
Asynchronous Reactive Programming with
Modal Types in Haskell

Patrick Bahr, Emil Houlborg, and Gregers Thomas Skat Rørdam

IT University of Copenhagen

Abstract. The implementation of asynchronous systems, in particular
graphical user interfaces, is traditionally based on an imperative model
that uses shared mutable state and callbacks. While efficient, the com-
bination of shared mutable state and callbacks is notoriously difficult
to reason about and prone to errors. Functional reactive programming
(FRP) provides an elegant alternative and recent theoretical advances in
modal FRP suggest that it can be efficient as well.
In this paper, we present Async Rattus, an FRP language embedded in
Haskell. The distinguishing feature of Async Rattus is a modal type con-
structor that enables the composition of asynchronous subsystems by
keeping track of each subsystem’s clock at compile time which in turn
enables dynamically changing clocks at runtime. The central component
of our implementation is a Haskell compiler plugin that, among other as-
pects, checks the stricter typing rules of Async Rattus and infers compile-
time clocks. This is the first implementation of an asynchronous modal
FRP language. By embedding the language in Haskell we can exploit
the existing language and library ecosystem as well as rapidly experi-
ment with new language features and library design. We hope that such
experimentation with Async Rattus sparks further research in modal FRP
and its applications.

1 Introduction

Functional reactive programming (FRP) [14] provides an elegant, high-level pro-
gramming paradigm for reactive systems. This is achieved by making time-
varying values (also called signals or behaviours) first-class objects that are easily
composable. For example, assuming a type Sig a that describes signals of type
a, an FRP library may provide a function map :: (a → b)→ Sig a → Sig b that
allows us to manipulate a given signal by applying a function to it.

Haskell has a rich ecosystem of expressive and flexible FRP libraries [1, 7,
8, 15, 19, 22, 30–32, 35]. Devising such FRP libraries is challenging as its API
must be carefully designed to ensure that reactive programs are causal and are
not prone to space leaks. A reactive program is causal if the value of any output
signal at any time t only depends on the value of input signals at times t or
earlier. Due to the high-level nature of FRP programs, they can suffer from
space leaks, i.e. they keep data in memory for too long. Haskell FRP libraries
tackle these issues by providing a set of abstract types (i.e. their definitions are

2 P. Bahr et al.

not exposed) to represent signals, signal functions, events etc. and only expose
a carefully selected set of combinators to manipulate elements of these types.

Over the last decade an alternative to this library-based approach has been
developed [3, 4, 21, 24, 26, 28, 29] that uses a modal type operator ⃝ (pro-
nounced “later”) to express the passage of time at the type level. This type
modality allows us to distinguish a value of type a, which is available now,
from a value of type ⃝a, which represents data of type a arriving in the next
time step. A language with such a modal type operator ⃝ has been recently
implemented as an embedded language in Haskell called Rattus [2].

In Rattus, signals can be implemented as follows:

data Sig a = a ::: (⃝(Sig a))

That is, a signal of type Sig a is an element of type a now and a signal of
type Sig a later, thus separating consecutive elements of the signal by one time
step. Instead of hiding the definition of Sig from the user, Rattus ensures the
operational guarantees of causality and absence of space leaks via its type system.

However, the use of the ⃝ modality limits Rattus to synchronous reactive
programs where all components of the program progress according to a global
clock. This is witnessed by the fact that we can implement the following function
that takes two delayed integers and produces their delayed sum:

add ::⃝Int →⃝Int →⃝Int
add x y = delay (adv x + adv y)

This only works because the two delayed integers x and y are guaranteed to
arrive at the same time, namely the next tick of the global clock.

Computing according to a global clock is a reasonable assumption for many
contexts such as simulations and games as well as typical application domains
of synchronous (dataflow) languages [6, 9, 33] such as real-time and embedded
systems. However, for many applications, e.g. GUIs and concurrent systems, the
notion of a global clock may not be natural and may lead to inefficiencies.

In this paper, we present Async Rattus, an embedded modal FRP language
that replaces the single global clock of Rattus with dynamic local clocks that
enable asynchronous computations. Async Rattus is based on the Async RaTT
calculus for asynchronous FRP that has recently been proposed by Bahr and
Møgelberg [5] and has been shown to ensure causality and absence of space
leaks. Moreover, Async Rattus is implemented as a shallowly embedded language
in Haskell, which means that Async Rattus programs can seamlessly interact with
regular Haskell code and thus also have access to Haskell’s rich library ecosystem.

Similarly to Rattus, the implementation of Async Rattus consists of a library
that implements the primitives of the language along with a plugin for the Glas-
gow Haskell Compiler (GHC) to check the language’s more restrictive variable
scope rules and to ensure the eager evaluation strategy that is necessary to obtain
the operational properties. However, Async Rattus requires an additional novelty:
The underlying core calculus of Async Rattus requires explicit clocks annotations
in the program. These annotations are necessary to keep track of the dynamic

Asynchronous Reactive Programming with Modal Types in Haskell 3

data dependencies in FRP programs. Our implementation of Async Rattus infers
these clock annotations and transforms the GHC Core code generated from the
Async Rattus code accordingly.

The remainder of the paper is structured as follows: Section 2 describes the
syntax and semantics of Async Rattus with a particular focus on its non-standard
typing rules. Section 3 illustrates the expressiveness of Async Rattus and its inter-
action with Haskell with the help of a selection of example programs. Section 4
describes how Async Rattus is implemented as an embedded language in Haskell.
Finally, Section 5 and section 6 discuss related and future work, respectively.

Async Rattus is available as a package on Hackage [18]. Apart from the lan-
guage implementation itself, the package also contains an FRP library imple-
mented in Async Rattus along with example programs using this library. In par-
ticular, it contains the full source code of all examples presented in this paper.

2 Introduction to Async Rattus

Async Rattus differs from Haskell in two major ways. Firstly, Async Rattus is
eagerly evaluated. This difference in the operational semantics is crucial for the
language’s ability to avoid space leaks. Secondly, Async Rattus extends Haskell’s
type system with two type modalities,⃝ and □. A value of type⃝a is a delayed
computation that waits for an event upon which it will produce a value of type
a, whereas a value of type □a is a thunk that can be forced at any time, now or
in the future, to produce a value of type a.

Each value x ::⃝a waits for an event to occur before it can be evaluated to a
value of type a. Intuitively, an element of type⃝a is a pair (θ, f) consisting of a
(local) clock θ and a thunk f , so that f can be forced to compute a value of type
a as soon as the clock θ ticks. This intuition is witnessed by the two functions
cl ::⃝a → Clock and adv ::⃝a → a that project out these two components.
Conversely, we can construct a value of type ⃝a by providing these two com-
ponents using the function delay :: Clock → a →⃝a. Using these functions, we
can implement a function that takes a delayed integer and increments it:

incr ::⃝Int →⃝Int
incr x = delaycl(x) (adv x + 1)

This makes explicit the fact that the integers produced by the delayed computa-
tions x ::⃝Int and incr x ::⃝Int become available at the same time. We write
the first argument of delay as a subscript. As we will see shortly, these clock
arguments are annotations that can always be inferred from the context.

2.1 Typing rules for delayed computations

The type signatures that we have given for delay and adv above are a good
starting point to understand what delay and adv do, but they are too permissive
and we have to reign them in to ensure that Async Rattus programs are causal and

4 P. Bahr et al.

Γ,✓cl(t) ⊢ t ::A

Γ ⊢ delaycl(t) t ::⃝A

✓ ̸∈ Γ ′ or A stable

Γ, x :: A,Γ ′ ⊢ x ::A

Γ ⊢ t ::□A

Γ ⊢ unbox t ::A

Γ□ ⊢ t ::A

Γ ⊢ box t ::□A

Γ ⊢ s ::⃝A Γ ⊢ t ::⃝B ✓ ̸∈ Γ ′

Γ,✓cl(s)⊔cl(t) , Γ
′ ⊢ select s t :: Select A B

Γ ⊢ t ::⃝A ✓ ̸∈ Γ ′

Γ,✓cl(t) , Γ
′ ⊢ adv t ::A Γ ⊢ never ::⃝A

where ·□ = ·

(Γ,✓θ)
□ = Γ□

(Γ, x :: A)□ =

{
Γ□, x :: A if A stable

Γ□ otherwise

Fig. 1. Select typing rules for Async Rattus.

do not cause space leaks. If delay was simply a function of type delay ::Clock →
a → ⃝a, we could delay arbitrary computations – and the data they depend
on – into the future, which will cause space leaks. Figure 1, shows the most
important typing rules of Async Rattus.

Async Rattus uses a Fitch-style type system [11], which manifests itself by the
presence of tokens of the form ✓θ (pronounced “tick of clock θ” or just “tick”)
in typing contexts. We can think of ✓θ as denoting the passage of one time step
on the clock θ, i.e. all variables to the left of ✓θ are one time step older w.r.t.
the clock θ compared to those to the right of ✓θ . The rule for delay introduces
a token ✓cl(t) in the typing context Γ . This means that t sees the variables in Γ
as one time step older w.r.t. clock cl(t), thus matching the intuitive semantics of
delay which delays evaluation of t by one time step on the clock cl(t).

The variable introduction rule explains how ticks influence which variables
are in scope: A variable occurring to the left of a tick is no longer in scope unless
it is of a type that is time-independent. We call these time-independent types
stable types, and in particular all base types such as Int and Bool are stable
as are any types of the form □a. For instance, function types are not stable,
and thus functions cannot be moved into the future, which means that the type
checker must reject the following definition:

mapLater :: (a → b)→⃝a →⃝b
mapLater f x = delaycl(x) (f (adv x)) -- f is out of scope

The problem is that functions may store time-dependent data in their closure
and thus moving functions into the future could lead to space leaks. We shall
return to stable types later when we discuss the □ type modality in section 2.2.

Also adv cannot be simply a function of type ⃝a → a as this would allow
us to simply execute future computations now, which would break causality.
Instead, the typing rule for adv only allows us to advance a delayed computation
t ::⃝A, if we know that the clock of t has already ticked, which is witnessed
by the token ✓cl(t) in the context. That is, delay looks ahead one time step on
a clock θ and adv then allows us to go back to the present. Variable bindings
made in the future, i.e. those in Γ ′ in the typing rule for adv, are therefore not
accessible once we returned to the present.

Asynchronous Reactive Programming with Modal Types in Haskell 5

We can now see why the add function from section 1 does not type check:

add ::⃝Int →⃝Int →⃝Int
add x y = delayθ (adv x + adv y) -- no suitable clock θ

The problem is that there is no clock θ so that both subexpressions adv x and
adv y type check. The former only type checks if θ = cl(x) and the latter only
type checks if θ = cl(y). It might very well be that the clocks of x and y are the
same at runtime, e.g. if y = incr x , but that is not guaranteed at compile time.

In order to deal with more than one delayed computation, Async Rattus
provides the select primitives, which takes two delayed computation s ::⃝A and
t ::⃝B as arguments, given a tick on the clock cl(s) ⊔ cl(t). It produces a value
of type Select A B , which is defined as follows:1

data Select a b = Fst a (⃝b) | Snd (⃝a) b | Both a b

A clock of the form θ ⊔ θ′ ticks whenever θ or θ′ ticks. That is, select s t waits
for a tick on either of the two clocks cl(s) and cl(t) and depending on whether
cl(s) ticks before, after, or at the same time as cl(t), it returns Fst , Snd , or
Both, respectively. For example, the following function waits for two integers
and returns the integer that arrives first:

first ::⃝Int →⃝Int →⃝Int
first x y = delaycl(x)⊔cl(y) (case select x y of Fst x ′ → x ′

Snd y ′ → y ′

Both x ′ → x ′)

With the help of select, we can also implement the add function from the
introduction, but we have to revise the return type:

add ::⃝Int →⃝Int →⃝(Int ⊕⃝Int)
add x y = delaycl(x)⊔cl(y) (case select x y of

Fst x ′ y ′ → Inr (delaycl(y′) (x
′ + adv y ′))

Snd x ′ y ′ → Inr (delaycl(x ′) (adv x ′ + y ′))

Both x ′ y ′ → Inl (x ′ + y ′))

where ⊕ is the (strict) sum type. The type now reflects the fact that we might
have to wait two ticks (of two different clocks) to obtain the result. From now
on we will elide the clock annotations for delay as it will always be obvious from
the context what the annotation needs to be. Indeed, Async Rattus will infer the
correct clock annotation and insert it automatically during compilation.

2.2 Typing rules for stable computations

As we have seen above, only variables of stable types can be moved across ticks
and thus into the future. A type A is stable if all occurrences of ⃝ and function

1 Async Rattus is a strict language and all type definitions are strict by default.

6 P. Bahr et al.

types in A are guarded by □. For example Int ⊕ Float , □(Int → Float), and
□(⃝Int)⊕ Int are stable types, but □Int → Float ,⃝Int , and⃝(□Int) are not.
That is, the □ modality can be used to turn any type into a stable type, thus
making it possible to move functions into the future safely without risking space
leaks. Using □, we can implement the map function for ⃝:

mapLater ::□(a → b)→⃝a →⃝b
mapLater f x = delay (unbox f (adv x))

where unbox is simply a function of type □a → a.
A value of type □ can only be constructed using the introduction form box,

whose typing rule ensures that boxed values may only refer to variables of a
stable type. The notation Γ□ denotes the typing context that is obtained from
Γ by removing all variables of non-stable types and all ✓θ tokens. Thus, for a
well-typed term box t , we know that t only accesses variables of stable type.

2.3 Recursive definitions

Similarly to Rattus and other synchronous FRP languages [3, 26], signals can be
defined in Async Rattus by the following definition:

data Sig a = a ::: (⃝(Sig a))

That is, a signal of type Sig a consists of a current value of type a and a
future update to the signal of type ⃝(Sig a). We can define a map function for
signals, but similarly to the mapLater function on the ⃝ modality, the function
argument has to be boxed:

map ::□(a → b)→ Sig a → Sig b
map f (x ::: xs) = unbox f x ::: delay (map f (adv xs))

In order to ensure productivity of recursive function definitions, Async Rattus
requires that recursive function calls, such as map f (adv xs) above, have to be
guarded by a delay. More precisely, such a recursive occurrence may only occur
in a context Γ that contains a ✓θ .

While the definition of the signal type looks superficially the same as in
synchronous languages, its semantics is quite different: Updates to a signal do
not come at the rate given by the global clock, but rather by some local clock,
which may in turn change dynamically. For example, we can implement the
constant signal function as follows:

const :: a → Sig a
const x = x ::: never

where never ::⃝b is simply a delayed computation with a clock that will never
tick. The const signal function might seem pointless, but we can combine it with
a combinator that switches from one signal to another signal:

Asynchronous Reactive Programming with Modal Types in Haskell 7

switch :: Sig a →⃝(Sig a)→ Sig a
switch (x ::: xs) d = x ::: delay (case select xs d of

Fst xs ′ d ′ → switch xs ′ d ′

Snd d ′ → d ′

Both xs ′ d ′ → d ′)

A signal switch s e first behaves like s, but as soon as the clock of e ticks the
signal behaves like the signal produced by e. For example, given a value x :: a
and a delayed value y ::⃝a, we can produce a signal that first has the value x
and then, as soon as y arrives, has the value that y produces:

step :: a →⃝a → Sig a
step x y = switch (const x) (delay (const (adv y)))

2.4 Operational semantics

One of the goals of Async Rattus is to avoid space leaks. To this end, its typ-
ing system prevents us from moving arbitrary computations into the future. In
addition, also the operational semantics is carefully designed so that computa-
tions are executed as soon as the data they depend on is available. In short,
this means that Async Rattus uses an eager evaluation semantics except for delay
and box. That is, arguments are evaluated to values before they are passed on
to functions, but special rules apply to delay and box. In addition, Async Rattus
requires strict data types and any use of lazy data types will produce a warning.
The resulting eager evaluation strategy ensures that we do not have to keep
intermediate values in memory for longer than one time step.

Following the temporal interpretation of the ⃝ modality, its introduction
form delayθ does not eagerly evaluate its argument since we may have to wait
until input data arrives, namely when the clock θ ticks. For example, in the
following function, we cannot evaluate adv x+1 until the integer value of x ::⃝Int
arrives, which is one time step from now:

delayInc ::⃝Int →⃝Int
delayInc x = delay (adv x + 1)

However, evaluation is only delayed until the clock cl(x) ticks, and this delay is
reversed by adv. For example, adv (delay (1 + 1)) evaluates immediately to 2.

The modal FRP calculi of Krishnaswami [26] and Bahr et al. [3, 4], Bahr
and Møgelberg [5] have a similar operational semantics to achieve same mem-
ory property that Async Rattus has. However, similarly to Rattus, Async Rattus
uses a slightly more eager evaluation strategy for delay: Recall that delayθ t de-
lays the computation t by one time step and that adv reverses such a delay.
The operational semantics reflects this intuition by first evaluating every term
t that occurs as delaycl(t) (... adv t ...) before evaluating delay. In other words,
delaycl(t) (... adv t ...) is equivalent to

let x = t in delaycl(x) (... adv x ...)

8 P. Bahr et al.

Similarly, delaycl(s)⊔cl(t) (... select s t ...) is equivalent to

let x = s; y = t in delaycl(x)⊔cl(y) (... select x y ...)

This generalisation of the operational semantics of delay allows us to lift the
restrictions present in the Async RaTT calculus [5] on which Async Rattus is
based: Async Rattus allows more than one ✓θ in the typing context, i.e. delay can
be nested; it does not prohibit lambda abstractions in the presence of a ✓θ ; and
both adv and select can be used with arbitrary terms, not just variables.

3 Reactive Programming in Async Rattus

In this section, we demonstrate the expressiveness of Async Rattus with a num-
ber of examples. The full source code of abridged examples along with further
example programs can be found in the Async Rattus package [18].

3.1 A simple FRP application

To support FRP using the Sig type, we implement a library of standard FRP
combinators [5] in Async Rattus. Figure 2 lists a small subset of this library. Async
Rattus interacts with its environment via input channels (sources that produce
signals) and output channels (sinks that consume signals). The simplest input
channel is a timer that ticks at a fixed interval (given in milliseconds):

timer :: Int → □(⃝())

Input channels have the type □(⃝a), but they can always be turned into signals:

mkSig ::□(⃝a)→⃝(Sig a)
mkSig b = delay (adv (unbox b) :::mkSig b)

timerSig :: Int → Sig ()
timerSig n = () :::mkSig (timer n)

That is, the signal timerSig n produces a new value every n microseconds. As an
example, this timer input channel can be used for implementing the derivative
and integral combinators in Figure 2 (as in Bahr and Møgelberg [5]).

More general input channels can be constructed using

getInput :: IO (□(⃝a), (a → IO ()))

which produces an input channel of type □(⃝a) that we can feed from Haskell by
using the callback function of type a → IO (). Library authors can use getInput
to provide an Async Rattus interface to external resources. For example, we can
implement an input channel for the console with the following Haskell code:

consoleInput :: IO (□(⃝Text))
consoleInput = do (inp, cb)← getInput

Asynchronous Reactive Programming with Modal Types in Haskell 9

current :: Sig a → a
future :: Sig a →⃝(Sig a)
map ::□(a → b)→ Sig a → Sig b
mapD ::□(a → b)→⃝(Sig a)→⃝(Sig b)
const :: a → Sig a
scan :: (Stable b)⇒ □(b → a → b)→ b → Sig a → Sig b
zipWith :: (Stable a,Stable b)⇒ □(a → b → c)→ Sig a → Sig b → Sig c
interleave ::□(a → a → a)→⃝(Sig a)→⃝(Sig a)→⃝(Sig a)
switch :: Sig a →⃝(Sig a)→ Sig a

derivative :: Sig Float → Sig Float
integral :: Float → Sig Float → Sig Float

Fig. 2. Simple FRP library.

let loop = do line ← getLine; cb line; loop
forkIO loop
return inp

Any time the callback function cb returned by getInput is called with an argu-
ment v , the input channel inp will produce a new value v .

For output channels, Async Rattus provides the function

setOutput :: Sig a → (a → IO ())→ IO ()

which, if given a signal s and a callback function f , calls f v whenever s produces
a new value v . To support a variety of programming styles beyond the Sig type,
the type of setOutput is in fact more general:

setOutput :: Producer p a ⇒ p → (a → IO ())→ IO ()

Instances of Producer p a are types p that produce values of type a over time.
In particular, we have instances Producer (⃝(Sig a)) a and Producer (Sig a) a.

For example, we may wish to process an output signal of integers by simply
printing each new value to the console:

intOutput :: Producer p Int ⇒ p → IO ()
intOutput sig = setOutput sig print

As a simple example, we implement a console application that waits for the
user to enter a line, and then outputs the length of the user’s input:2

main = do inp ← mkSignal ⟨$⟩ consoleInput
let outSig ::⃝(Sig Int)

outSig = mapD (box length) inp

intOutput outSig
startEventLoop

2 ⟨$⟩ is the infix notation for the function fmap :: Functor f ⇒ (a → b)→ f a → f b

10 P. Bahr et al.

In the last line we call startEventLoop :: IO () which starts the event loop
that executes output actions registered by setOutput . We will look at a more
comprehensive example in section 3.3.

3.2 Filtering functions

As Bahr and Møgelberg [5] have observed, the Sig type does not support a filter
function filter :: □(a → Bool) → Sig a → Sig a. The problem is that a signal
of type Sig a must produce a value of type a at every tick of its current clock.
In order to check the predicate p :: □(a → Bool) we must wait until the input
signal ticks and produces a new value v :: a. Hence, we must produce a value for
the output signal for that tick as well, regardless of whether p v is true or not.
Instead, we can implement a variant of filter with the following type:3

filter ′ ::□(a → Bool)→ Sig a → Sig (Maybe ′ a)
filter ′ p = map (box (λx → if unbox p x then Just ′ x

else Nothing ′))

This is somewhat unsatisfactory but workable. We can provide an implementa-
tion of standard FRP combinators (like those in Figure 2) that work with signals
of type Sig (Maybe ′ a) instead of Sig a. However, this introduces inefficiencies
since programs that work with signals of type Sig (Maybe ′ a) have to explicitly
check for the Nothing ′ case for each tick.

A possible solution is to replace the modal operator ⃝ with the derived
operator F that may take several ticks to produce a result:

data F a = Now a |Wait (⃝(F a))

data SigF a = a :::F (⃝(F (SigF a)))

That is, a value of type F a is the promise of a value of type a in 0 or more
(possibly infinitely many) ticks. Then the definition of SigF replaces⃝ with the
composition of ⃝ and F . That is, a signal has a current value and the promise
that it will update in one or more ticks. With this type, we can implement a
function filter ::□(a → Bool)→ SigF a → F (SigF a) as well as corresponding
versions of the functions in Figure 2.

Sadly, SigF a still suffers from the same inefficiency as the Sig (Maybe ′ a)
type. To implement a more efficient filter function, we instead make use of the
getInput and setOutput functions. By composing the two, we can turn a signal
of type Sig (Maybe ′ a) into a signal of type Sig a:

mkInputSig :: Producer p a ⇒ p → IO (□(⃝(Str a)))
mkInputSig p = do (out , cb)← getInput

setOutput p cb
return box (mkSig out)

3 Maybe ′ is a strict variant of the standard Maybe type.

Asynchronous Reactive Programming with Modal Types in Haskell 11

filterMap ::□(a → Maybe ′ b)→ Sig a → IO (□(⃝(Sig b)))
filterMapD ::□(a → Maybe ′ b)→⃝(Sig a)→ IO (□(⃝(Sig b)))
filter ::□(a → Bool)→ Sig a → IO (□(⃝(Sig a)))
filterD ::□(a → Bool)→⃝(Sig a)→ IO (□(⃝(Sig a)))
trigger :: (Stable a,Stable b)⇒ □(a → b → c)→ Sig a → Sig b → IO (□(Sig c))
triggerD :: Stable b ⇒ □(a → b → c)→⃝(Sig a)→ Sig b → IO (□(⃝(Sig c)))

Fig. 3. Filter functions in Async Rattus.

Since Producer (Sig (Maybe ′ a)) a, we can implement filter as follows:

filter ::□(a → Bool)→ Sig a → IO (□(⃝(Sig a)))
filter p xs = mkInputSig (filter ′ p xs)

Figure 3 lists further filter functions that can be implemented in this fash-
ion: filterMap essentially composes the filter function with the map function.
trigger f xs ys is a signal that produces a new value unbox f x y whenever xs
produces a new value, where x and y are the current values of xs and ys respec-
tively. One can think of trigger as a left-biased version of zipWith. Finally, we
also have versions of these functions that work with delayed signals. We will put
this library to use in the next section.

3.3 Extended example

To demonstrate the use of the FRP library that we have developed above, we
implement a simple interactive application. To this end, we extend our simple
IO library, which so far consists of consoleInput and intOutput , with

setQuit :: (Producer p a)⇒ p → IO ()
setQuit sig = setOutput sig (λ → exitSuccess)

which quits execution as soon as it receives the first value from the producer.
Figure 4, shows an interactive console application that uses our simple IO

API. The application maintains an integer counter that increments each second
(nats). At any time, we can show the current value of the counter by typing
“show” in the console: The showSig signal triggers output on showNat . Moreover,
we can manipulate the counter by either writing “negate” or a number “n” to
the console, which multiplies the counter with −1 or adds n to it, respectively.
Finally, we can quit the application by writing “quit”.

This example demonstrates the use of the different filter functions to con-
struct new signals (see quitSig , showSig , negSig , numSig), the use of interleave
and trigger to combine several signals (see sig and showNat , respectively), and
the use of switchS to dynamically change the behaviour of a signal (see nats ′).

4 Embedding Async Rattus in Haskell

The embedding of Async Rattus in Haskell consists of two main components:
(1) the definition of the language’s syntax in the form of standard Haskell type

12 P. Bahr et al.

everySecond :: Sig ()
everySecond = () :::mkSig (timer 1000000)

readInt :: Text → Maybe ′ Int
readInt text = case decimal text of Right (x , rest) | null rest → Just ′ x

→ Nothing ′

nats :: Int → Sig Int
nats init = scan (box (λn → n + 1)) init everySecond

main = do
console ::⃝(Sig Text) ← mkSig ⟨$⟩ consoleInput
quitSig ::⃝(Sig Text) ← unbox ⟨$⟩filterD (box (≡ "quit")) console
showSig ::⃝(Sig Text) ← unbox ⟨$⟩filterD (box (≡ "show")) console
negSig ::□(⃝(Sig Text))← filterD (box (≡ "negate")) console
numSig ::□(⃝(Sig Int)) ← filterMapD (box readInt) console

let sig ::□(⃝(Sig (Int → Int)))
sig = box (interleave (box (◦))

(mapD (box (λ n → −n)) (unbox negSig))
(mapD (box (λm n → m + n)) (unbox numSig)))

let nats ′ :: Int → Sig Int
nats ′ init = switchS (nats init)

(delay (λn → nats ′ (current (adv (unbox sig)) n)))

showNat ::□(⃝(Sig Int))← triggerD (box (λ n → n)) showSig (nats ′ 0)

setQuit quitSig
intOutput showNat
startEventLoop

Fig. 4. Example reactive program.

and function definitions, and (2) a plugin for GHC which implements the typing
rules for the modal type operators and performs the necessary program transfor-
mations to obtain the desired operational semantics for Async Rattus. Since the
implementation of the □ modality and the Stable type constraint is similar to
Rattus [2], we focus our attention on the⃝ modality as it requires a significantly
different approach due to the presence of clocks.

Syntax. Figure 5 shows the implementation of the syntax of ⃝. A value of
type ⃝a consists of a clock θ and a delayed computation f . In turn, a clock
θ is a finite set of input channel identifiers and we say that θ ticks whenever
any of the input channels in θ produces a new value. As soon as θ ticks by
virtue of an input channel c ∈ θ producing a new value v , we can run the
delayed computation f by passing both c and v to f as an argument of type
InputValue. The introduction and elimination forms delay, adv, and select are
simply implemented as ⊥. These dummy implementations are replaced by their
correct implementations in a program transformation performed by the compiler
plugin. The correct implementations are inserted later since they depend on
compile time clocks which are inferred by the plugin and are thus not part of
the surface syntax.

Asynchronous Reactive Programming with Modal Types in Haskell 13

data InputValue where -- Not exported
InputValue :: ChanId → a → InputValue

type Clock = Set ChanId -- Not exported

data⃝a = Delay Clock (InputValue → a) -- Constructor not exported

delay :: a →⃝a
delay = ⊥

adv ::⃝a → a
adv = ⊥

select ::⃝a →⃝b → Select a b
select = ⊥

Fig. 5. Implementation of the syntax of ⃝.

Source
Code

Haskell
AST

Typed
Haskell
AST

Typed
Haskell
AST

Haskell
Core

Haskell
Core

Haskell
Core

Haskell
Core

executable

parse type check

stable check

scope
check

clock
check

desugar

single tick

strictnessclockcode generation

simplify

Fig. 6. Simplified pipeline of GHC extended with Async Rattus plugin (in bold).

Scope & clock check. GHC provides a rich API that allows us to insert custom
logic in several phases of its pipeline, which is sketched in Figure 6. During
the type checking phase, GHC will use a constraint solver for the Stable type
constraint provided by the plugin. Afterwards, the plugin checks the stricter
scoping rules of Async Rattus and infers clock annotations. Checking the scoping
rules for Async Rattus is similar to Rattus [2]: Variables may no longer be in scope
because delay introduced a tick, because adv or select dropped the context Γ ′, or
because they were dropped when transforming a context Γ to Γ□, e.g. in the rule
for box. The clock inference algorithm introduces an existential clock variable θ
for each occurrence of delay, which is then instantiated to cl(t) or cl(s)⊔ cl(t) as
soon as it encounters occurrences of adv t or select s t , respectively.

Single tick, strictness & clock transformation. GHC desugars the typed Haskell
AST into the Haskell Core intermediate language, on which it then performs var-
ious simplification and optimisation steps. The Async Rattus plugin adds three
additional transformations. Figure 7 lists the rewrite rules that are applied dur-
ing these three transformations. In these rewrite rules, we use K to denote a
term with a single hole that does not occur in the scope of delay, adv, select, box,
or lambda abstraction, and we write K[t] to denote the term obtained from K
by replacing its hole with the term t.

The single step transformation rules preserve the typing of the program and
once the rules have been exhaustively applied, the resulting program is typable
with the more restrictive typing rules of the Async RaTT calculus [5], which only
allows at most one tick in the context, requires that adv and select be applied to
variables, and disallows lambda abstractions in the scope of a tick.

14 P. Bahr et al.

Single tick transformation:

delay(K[adv t]) −→ letx = t in delay(K[adv x]) if t is not a variable

delay(K[select s t]) −→ letx = s in delay(K[selectx t]) if s is not a variable

delay(K[select s t]) −→ letx = t in delay(K[select s x]) if t is not a variable

λx.K[adv t] −→ let y = adv t inλx.(K[y])

λx.K[select s t] −→ let y = select s t inλx.(K[y])

Strictness transformation:

λx.t −→ λx.case x of → t

let x = s in t −→ case s of x → t

Clock transformation:

delay(K[adv x]) −→ Delay (cl(x))(λv → K[adv′ x v])

delay(K[selectx y]) −→ Delay (cl(x) ⊔ cl(y))(λv → K[select′ x y v])

Fig. 7. Transformation rules.

The strictness transformation replaces lambda abstractions and let bindings
so that Async Rattus programs have a call-by-value semantics.

The clock inference performed during an earlier compilation phase established
that we can find suitable clock annotation for each occurrence of delay. The
clock transformation inserts these clock annotation and thereby also replaces
the dummy functions delay, adv, and select from Figure 5 with their actual
implementations from Figure 8. In addition to inserting the correct clocks, this
transformation also propagates the identity of the input channel that caused
the tick of the clock as well as the input value that it produced. The former is
important for the implementation of select as it needs to check which of the two
delayed computations to advance, whereas the latter is used to implement the
getInput function.

5 Related Work

The use of modal types for FRP has seen much attention in recent years [2–
4, 10, 16, 20, 23, 24, 26, 28, 29]. The first implementation of a modal FRP
language we are aware of is AdjS [25], which compiles FRP programs into
JavaScript. The language is based on the synchronous modal FRP calculus of
Krishnaswami [26] and uses linear types to interact with GUI widgets [27]. To
address the discrepancy between the synchronous programming model of AdjS
and the inherently asynchronous nature of GUIs, the λWidget calculus of Graulund
et al. [16] combines linear types with an asynchronous modal type constructor
♢. Similarly to Async Rattus, two values x : ♢A and y : ♢B arrive at some time
in the future, but not necessarily at the same time and thus λWidget provides a
select primitive to observe the relative arrival time. However, we are not aware
of an implementation of a language based on λWidget.

Asynchronous Reactive Programming with Modal Types in Haskell 15

adv ′ ::⃝a → InputValue → a
adv ′ (Delay f) inp = f inp

select ′ ::⃝a →⃝b → InputValue → Select a b
select ′ a@(Delay θ1 f) b@(Delay θ2 g) v@(InputValue ch)

= if ch ∈ θ1 then if ch ∈ θ2 then Both (f v) (g v)
else Fst (f v) b else Snd a (b v)

Fig. 8. Implementation of adv and select.

Async Rattus is based on the Async RaTT calculus of Bahr and Møgelberg [5],
which proposes the modal operator ∃⃝ to model asynchronous signals (we use
the simpler notation⃝ in Async Rattus). Like the synchronous calculus of Krish-
naswami [26] (on which AdjS [25] is based), but unlike the asynchronous λWidget

calculus of Graulund et al. [16], Async RaTT comes with a proof of operational
guarantees: All Async RaTT programs are causal, productive, and don’t have
space leaks. Async Rattus generalises the typing rules of Async RaTT in three
ways: It allows (1) more than one tick to occur in contexts (thus allowing nested
occurrences of delay), (2) function definitions to occur in the scope of ticks in the
context, and (3) adv and select to be applied to arbitrary terms instead of just
variables. The soundness of this generalisation is based on the single tick program
transformation (cf. section 4), introduced by Bahr [2], that is performed by the
compiler plugin so that the resulting program will typecheck using the stricter
typing rules of Async RaTT. The implementation of Async Rattus borrows much
from the implementation of Rattus [2], which is based on a synchronous modal
FRP calculus. However, the asynchronous setting required three key additions:
Inference of clocks during type checking, an additional program transformation
that inserts inferred clocks into the Haskell code, and finally a new runtime sys-
tem that allows Async Rattus and Haskell to interact. The latter is enabled by
the clock transformation (cf. section 4) and is provided to the user in the form
of the getInput and setOutput functions.

6 Discussion and Future Work

The implementation of Async Rattus as an embedded language further demon-
strates the power of GHC’s plugin API [12, 13, 17, 34]. Not only does it allow
us to customise the type checker and use program transformations to tweak the
operational semantics. We can also implement program elaboration mechanisms
like Async Rattus’ clock inference.

Our goal is to use Async Rattus to further experiment with asynchronous
modal FRP. Interesting topics for further work include: evaluation of asyn-
chronous modal FRP for implementing concurrent programs and GUI appli-
cations; library design for asynchronous modal FRP in general as well as specific
problem domains; and extending or simplifying select so that more than two
delayed computation can be easily tracked.

Bibliography

[1] Apfelmus, H.: Reactive Banana (2011), URL https://hackage.haskell.

org/package/reactive-banana

[2] Bahr, P.: Modal FRP for all: Functional reactive programming without
space leaks in Haskell. Journal of Functional Programming 32, e15 (2022),
ISSN 0956-7968, 1469-7653, publisher: Cambridge University Press

[3] Bahr, P., Graulund, C.U., Møgelberg, R.E.: Simply RaTT: A Fitch-style
modal calculus for reactive programming without space leaks. Proceedings
of the ACM on Programming Languages 3(ICFP), 1–27 (2019)

[4] Bahr, P., Graulund, C.U., Møgelberg, R.E.: Diamonds are not forever: live-
ness in reactive programming with guarded recursion. Proceedings of the
ACM on Programming Languages 5(POPL), 2:1–2:28 (Jan 2021), 00002

[5] Bahr, P., Møgelberg, R.E.: Asynchronous Modal FRP. Proceedings of the
ACM on Programming Languages 7(ICFP), 205:476–205:510 (2023)

[6] Berry, G., Cosserat, L.: The esterel synchronous programming language and
its mathematical semantics. In: Brookes, S.D., Roscoe, A.W., Winskel, G.
(eds.) Seminar on Concurrency, pp. 389–448, Springer Berlin Heidelberg,
Berlin, Heidelberg, DE (1985), ISBN 978-3-540-39593-5

[7] Blackheath, S.: Sodium (2012), URL https://hackage.haskell.org/

package/sodium

[8] Bärenz, M., Perez, I.: Rhine: FRP with type-level clocks. In: Proceedings
of the 11th ACM SIGPLAN International Symposium on Haskell, pp. 145–
157, Haskell 2018, Association for Computing Machinery, New York, NY,
USA (Sep 2018), ISBN 978-1-4503-5835-4

[9] Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.A.: Lustre: A declarative
language for real-time programming. In: Proceedings of the 14th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
pp. 178–188, POPL ’87, ACM, New York, NY, USA (1987), ISBN 0-89791-
215-2

[10] Cave, A., Ferreira, F., Panangaden, P., Pientka, B.: Fair Reactive Program-
ming. In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 361–372, POPL ’14, ACM, San
Diego, California, USA (2014), ISBN 978-1-4503-2544-8

[11] Clouston, R.: Fitch-style modal lambda calculi. In: Baier, C., Dal Lago,
U. (eds.) Foundations of Software Science and Computation Structures,
vol. 10803, pp. 258–275, Springer, Springer International Publishing, Cham
(2018), ISBN 978-3-319-89366-2

[12] Diatchki, I.S.: Improving Haskell types with SMT. In: Proceedings of the
2015 ACM SIGPLAN Symposium on Haskell, pp. 1–10, Haskell ’15, Asso-
ciation for Computing Machinery (Aug 2015)

[13] Elliott, C.: Compiling to categories. Proceedings of the ACM on Program-
ming Languages 1(ICFP), 27:1–27:27 (Aug 2017)

https://hackage.haskell.org/package/reactive-banana
https://hackage.haskell.org/package/reactive-banana
https://hackage.haskell.org/package/sodium
https://hackage.haskell.org/package/sodium

Asynchronous Reactive Programming with Modal Types in Haskell 17

[14] Elliott, C., Hudak, P.: Functional reactive animation. In: Proceedings of the
Second ACM SIGPLAN International Conference on Functional Program-
ming, pp. 263–273, ICFP ’97, ACM, New York, NY, USA (1997), ISBN
0-89791-918-1

[15] Elliott, C.M.: Push-pull Functional Reactive Programming. In: Proceedings
of the 2Nd ACM SIGPLAN Symposium on Haskell, pp. 25–36, Haskell ’09,
ACM, New York, NY, USA (2009), ISBN 978-1-60558-508-6, 00145 event-
place: Edinburgh, Scotland

[16] Graulund, C.U., Szamozvancev, D., Krishnaswami, N.: Adjoint reactive gui
programming. In: FoSSaCS, pp. 289–309 (2021)

[17] Gundry, A.: A typechecker plugin for units of measure: domain-specific con-
straint solving in GHC Haskell. In: Proceedings of the 2015 ACM SIGPLAN
Symposium on Haskell, pp. 11–22, Haskell ’15, Association for Computing
Machinery, New York, NY, USA (Aug 2015)

[18] Houlborg, E., Rørdam, G., Bahr, P.: Async Rattus (2023), URL https:

//hackage.haskell.org/package/AsyncRattus

[19] Hudak, P., Courtney, A., Nilsson, H., Peterson, J.: Arrows, Robots, and
Functional Reactive Programming. In: Advanced Functional Programming,
Lecture Notes in Computer Science, vol. 2638, Springer Berlin / Heidelberg
(2003), ISBN 978-3-540-40132-2

[20] Jeffrey, A.: LTL types FRP: linear-time temporal logic propositions as types,
proofs as functional reactive programs. In: Claessen, K., Swamy, N. (eds.)
Proceedings of the sixth workshop on Programming Languages meets Pro-
gram Verification, PLPV 2012, Philadelphia, PA, USA, January 24, 2012,
pp. 49–60, ACM, Philadelphia, PA, USA (2012), ISBN 978-1-4503-1125-0

[21] Jeffrey, A.: Functional reactive types. In: Proceedings of the Joint Meeting
of the Twenty-Third EACSL Annual Conference on Computer Science Logic
(CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pp. 54:1–54:9, CSL-LICS ’14, ACM, New York,
NY, USA (2014), ISBN 978-1-4503-2886-9

[22] Jeltsch, W.: Grapefruit (2007), URL https://hackage.haskell.org/

package/grapefruit

[23] Jeltsch, W.: Towards a common categorical semantics for linear-time tem-
poral logic and functional reactive programming. Electronic Notes in The-
oretical Computer Science 286, 229–242 (2012)

[24] Jeltsch, W.: Temporal logic with ”until”, functional reactive programming
with processes, and concrete process categories. In: Proceedings of the 7th
Workshop on Programming Languages Meets Program Verification, pp. 69–
78, PLPV ’13, ACM, New York, NY, USA (2013), ISBN 978-1-4503-1860-0

[25] Krishnaswami, N.R.: AdjS compiler (2013), URL https://github.com/

neel-krishnaswami/adjs

[26] Krishnaswami, N.R.: Higher-order Functional Reactive Programming With-
out Spacetime Leaks. In: Proceedings of the 18th ACM SIGPLAN Inter-
national Conference on Functional Programming, pp. 221–232, ICFP ’13,
ACM, Boston, Massachusetts, USA (2013), ISBN 978-1-4503-2326-0

https://hackage.haskell.org/package/AsyncRattus
https://hackage.haskell.org/package/AsyncRattus
https://hackage.haskell.org/package/grapefruit
https://hackage.haskell.org/package/grapefruit
https://github.com/neel-krishnaswami/adjs
https://github.com/neel-krishnaswami/adjs

18 P. Bahr et al.

[27] Krishnaswami, N.R., Benton, N.: A semantic model for graphical user inter-
faces. In: Proceedings of the 16th ACM SIGPLAN international conference
on Functional programming, pp. 45–57, ICFP ’11, Association for Comput-
ing Machinery, New York, NY, USA (Sep 2011), ISBN 978-1-4503-0865-6

[28] Krishnaswami, N.R., Benton, N.: Ultrametric semantics of reactive pro-
grams. In: 2011 IEEE 26th Annual Symposium on Logic in Computer Sci-
ence, pp. 257–266, IEEE Computer Society, Washington, DC, USA (June
2011), ISSN 1043-6871

[29] Krishnaswami, N.R., Benton, N., Hoffmann, J.: Higher-order functional re-
active programming in bounded space. In: Field, J., Hicks, M. (eds.) Pro-
ceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2012, Philadelphia, Pennsylvania, USA,
January 22-28, 2012, pp. 45–58, ACM, Philadelphia, PA, USA (2012), ISBN
978-1-4503-1083-3

[30] Patai, G.: Efficient and Compositional Higher-Order Streams. In: Mariño, J.
(ed.) Functional and Constraint Logic Programming, pp. 137–154, Lecture
Notes in Computer Science, Springer, Berlin, Heidelberg (2011), ISBN 978-
3-642-20775-4

[31] Perez, I., Bärenz, M., Nilsson, H.: Functional reactive programming, refac-
tored. In: Proceedings of the 9th International Symposium on Haskell, pp.
33–44, Haskell 2016, Association for Computing Machinery, New York, NY,
USA (Sep 2016), ISBN 978-1-4503-4434-0

[32] Ploeg, A.v.d., Claessen, K.: Practical principled FRP: forget the past,
change the future, FRPNow! In: Proceedings of the 20th ACM SIGPLAN
International Conference on Functional Programming, pp. 302–314, ICFP
2015, Association for Computing Machinery, Vancouver, BC, Canada (Aug
2015), ISBN 978-1-4503-3669-7, 00019

[33] Pouzet, M.: Lucid synchrone, version 3. Tutorial and reference manual. Uni-
versité Paris-Sud, LRI 1, 25 (2006)

[34] Prott, K.O., Teegen, F., Christiansen, J.: Embedding Functional Logic Pro-
gramming in Haskell via a Compiler Plugin. In: Hanus, M., Inclezan, D.
(eds.) Practical Aspects of Declarative Languages, pp. 37–55, Lecture Notes
in Computer Science, Springer Nature Switzerland (2023)

[35] Trinkle, R.: Reflex (2016), URL https://reflex-frp.org

https://reflex-frp.org

	Asynchronous Reactive Programming with Modal Types in Haskell

