LoneSig (RecName pc uc) x declKind (NiceDataSig _ _ _ pc uc x pars _) = LoneSig (DataName pc uc) x declKind (FunDef r _ abs ins tc x _) = LoneDefs (FunName tc) [x] declKind (NiceDataDef _ _ _ pc uc x pars _) = LoneDefs (DataName pc uc) [x] declKind (NiceRecDef _ _ _ pc uc x _ _ _ pars _)= LoneDefs (RecName pc uc) [x] declKind (NiceUnquoteDef _ _ _ tc xs _) = LoneDefs (FunName tc) xs declKind Axiom{} = OtherDecl declKind NiceField{} = OtherDecl declKind PrimitiveFunction{} = OtherDecl declKind NiceMutual{} = OtherDecl declKind NiceModule{} = OtherDecl declKind NiceModuleMacro{} = OtherDecl declKind NiceOpen{} = OtherDecl declKind NiceImport{} = OtherDecl declKind NicePragma{} = OtherDecl declKind NiceFunClause{} = OtherDecl declKind NicePatternSyn{} = OtherDecl declKind NiceGeneralize{} = OtherDecl declKind NiceUnquoteDecl{} = OtherDecl -- | Replace (Data/Rec/Fun)Sigs with Axioms for postulated names -- The first argument is a list of axioms only. replaceSigs :: Map Name DataRecOrFun -- ^ Lone signatures to be turned into Axioms -> [NiceDeclaration] -- ^ Declarations containing them -> [NiceDeclaration] -- ^ In the output, everything should be defined replaceSigs ps = if Map.null ps then id else \case [] -> __IMPOSSIBLE__ (d:ds) -> case replaceable d of -- If declaration d of x is mentioned in the map of lone signatures then replace -- it with an axiom Just (x, axiom) | (Just{}, ps') <- Map.updateLookupWithKey (\ _ _ -> Nothing) x ps -> axiom : replaceSigs ps' ds _ -> d : replaceSigs ps ds where -- A @replaceable@ declaration is a signature. It has a name and we can make an -- @Axiom@ out of it. replaceable :: NiceDeclaration -> Maybe (Name, NiceDeclaration) replaceable = \case FunSig r acc abst inst _ argi _ x e -> Just (x, Axiom r acc abst inst argi x e) NiceRecSig r acc abst _ _ x pars t -> let e = Generalized $ makePi (lamBindingsToTelescope r pars) t in Just (x, Axiom r acc abst NotInstanceDef defaultArgInfo x e) NiceDataSig r acc abst _ _ x pars t -> let e = Generalized $ makePi (lamBindingsToTelescope r pars) t in Just (x, Axiom r acc abst NotInstanceDef defaultArgInfo x e) _ -> Nothing -- | Main. Fixities (or more precisely syntax declarations) are needed when -- grouping function clauses. niceDeclarations :: Fixities -> [Declaration] -> Nice [NiceDeclaration] niceDeclarations fixs ds = do -- Run the nicifier in an initial environment. But keep the warnings. st <- get put $ initNiceEnv { niceWarn = niceWarn st } nds <- nice ds -- Check that every signature got its definition. ps <- use loneSigs checkLoneSigs ps -- We postulate the missing ones and insert them in place of the corresponding @FunSig@ let ds = replaceSigs ps nds -- Note that loneSigs is ensured to be empty. -- (Important, since inferMutualBlocks also uses loneSigs state). res <- inferMutualBlocks ds -- Restore the old state, but keep the warnings. warns <- gets niceWarn put $ st { niceWarn = warns } return res where inferMutualBlocks :: [NiceDeclaration] -> Nice [NiceDeclaration] inferMutualBlocks [] = return [] inferMutualBlocks (d : ds) = case declKind d of OtherDecl -> (d :) <$> inferMutualBlocks ds LoneDefs{} -> (d :) <$> inferMutualBlocks ds -- Andreas, 2017-10-09, issue #2576: report error in ConcreteToAbstract LoneSig k x -> do addLoneSig x k let tcpc = (pure . terminationCheck) &&& (pure . positivityCheck) $ k ((tcs, pcs), (nds0, ds1)) <- untilAllDefined tcpc ds -- If we still have lone signatures without any accompanying definition, -- we postulate the definition and substitute the axiom for the lone signature ps <- use loneSigs checkLoneSigs ps let ds0 = replaceSigs ps (d : nds0) -- NB: don't forget the LoneSig the block started with! -- We then keep processing the rest of the block tc <- combineTermChecks (getRange d) tcs (NiceMutual (getRange ds0) tc (and pcs) ds0 :) <$> inferMutualBlocks ds1 where untilAllDefined :: ([TerminationCheck], [PositivityCheck]) -> [NiceDeclaration] -> Nice (([TerminationCheck], [PositivityCheck]), ([NiceDeclaration], [NiceDeclaration])) untilAllDefined tcpc@(tc, pc) ds = do done <- noLoneSigs if done then return (tcpc, ([], ds)) else case ds of [] -> return (tcpc, ([], ds)) d : ds -> case declKind d of LoneSig k x -> do addLoneSig x k let tcpc' = (terminationCheck k : tc, positivityCheck k : pc) cons d (untilAllDefined tcpc' ds) LoneDefs k xs -> do mapM_ removeLoneSig xs let tcpc' = (terminationCheck k : tc, positivityCheck k : pc) cons d (untilAllDefined tcpc' ds) OtherDecl -> cons d (untilAllDefined tcpc ds) where -- ASR (26 December 2015): Type annotated version of the @cons@ function. -- cons d = fmap $ -- (id :: (([TerminationCheck], [PositivityCheck]) -> ([TerminationCheck], [PositivityCheck]))) -- *** (d :) -- *** (id :: [NiceDeclaration] -> [NiceDeclaration]) cons d = fmap (id *** (d :) *** id) notMeasure TerminationMeasure{} = False notMeasure _ = True nice :: [Declaration] -> Nice [NiceDeclaration] nice [] = return [] nice ds = do (xs , ys) <- nice1 ds (xs ++) <$> nice ys nice1 :: [Declaration] -> Nice ([NiceDeclaration], [Declaration]) nice1 [] = return ([], []) -- Andreas, 2017-09-16, issue #2759: no longer __IMPOSSIBLE__ nice1 (d:ds) = do let justWarning w = do niceWarning w; nice1 ds case d of (TypeSig info x t) -> do termCheck <- use terminationCheckPragma let r = getRange d -- register x as lone type signature, to recognize clauses later addLoneSig x $ FunName termCheck return ([FunSig r PublicAccess ConcreteDef NotInstanceDef NotMacroDef info termCheck x t] , ds) Generalize r [] -> justWarning $ EmptyGeneralize r Generalize r sigs -> do gs <- forM sigs $ \case sig@(TypeSig info x t) -> do return $ NiceGeneralize (getRange sig) PublicAccess info x t _ -> __IMPOSSIBLE__ return (gs, ds) (FunClause lhs _ _ _) -> do termCheck <- use terminationCheckPragma catchall <- popCatchallPragma xs <- map fst . filter (isFunName . snd) . Map.toList <$> use loneSigs -- for each type signature 'x' waiting for clauses, we try -- if we have some clauses for 'x' case [ (x, (fits, rest)) | x <- xs , let (fits, rest) = -- Anonymous declarations only have 1 clause each! if isNoName x then ([d], ds) else span (couldBeFunClauseOf (Map.lookup x fixs) x) (d : ds) , not (null fits) ] of -- case: clauses match none of the sigs [] -> case lhs of -- Subcase: The lhs is single identifier (potentially anonymous). -- Treat it as a function clause without a type signature. LHS p [] [] | Just x <- isSingleIdentifierP p -> do d <- mkFunDef defaultArgInfo termCheck x Nothing [d] -- fun def without type signature is relevant return (d , ds) -- Subcase: The lhs is a proper pattern. -- This could be a let-pattern binding. Pass it on. -- A missing type signature error might be raise in ConcreteToAbstract _ -> do return ([NiceFunClause (getRange d) PublicAccess ConcreteDef termCheck catchall d] , ds) -- case: clauses match exactly one of the sigs [(x,(fits,rest))] -> do removeLoneSig x ds <- expandEllipsis fits cs <- mkClauses x ds False return ([FunDef (getRange fits) fits ConcreteDef NotInstanceDef termCheck x cs] , rest) -- case: clauses match more than one sigs (ambiguity) l -> throwError $ AmbiguousFunClauses lhs $ reverse $ map fst l -- "ambiguous function clause; cannot assign it uniquely to one type signature" Field{} -> (,ds) <$> niceAxioms FieldBlock [ d ] DataSig r CoInductive _ _ _ -> throwError (Codata r) Data r CoInductive _ _ _ _ -> throwError (Codata r) DataDef r CoInductive _ _ _ -> throwError (Codata r) DataSig r Inductive x tel t -> do pc <- use positivityCheckPragma uc <- use universeCheckPragma addLoneSig x $ DataName pc uc (,) <$> dataOrRec pc uc NiceDataDef NiceDataSig (niceAxioms DataBlock) r x (Just (tel, t)) Nothing <*> return ds Data r Inductive x tel t cs -> do pc <- use positivityCheckPragma -- Andreas, 2018-10-27, issue #3327 -- Propagate {-# NO_UNIVERSE_CHECK #-} pragma from signature to definition. -- Universe check is performed if both the current value of -- 'universeCheckPragma' AND the one from the signature say so. uc <- use universeCheckPragma uc <- if uc == NoUniverseCheck then return uc else getUniverseCheckFromSig x mt <- defaultTypeSig (DataName pc uc) x (Just t) (,) <$> dataOrRec pc uc NiceDataDef NiceDataSig (niceAxioms DataBlock) r x ((tel,) <$> mt) (Just (tel, cs)) <*> return ds DataDef r Inductive x tel cs -> do pc <- use positivityCheckPragma -- Andreas, 2018-10-27, issue #3327 -- Propagate {-# NO_UNIVERSE_CHECK #-} pragma from signature to definition. -- Universe check is performed if both the current value of -- 'universeCheckPragma' AND the one from the signature say so. uc <- use universeCheckPragma uc <- if uc == NoUniverseCheck then return uc else getUniverseCheckFromSig x mt <- defaultTypeSig (DataName pc uc) x Nothing (,) <$> dataOrRec pc uc NiceDataDef NiceDataSig (niceAxioms DataBlock) r x ((tel,) <$> mt) (Just (tel, cs)) <*> return ds RecordSig r x tel t -> do pc <- use positivityCheckPragma uc <- use universeCheckPragma addLoneSig x $ RecName pc uc return ([NiceRecSig r PublicAccess ConcreteDef pc uc x tel t] , ds) Record r x i e c tel t cs -> do pc <- use positivityCheckPragma -- Andreas, 2018-10-27, issue #3327 -- Propagate {-# NO_UNIVERSE_CHECK #-} pragma from signature to definition. -- Universe check is performed if both the current value of -- 'universeCheckPragma' AND the one from the signature say so. uc <- use universeCheckPragma uc <- if uc == NoUniverseCheck then return uc else getUniverseCheckFromSig x mt <- defaultTypeSig (RecName pc uc) x (Just t) (,) <$> dataOrRec pc uc (\ r o a pc uc x tel cs -> NiceRecDef r o a pc uc x i e c tel cs) NiceRecSig return r x ((tel,) <$> mt) (Just (tel, cs)) <*> return ds RecordDef r x i e c tel cs -> do pc <- use positivityCheckPragma -- Andreas, 2018-10-27, issue #3327 -- Propagate {-# NO_UNIVERSE_CHECK #-} pragma from signature to definition. -- Universe check is performed if both the current value of -- 'universeCheckPragma' AND the one from the signature say so. uc <- use universeCheckPragma uc <- if uc == NoUniverseCheck then return uc else getUniverseCheckFromSig x mt <- defaultTypeSig (RecName pc uc) x Nothing (,) <$> dataOrRec pc uc (\ r o a pc uc x tel cs -> NiceRecDef r o a pc uc x i e c tel cs) NiceRecSig return r x ((tel,) <$> mt) (Just (tel, cs)) <*> return ds Mutual r [] -> justWarning $ EmptyMutual r Mutual r ds' -> (,ds) <$> (singleton <$> (mkOldMutual r =<< nice ds')) Abstract r [] -> justWarning $ EmptyAbstract r Abstract r ds' -> (,ds) <$> (abstractBlock r =<< nice ds') Private r UserWritten [] -> justWarning $ EmptyPrivate r Private r o ds' -> (,ds) <$> (privateBlock r o =<< nice ds') InstanceB r [] -> justWarning $ EmptyInstance r InstanceB r ds' -> (,ds) <$> (instanceBlock r =<< nice ds') Macro r [] -> justWarning $ EmptyMacro r Macro r ds' -> (,ds) <$> (macroBlock r =<< nice ds') Postulate r [] -> justWarning $ EmptyPostulate r Postulate _ ds' -> (,ds) <$> niceAxioms PostulateBlock ds' Primitive r [] -> justWarning $ EmptyPrimitive r Primitive _ ds' -> (,ds) <$> (map toPrim <$> niceAxioms PrimitiveBlock ds') Module r x tel ds' -> return $ ([NiceModule r PublicAccess ConcreteDef x tel ds'] , ds) ModuleMacro r x modapp op is -> return $ ([NiceModuleMacro r PublicAccess x modapp op is] , ds) -- Fixity and syntax declarations and polarity pragmas have -- already been processed. Infix _ _ -> return ([], ds) Syntax _ _ -> return ([], ds) PatternSyn r n as p -> do return ([NicePatternSyn r n as p] , ds) Open r x is -> return ([NiceOpen r x is] , ds) Import r x as op is -> return ([NiceImport r x as op is] , ds) UnquoteDecl r xs e -> do tc <- use terminationCheckPragma return ([NiceUnquoteDecl r PublicAccess ConcreteDef NotInstanceDef tc xs e] , ds) UnquoteDef r xs e -> do sigs <- map fst . filter (isFunName . snd) . Map.toList <$> use loneSigs let missing = filter (`notElem` sigs) xs if null missing then do mapM_ removeLoneSig xs return ([NiceUnquoteDef r PublicAccess ConcreteDef TerminationCheck xs e] , ds) else throwError $ UnquoteDefRequiresSignature missing Pragma p -> nicePragma p ds nicePragma :: Pragma -> [Declaration] -> Nice ([NiceDeclaration], [Declaration]) nicePragma (TerminationCheckPragma r (TerminationMeasure _ x)) ds = if canHaveTerminationMeasure ds then withTerminationCheckPragma (TerminationMeasure r x) $ nice1 ds else do niceWarning $ InvalidTerminationCheckPragma r nice1 ds nicePragma (TerminationCheckPragma r NoTerminationCheck) ds = do -- This PRAGMA has been deprecated in favour of (NON_)TERMINATING -- We warn the user about it and then assume the function is NON_TERMINATING. niceWarning $ PragmaNoTerminationCheck r nicePragma (TerminationCheckPragma r NonTerminating) ds nicePragma (TerminationCheckPragma r tc) ds = if canHaveTerminationCheckPragma ds then withTerminationCheckPragma tc $ nice1 ds else do niceWarning $ InvalidTerminationCheckPragma r nice1 ds nicePragma (CatchallPragma r) ds = if canHaveCatchallPragma ds then withCatchallPragma True $ nice1 ds else do niceWarning $ InvalidCatchallPragma r nice1 ds nicePragma (NoPositivityCheckPragma r) ds = if canHaveNoPositivityCheckPragma ds then withPositivityCheckPragma False $ nice1 ds else do niceWarning $ InvalidNoPositivityCheckPragma r nice1 ds nicePragma (NoUniverseCheckPragma r) ds = if canHaveNoUniverseCheckPragma ds then withUniverseCheckPragma NoUniverseCheck $ nice1 ds else do niceWarning $ InvalidNoUniverseCheckPragma r nice1 ds nicePragma p@CompilePragma{} ds = do niceWarning $ PragmaCompiled (getRange p) return ([NicePragma (getRange p) p], ds) nicePragma (PolarityPragma{}) ds = return ([], ds) nicePragma (BuiltinPragma r str qn@(QName x)) ds = do return ([NicePragma r (BuiltinPragma r str qn)], ds) nicePragma p ds = return ([NicePragma (getRange p) p], ds) canHaveTerminationMeasure :: [Declaration] -> Bool canHaveTerminationMeasure [] = False canHaveTerminationMeasure (d:ds) = case d of TypeSig{} -> True (Pragma p) | isAttachedPragma p -> canHaveTerminationMeasure ds _ -> False canHaveTerminationCheckPragma :: [Declaration] -> Bool canHaveTerminationCheckPragma [] = False canHaveTerminationCheckPragma (d:ds) = case d of Mutual _ ds -> any (canHaveTerminationCheckPragma . singleton) ds TypeSig{} -> True FunClause{} -> True UnquoteDecl{} -> True (Pragma p) | isAttachedPragma p -> canHaveTerminationCheckPragma ds _ -> False canHaveCatchallPragma :: [Declaration] -> Bool canHaveCatchallPragma [] = False canHaveCatchallPragma (d:ds) = case d of FunClause{} -> True (Pragma p) | isAttachedPragma p -> canHaveCatchallPragma ds _ -> False canHaveNoPositivityCheckPragma :: [Declaration] -> Bool canHaveNoPositivityCheckPragma [] = False canHaveNoPositivityCheckPragma (d:ds) = case d of Mutual _ ds -> any (canHaveNoPositivityCheckPragma . singleton) ds Data _ Inductive _ _ _ _ -> True DataSig _ Inductive _ _ _ -> True DataDef _ Inductive _ _ _ -> True Record{} -> True RecordSig{} -> True RecordDef{} -> True Pragma p | isAttachedPragma p -> canHaveNoPositivityCheckPragma ds _ -> False canHaveNoUniverseCheckPragma :: [Declaration] -> Bool canHaveNoUniverseCheckPragma [] = False canHaveNoUniverseCheckPragma (d:ds) = case d of Data _ Inductive _ _ _ _ -> True DataSig _ Inductive _ _ _ -> True DataDef _ Inductive _ _ _ -> True Record{} -> True RecordSig{} -> True RecordDef{} -> True Pragma p | isAttachedPragma p -> canHaveNoPositivityCheckPragma ds _ -> False -- Pragma that attaches to the following declaration. isAttachedPragma :: Pragma -> Bool isAttachedPragma p = case p of TerminationCheckPragma{} -> True CatchallPragma{} -> True NoPositivityCheckPragma{} -> True NoUniverseCheckPragma{} -> True _ -> False -- We could add a default type signature here, but at the moment we can't -- infer the type of a record or datatype, so better to just fail here. defaultTypeSig :: DataRecOrFun -> Name -> Maybe Expr -> Nice (Maybe Expr) defaultTypeSig k x t@Just{} = return t defaultTypeSig k x Nothing = do caseMaybeM (getSig x) (return Nothing) $ \ k' -> do unless (sameKind k k') $ throwError $ WrongDefinition x k' k Nothing <$ removeLoneSig x dataOrRec :: forall a decl . PositivityCheck -> UniverseCheck -> (Range -> Origin -> IsAbstract -> PositivityCheck -> UniverseCheck -> Name -> [LamBinding] -> [decl] -> NiceDeclaration) -- ^ Construct definition. -> (Range -> Access -> IsAbstract -> PositivityCheck -> UniverseCheck -> Name -> [LamBinding] -> Expr -> NiceDeclaration) -- ^ Construct signature. -> ([a] -> Nice [decl]) -- ^ Constructor checking. -> Range -> Name -- ^ Data/record type name. -> Maybe ([LamBinding], Expr) -- ^ Parameters and type. If not @Nothing@ a signature is created. -> Maybe ([LamBinding], [a]) -- ^ Parameters and constructors. If not @Nothing@, a definition body is created. -> Nice [NiceDeclaration] dataOrRec pc uc mkDef mkSig niceD r x mt mcs = do mds <- Trav.forM mcs $ \ (tel, cs) -> (tel,) <$> niceD cs -- We set origin to UserWritten if the user split the data/rec herself, -- and to Inserted if the she wrote a single declaration that we're -- splitting up here. We distinguish these because the scoping rules for -- generalizable variables differ in these cases. let o | isJust mt && isJust mcs = Inserted | otherwise = UserWritten return $ catMaybes $ [ mt <&> \ (tel, t) -> mkSig (fuseRange x t) PublicAccess ConcreteDef pc uc x tel t , mds <&> \ (tel, ds) -> mkDef r o ConcreteDef pc uc x (caseMaybe mt tel $ const $ concatMap dropTypeAndModality tel) ds -- If a type is given (mt /= Nothing), we have to delete the types in @tel@ -- for the data definition, lest we duplicate them. And also drop modalities (#1886). ] where -- | Drop type annotations and lets from bindings. dropTypeAndModality :: LamBinding -> [LamBinding] dropTypeAndModality (DomainFull (TBind _ xs _)) = map (DomainFree . setModality defaultModality) xs dropTypeAndModality (DomainFull TLet{}) = [] dropTypeAndModality (DomainFree x) = [DomainFree $ setModality defaultModality x] -- Translate axioms niceAxioms :: KindOfBlock -> [TypeSignatureOrInstanceBlock] -> Nice [NiceDeclaration] niceAxioms b ds = liftM List.concat $ mapM (niceAxiom b) ds niceAxiom :: KindOfBlock -> TypeSignatureOrInstanceBlock -> Nice [NiceDeclaration] niceAxiom b d = case d of TypeSig rel x t -> do return [ Axiom (getRange d) PublicAccess ConcreteDef NotInstanceDef rel x t ] Field i x argt | b == FieldBlock -> do return [ NiceField (getRange d) PublicAccess ConcreteDef i x argt ] InstanceB r decls -> do instanceBlock r =<< niceAxioms InstanceBlock decls Pragma p@(RewritePragma r _) -> do return [ NicePragma r p ] _ -> throwError $ WrongContentBlock b $ getRange d toPrim :: NiceDeclaration -> NiceDeclaration toPrim (Axiom r p a i rel x t) = PrimitiveFunction r p a x t toPrim _ = __IMPOSSIBLE__ -- Create a function definition. mkFunDef info termCheck x mt ds0 = do ds <- expandEllipsis ds0 cs <- mkClauses x ds False return [ FunSig (fuseRange x t) PublicAccess ConcreteDef NotInstanceDef NotMacroDef info termCheck x t , FunDef (getRange ds0) ds0 ConcreteDef NotInstanceDef termCheck x cs ] where t = case mt of Just t -> t Nothing -> underscore (getRange x) underscore r = Underscore r Nothing expandEllipsis :: [Declaration] -> Nice [Declaration] expandEllipsis [] = return [] expandEllipsis (d@(FunClause lhs@(LHS p _ _) _ _ _) : ds) | hasEllipsis p = (d :) <$> expandEllipsis ds | otherwise = (d :) <$> expand (killRange p) ds where expand :: Pattern -> [Declaration] -> Nice [Declaration] expand _ [] = return [] expand p (d : ds) = do case d of Pragma (CatchallPragma _) -> do (d :) <$> expand p ds FunClause (LHS p0 eqs es) rhs wh ca -> do case hasEllipsis' p0 of ManyHoles -> throwError $ MultipleEllipses p0 OneHole cxt -> do -- Replace the ellipsis by @p@. let p1 = cxt p let d' = FunClause (LHS p1 eqs es) rhs wh ca -- If we have with-expressions (es /= []) then the following -- ellipses also get the additional patterns in p0. (d' :) <$> expand (if null es then p else killRange p1) ds ZeroHoles _ -> do -- We can have ellipses after a fun clause without. -- They refer to the last clause that introduced new with-expressions. -- Same here: If we have new with-expressions, the next ellipses will -- refer to us. -- Andreas, Jesper, 2017-05-13, issue #2578 -- Need to update the range also on the next with-patterns. (d :) <$> expand (if null es then p else killRange p0) ds _ -> __IMPOSSIBLE__ expandEllipsis _ = __IMPOSSIBLE__ -- Turn function clauses into nice function clauses. mkClauses :: Name -> [Declaration] -> Catchall -> Nice [Clause] mkClauses _ [] _ = return [] mkClauses x (Pragma (CatchallPragma r) : cs) True = do niceWarning $ InvalidCatchallPragma r mkClauses x cs True mkClauses x (Pragma (CatchallPragma r) : cs) False = do when (null cs) $ niceWarning $ InvalidCatchallPragma r mkClauses x cs True mkClauses x (FunClause lhs rhs wh ca : cs) catchall | null (lhsWithExpr lhs) || hasEllipsis lhs = (Clause x (ca || catchall) lhs rhs wh [] :) <$> mkClauses x cs False -- Will result in an error later. mkClauses x (FunClause lhs rhs wh ca : cs) catchall = do when (null withClauses) $ throwError $ MissingWithClauses x lhs wcs <- mkClauses x withClauses False (Clause x (ca || catchall) lhs rhs wh wcs :) <$> mkClauses x cs' False where (withClauses, cs') = subClauses cs -- A clause is a subclause if the number of with-patterns is -- greater or equal to the current number of with-patterns plus the -- number of with arguments. numWith = numberOfWithPatterns p + length es where LHS p _ es = lhs subClauses :: [Declaration] -> ([Declaration],[Declaration]) subClauses (c@(FunClause (LHS p0 _ _) _ _ _) : cs) | isEllipsis p0 || numberOfWithPatterns p0 >= numWith = mapFst (c:) (subClauses cs) | otherwise = ([], c:cs) subClauses (c@(Pragma (CatchallPragma r)) : cs) = case subClauses cs of ([], cs') -> ([], c:cs') (cs, cs') -> (c:cs, cs') subClauses [] = ([],[]) subClauses _ = __IMPOSSIBLE__ mkClauses _ _ _ = __IMPOSSIBLE__ -- for finding clauses for a type sig in mutual blocks couldBeFunClauseOf :: Maybe Fixity' -> Name -> Declaration -> Bool couldBeFunClauseOf mFixity x (Pragma (CatchallPragma{})) = True couldBeFunClauseOf mFixity x (FunClause (LHS p _ _) _ _ _) = hasEllipsis p || let pns = patternNames p xStrings = nameStringParts x patStrings = concatMap nameStringParts pns in -- trace ("x = " ++ prettyShow x) $ -- trace ("pns = " ++ show pns) $ -- trace ("xStrings = " ++ show xStrings) $ -- trace ("patStrings = " ++ show patStrings) $ -- trace ("mFixity = " ++ show mFixity) $ case (headMaybe pns, mFixity) of -- first identifier in the patterns is the fun.symbol? (Just y, _) | x == y -> True -- trace ("couldBe since y = " ++ prettyShow y) $ True -- are the parts of x contained in p _ | xStrings `isSublistOf` patStrings -> True -- trace ("couldBe since isSublistOf") $ True -- looking for a mixfix fun.symb (_, Just fix) -> -- also matches in case of a postfix let notStrings = stringParts (theNotation fix) in -- trace ("notStrings = " ++ show notStrings) $ -- trace ("patStrings = " ++ show patStrings) $ (not $ null notStrings) && (notStrings `isSublistOf` patStrings) -- not a notation, not first id: give up _ -> False -- trace ("couldBe not (case default)") $ False couldBeFunClauseOf _ _ _ = False -- trace ("couldBe not (fun default)") $ False -- | Turn an old-style mutual block into a new style mutual block -- by pushing the definitions to the end. mkOldMutual :: Range -- ^ Range of the whole @mutual@ block. -> [NiceDeclaration] -- ^ Declarations inside the block. -> Nice NiceDeclaration -- ^ Returns a 'NiceMutual'. mkOldMutual r ds' = do -- Postulate the missing definitions let ps = Map.fromList loneNames checkLoneSigs ps let ds = replaceSigs ps ds' -- -- Remove the declarations that aren't allowed in old style mutual blocks -- ds <- fmap catMaybes $ forM ds $ \ d -> let success = pure (Just d) in case d of -- -- Andreas, 2013-11-23 allow postulates in mutual blocks -- Axiom{} -> success -- -- Andreas, 2017-10-09, issue #2576, raise error about missing type signature -- -- in ConcreteToAbstract rather than here. -- NiceFunClause{} -> success -- -- Andreas, 2018-05-11, issue #3052, allow pat.syn.s in mutual blocks -- NicePatternSyn{} -> success -- -- Otherwise, only categorized signatures and definitions are allowed: -- -- Data, Record, Fun -- _ -> if (declKind d /= OtherDecl) then success -- else Nothing <$ niceWarning (NotAllowedInMutual (getRange d) $ declName d) -- Sort the declarations in the mutual block. -- Declarations of names go to the top. (Includes module definitions.) -- Definitions of names go to the bottom. -- Some declarations are forbidden, as their positioning could confuse -- the user. (top, bottom, invalid) <- forEither3M ds $ \ d -> do let top = return (In1 d) bottom = return (In2 d) invalid s = In3 d <$ do niceWarning $ NotAllowedInMutual (getRange d) s case d of -- Andreas, 2013-11-23 allow postulates in mutual blocks Axiom{} -> top NiceField{} -> top PrimitiveFunction{} -> top -- Nested mutual blocks should have been flattened by now. NiceMutual{} -> __IMPOSSIBLE__ -- Andreas, 2018-10-29, issue #3246 -- We could allow modules (top), but this is potentially confusing. NiceModule{} -> invalid "Module definitions" NiceModuleMacro{} -> top NiceOpen{} -> top NiceImport{} -> top NiceRecSig{} -> top NiceDataSig{} -> top -- Andreas, 2017-10-09, issue #2576, raise error about missing type signature -- in ConcreteToAbstract rather than here. NiceFunClause{} -> bottom FunSig{} -> top FunDef{} -> bottom NiceDataDef{} -> bottom NiceRecDef{} -> bottom -- Andreas, 2018-05-11, issue #3052, allow pat.syn.s in mutual blocks -- Andreas, 2018-10-29: We shift pattern synonyms to the bottom -- since they might refer to constructors defined in a data types -- just above them. NicePatternSyn{} -> bottom NiceGeneralize{} -> top NiceUnquoteDecl{} -> top NiceUnquoteDef{} -> bottom NicePragma r pragma -> case pragma of OptionsPragma{} -> top -- error thrown in the type checker -- Some builtins require a definition, and they affect type checking -- Thus, we do not handle BUILTINs in mutual blocks (at least for now). BuiltinPragma{} -> invalid "BUILTIN pragmas" -- The REWRITE pragma behaves differently before or after the def. -- and affects type checking. Thus, we refuse it here. RewritePragma{} -> invalid "REWRITE pragmas" -- Compiler pragmas are not needed for type checking, thus, -- can go to the bottom. ForeignPragma{} -> bottom CompilePragma{} -> bottom StaticPragma{} -> bottom InlinePragma{} -> bottom ImpossiblePragma{} -> top -- error thrown in scope checker EtaPragma{} -> bottom -- needs record definition WarningOnUsage{} -> top InjectivePragma{} -> top -- only needs name, not definition DisplayPragma{} -> top -- only for printing -- The attached pragmas have already been handled at this point. CatchallPragma{} -> __IMPOSSIBLE__ TerminationCheckPragma{} -> __IMPOSSIBLE__ NoPositivityCheckPragma{} -> __IMPOSSIBLE__ PolarityPragma{} -> __IMPOSSIBLE__ NoUniverseCheckPragma{} -> __IMPOSSIBLE__ -- -- Pull type signatures to the top -- let (sigs, other) = List.partition isTypeSig ds -- -- Push definitions to the bottom -- let (other, defs) = flip List.partition ds $ \case -- FunDef{} -> False -- NiceDataDef{} -> False -- NiceRecDef{} -> False -- NiceFunClause{} -> False -- NicePatternSyn{} -> False -- NiceUnquoteDef{} -> False -- _ -> True -- Compute termination checking flag for mutual block tc0 <- use terminationCheckPragma let tcs = map termCheck ds tc <- combineTermChecks r (tc0:tcs) -- Compute positivity checking flag for mutual block pc0 <- use positivityCheckPragma let pc :: PositivityCheck pc = pc0 && all positivityCheckOldMutual ds return $ NiceMutual r tc pc $ top ++ bottom -- return $ NiceMutual r tc pc $ other ++ defs -- return $ NiceMutual r tc pc $ sigs ++ other where -- isTypeSig Axiom{} = True -- isTypeSig d | LoneSig{} <- declKind d = True -- isTypeSig _ = False sigNames = [ (x, k) | LoneSig k x <- map declKind ds' ] defNames = [ (x, k) | LoneDefs k xs <- map declKind ds', x <- xs ] -- compute the set difference with equality just on names loneNames = [ (x, k) | (x, k) <- sigNames, List.all ((x /=) . fst) defNames ] -- Andreas, 2013-02-28 (issue 804): -- do not termination check a mutual block if any of its -- inner declarations comes with a {-# NO_TERMINATION_CHECK #-} termCheck (FunSig _ _ _ _ _ _ tc _ _) = tc termCheck (FunDef _ _ _ _ tc _ _) = tc -- ASR (28 December 2015): Is this equation necessary? termCheck (NiceMutual _ tc _ _) = __IMPOSSIBLE__ termCheck (NiceUnquoteDecl _ _ _ _ tc _ _) = tc termCheck (NiceUnquoteDef _ _ _ tc _ _) = tc termCheck Axiom{} = TerminationCheck termCheck NiceField{} = TerminationCheck termCheck PrimitiveFunction{} = TerminationCheck termCheck NiceModule{} = TerminationCheck termCheck NiceModuleMacro{} = TerminationCheck termCheck NiceOpen{} = TerminationCheck termCheck NiceImport{} = TerminationCheck termCheck NicePragma{} = TerminationCheck termCheck NiceRecSig{} = TerminationCheck termCheck NiceDataSig{} = TerminationCheck termCheck NiceFunClause{} = TerminationCheck termCheck NiceDataDef{} = TerminationCheck termCheck NiceRecDef{} = TerminationCheck termCheck NicePatternSyn{} = TerminationCheck termCheck NiceGeneralize{} = TerminationCheck -- ASR (26 December 2015): Do not positivity check a mutual -- block if any of its inner declarations comes with a -- NO_POSITIVITY_CHECK pragma. See Issue 1614. positivityCheckOldMutual :: NiceDeclaration -> PositivityCheck positivityCheckOldMutual (NiceDataDef _ _ _ pc _ _ _ _) = pc positivityCheckOldMutual (NiceDataSig _ _ _ pc _ _ _ _) = pc positivityCheckOldMutual (NiceMutual _ _ pc _) = __IMPOSSIBLE__ positivityCheckOldMutual (NiceRecSig _ _ _ pc _ _ _ _) = pc positivityCheckOldMutual (NiceRecDef _ _ _ pc _ _ _ _ _ _ _)= pc positivityCheckOldMutual _ = True -- A mutual block cannot have a measure, -- but it can skip termination check. abstractBlock _ [] = return [] abstractBlock r ds = do let (ds', anyChange) = runChange $ mkAbstract ds inherited = r == noRange if anyChange then return ds' else do -- hack to avoid failing on inherited abstract blocks in where clauses unless inherited $ niceWarning $ UselessAbstract r return ds -- no change! privateBlock _ _ [] = return [] privateBlock r o ds = do let (ds', anyChange) = runChange $ mkPrivate o ds if anyChange then return ds' else do when (o == UserWritten) $ niceWarning $ UselessPrivate r return ds -- no change! instanceBlock _ [] = return [] instanceBlock r ds = do let (ds', anyChange) = runChange $ mapM mkInstance ds if anyChange then return ds' else do niceWarning $ UselessInstance r return ds -- no change! -- Make a declaration eligible for instance search. mkInstance :: Updater NiceDeclaration mkInstance d = case d of Axiom r p a i rel x e -> (\ i -> Axiom r p a i rel x e) <$> setInstance i FunSig r p a i m rel tc x e -> (\ i -> FunSig r p a i m rel tc x e) <$> setInstance i NiceUnquoteDecl r p a i tc x e -> (\ i -> NiceUnquoteDecl r p a i tc x e) <$> setInstance i NiceMutual r termCheck pc ds -> NiceMutual r termCheck pc <$> mapM mkInstance ds NiceFunClause{} -> return d FunDef r ds a i tc x cs -> (\ i -> FunDef r ds a i tc x cs) <$> setInstance i NiceField{} -> return d -- Field instance are handled by the parser PrimitiveFunction{} -> return d NiceUnquoteDef{} -> return d NiceRecSig{} -> return d NiceDataSig{} -> return d NiceModuleMacro{} -> return d NiceModule{} -> return d NicePragma{} -> return d NiceOpen{} -> return d NiceImport{} -> return d NiceDataDef{} -> return d NiceRecDef{} -> return d NicePatternSyn{} -> return d NiceGeneralize{} -> return d setInstance :: Updater IsInstance setInstance i = case i of InstanceDef -> return i _ -> dirty $ InstanceDef macroBlock r ds = mapM mkMacro ds mkMacro :: NiceDeclaration -> Nice NiceDeclaration mkMacro d = case d of FunSig r p a i _ rel tc x e -> return $ FunSig r p a i MacroDef rel tc x e FunDef{} -> return d _ -> throwError (BadMacroDef d) -- | Make a declaration abstract. -- -- Mark computation as 'dirty' if there was a declaration that could be made abstract. -- If no abstraction is taking place, we want to complain about 'UselessAbstract'. -- -- Alternatively, we could only flag 'dirty' if a non-abstract thing was abstracted. -- Then, nested @abstract@s would sometimes also be complained about. class MakeAbstract a where mkAbstract :: Updater a default mkAbstract :: (Traversable f, MakeAbstract a', a ~ f a') => Updater a mkAbstract = traverse mkAbstract instance MakeAbstract a => MakeAbstract [a] where -- Default definition kicks in here! -- But note that we still have to declare the instance! -- Leads to overlap with 'WhereClause': -- instance (Traversable f, MakeAbstract a) => MakeAbstract (f a) where -- mkAbstract = traverse mkAbstract instance MakeAbstract IsAbstract where mkAbstract a = case a of AbstractDef -> return a ConcreteDef -> dirty $ AbstractDef instance MakeAbstract NiceDeclaration where mkAbstract d = case d of NiceMutual r termCheck pc ds -> NiceMutual r termCheck pc <$> mkAbstract ds FunDef r ds a i tc x cs -> (\ a -> FunDef r ds a i tc x) <$> mkAbstract a <*> mkAbstract cs NiceDataDef r o a pc uc x ps cs -> (\ a -> NiceDataDef r o a pc uc x ps) <$> mkAbstract a <*> mkAbstract cs NiceRecDef r o a pc uc x i e c ps cs -> (\ a -> NiceRecDef r o a pc uc x i e c ps) <$> mkAbstract a <*> return cs NiceFunClause r p a termCheck catchall d -> (\ a -> NiceFunClause r p a termCheck catchall d) <$> mkAbstract a -- The following declarations have an @InAbstract@ field -- but are not really definitions, so we do count them into -- the declarations which can be made abstract -- (thus, do not notify progress with @dirty@). Axiom r p a i rel x e -> return $ Axiom r p AbstractDef i rel x e FunSig r p a i m rel tc x e -> return $ FunSig r p AbstractDef i m rel tc x e NiceRecSig r p a pc uc x ls t -> return $ NiceRecSig r p AbstractDef pc uc x ls t NiceDataSig r p a pc uc x ls t -> return $ NiceDataSig r p AbstractDef pc uc x ls t NiceField r p _ i x e -> return $ NiceField r p AbstractDef i x e PrimitiveFunction r p _ x e -> return $ PrimitiveFunction r p AbstractDef x e -- Andreas, 2016-07-17 it does have effect on unquoted defs. -- Need to set updater state to dirty! NiceUnquoteDecl r p _ i t x e -> dirty $ NiceUnquoteDecl r p AbstractDef i t x e NiceUnquoteDef r p _ t x e -> dirty $ NiceUnquoteDef r p AbstractDef t x e NiceModule{} -> return d NiceModuleMacro{} -> return d NicePragma{} -> return d NiceOpen{} -> return d NiceImport{} -> return d NicePatternSyn{} -> return d NiceGeneralize{} -> return d instance MakeAbstract Clause where mkAbstract (Clause x catchall lhs rhs wh with) = do Clause x catchall lhs rhs <$> mkAbstract wh <*> mkAbstract with -- | Contents of a @where@ clause are abstract if the parent is. instance MakeAbstract WhereClause where mkAbstract NoWhere = return $ NoWhere mkAbstract (AnyWhere ds) = dirty $ AnyWhere [Abstract noRange ds] mkAbstract (SomeWhere m a ds) = dirty $ SomeWhere m a [Abstract noRange ds] -- | Make a declaration private. -- -- Andreas, 2012-11-17: -- Mark computation as 'dirty' if there was a declaration that could be privatized. -- If no privatization is taking place, we want to complain about 'UselessPrivate'. -- -- Alternatively, we could only flag 'dirty' if a non-private thing was privatized. -- Then, nested @private@s would sometimes also be complained about. class MakePrivate a where mkPrivate :: Origin -> Updater a default mkPrivate :: (Traversable f, MakePrivate a', a ~ f a') => Origin -> Updater a mkPrivate o = traverse $ mkPrivate o instance MakePrivate a => MakePrivate [a] where -- Default definition kicks in here! -- But note that we still have to declare the instance! -- Leads to overlap with 'WhereClause': -- instance (Traversable f, MakePrivate a) => MakePrivate (f a) where -- mkPrivate = traverse mkPrivate instance MakePrivate Access where mkPrivate o p = case p of PrivateAccess{} -> return p -- OR? return $ PrivateAccess o _ -> dirty $ PrivateAccess o instance MakePrivate NiceDeclaration where mkPrivate o d = case d of Axiom r p a i rel x e -> (\ p -> Axiom r p a i rel x e) <$> mkPrivate o p NiceField r p a i x e -> (\ p -> NiceField r p a i x e) <$> mkPrivate o p PrimitiveFunction r p a x e -> (\ p -> PrimitiveFunction r p a x e) <$> mkPrivate o p NiceMutual r termCheck pc ds -> (\ p -> NiceMutual r termCheck pc p) <$> mkPrivate o ds NiceModule r p a x tel ds -> (\ p -> NiceModule r p a x tel ds) <$> mkPrivate o p NiceModuleMacro r p x ma op is -> (\ p -> NiceModuleMacro r p x ma op is) <$> mkPrivate o p FunSig r p a i m rel tc x e -> (\ p -> FunSig r p a i m rel tc x e) <$> mkPrivate o p NiceRecSig r p a pc uc x ls t -> (\ p -> NiceRecSig r p a pc uc x ls t) <$> mkPrivate o p NiceDataSig r p a pc uc x ls t -> (\ p -> NiceDataSig r p a pc uc x ls t) <$> mkPrivate o p NiceFunClause r p a termCheck catchall d -> (\ p -> NiceFunClause r p a termCheck catchall d) <$> mkPrivate o p NiceUnquoteDecl r p a i t x e -> (\ p -> NiceUnquoteDecl r p a i t x e) <$> mkPrivate o p NiceUnquoteDef r p a t x e -> (\ p -> NiceUnquoteDef r p a t x e) <$> mkPrivate o p NiceGeneralize r p i x t -> (\ p -> NiceGeneralize r p i x t) <$> mkPrivate o p NicePragma _ _ -> return $ d NiceOpen _ _ _ -> return $ d NiceImport _ _ _ _ _ -> return $ d -- Andreas, 2016-07-08, issue #2089 -- we need to propagate 'private' to the named where modules FunDef r ds a i tc x cls -> FunDef r ds a i tc x <$> mkPrivate o cls NiceDataDef{} -> return $ d NiceRecDef{} -> return $ d NicePatternSyn _ _ _ _ -> return $ d instance MakePrivate Clause where mkPrivate o (Clause x catchall lhs rhs wh with) = do Clause x catchall lhs rhs <$> mkPrivate o wh <*> mkPrivate o with instance MakePrivate WhereClause where mkPrivate o NoWhere = return $ NoWhere -- @where@-declarations are protected behind an anonymous module, -- thus, they are effectively private by default. mkPrivate o (AnyWhere ds) = return $ AnyWhere ds -- Andreas, 2016-07-08 -- A @where@-module is private if the parent function is private. -- The contents of this module are not private, unless declared so! -- Thus, we do not recurse into the @ds@ (could not anyway). mkPrivate o (SomeWhere m a ds) = mkPrivate o a <&> \ a' -> SomeWhere m a' ds -- The following function is (at the time of writing) only used three -- times: for building Lets, and for printing error messages. -- | (Approximately) convert a 'NiceDeclaration' back to a list of -- 'Declaration's. notSoNiceDeclarations :: NiceDeclaration -> [Declaration] notSoNiceDeclarations d = case d of Axiom _ _ _ i rel x e -> inst i [TypeSig rel x e] NiceField _ _ _ i x argt -> [Field i x argt] PrimitiveFunction r _ _ x e -> [Primitive r [TypeSig defaultArgInfo x e]] NiceMutual r _ _ ds -> [Mutual r $ concatMap notSoNiceDeclarations ds] NiceModule r _ _ x tel ds -> [Module r x tel ds] NiceModuleMacro r _ x ma o dir -> [ModuleMacro r x ma o dir] NiceOpen r x dir -> [Open r x dir] NiceImport r x as o dir -> [Import r x as o dir] NicePragma _ p -> [Pragma p] NiceRecSig r _ _ _ _ x bs e -> [RecordSig r x bs e] NiceDataSig r _ _ _ _ x bs e -> [DataSig r Inductive x bs e] NiceFunClause _ _ _ _ _ d -> [d] FunSig _ _ _ i _ rel tc x e -> inst i [TypeSig rel x e] FunDef _r ds _ _ _ _ _ -> ds NiceDataDef r _ _ _ _ x bs cs -> [DataDef r Inductive x bs $ concatMap notSoNiceDeclarations cs] NiceRecDef r _ _ _ _ x i e c bs ds -> [RecordDef r x i e c bs ds] NicePatternSyn r n as p -> [PatternSyn r n as p] NiceGeneralize r _ i n e -> [Generalize r [TypeSig i n e]] NiceUnquoteDecl r _ _ i _ x e -> inst i [UnquoteDecl r x e] NiceUnquoteDef r _ _ _ x e -> [UnquoteDef r x e] where inst InstanceDef ds = [InstanceB (getRange ds) ds] inst NotInstanceDef ds = ds -- | Has the 'NiceDeclaration' a field of type 'IsAbstract'? niceHasAbstract :: NiceDeclaration -> Maybe IsAbstract niceHasAbstract d = case d of Axiom{} -> Nothing NiceField _ _ a _ _ _ -> Just a PrimitiveFunction _ _ a _ _ -> Just a NiceMutual{} -> Nothing NiceModule _ _ a _ _ _ -> Just a NiceModuleMacro{} -> Nothing NiceOpen{} -> Nothing NiceImport{} -> Nothing NicePragma{} -> Nothing NiceRecSig{} -> Nothing NiceDataSig{} -> Nothing NiceFunClause _ _ a _ _ _ -> Just a FunSig{} -> Nothing FunDef _ _ a _ _ _ _ -> Just a NiceDataDef _ _ a _ _ _ _ _ -> Just a NiceRecDef _ _ a _ _ _ _ _ _ _ _ -> Just a NicePatternSyn{} -> Nothing NiceGeneralize{} -> Nothing NiceUnquoteDecl _ _ a _ _ _ _ -> Just a NiceUnquoteDef _ _ a _ _ _ -> Just a