{-# OPTIONS_GHC -fglasgow-exts #-}
-----------------------------------------------------------------------------
-- |
-- Module      :  Data.Tree.AVL.Internals.HSet
-- Copyright   :  (c) Adrian Hey 2004,2005
-- License     :  BSD3
--
-- Maintainer  :  http://homepages.nildram.co.uk/~ahey/em.png
-- Stability   :  stable
-- Portability :  portable
--
-- Set primitives on AVL trees with (height information supplied where needed).
-- All the functions in this module use essentially the same symetric \"Divide and Conquer\" algorithm.
-----------------------------------------------------------------------------
module Data.Tree.AVL.Internals.HSet
        (-- * Union primitives.
         unionH,unionMaybeH,

         -- * Intersection primitives.
         intersectionH,intersectionMaybeH,

         -- * Difference primitives.
         differenceH,differenceMaybeH,symDifferenceH,
        ) where

import Data.Tree.AVL.Types(AVL(..))
import Data.Tree.AVL.Internals.HJoin(spliceH,joinH)

import Data.COrdering

#ifdef __GLASGOW_HASKELL__
import GHC.Base
#include "ghcdefs.h"
#else
#include "h98defs.h"
#endif

-- | Uses the supplied combining comparison to evaluate the union of two sets represented as
-- sorted AVL trees of known height. Whenever the combining comparison is applied, the first
-- comparison argument is an element of the first tree and the second comparison argument is
-- an element of the second tree.
--
-- Complexity: Not sure, but I'd appreciate it if someone could figure it out.
-- (Faster than Hedge union from Data.Set at any rate).
unionH :: (e -> e -> COrdering e) -> AVL e -> UINT -> AVL e -> UINT -> UBT2(AVL e,UINT)
unionH c = u where
 -- u :: AVL e -> UINT -> AVL e -> UINT -> UBT2(AVL e,UINT)
 u  E           _   t1          h1 = UBT2(t1,h1)
 u  t0          h0  E           _  = UBT2(t0,h0)
 u (N l0 e0 r0) h0 (N l1 e1 r1) h1 = u_ l0 DECINT2(h0) e0 r0 DECINT1(h0) l1 DECINT2(h1) e1 r1 DECINT1(h1)
 u (N l0 e0 r0) h0 (Z l1 e1 r1) h1 = u_ l0 DECINT2(h0) e0 r0 DECINT1(h0) l1 DECINT1(h1) e1 r1 DECINT1(h1)
 u (N l0 e0 r0) h0 (P l1 e1 r1) h1 = u_ l0 DECINT2(h0) e0 r0 DECINT1(h0) l1 DECINT1(h1) e1 r1 DECINT2(h1)
 u (Z l0 e0 r0) h0 (N l1 e1 r1) h1 = u_ l0 DECINT1(h0) e0 r0 DECINT1(h0) l1 DECINT2(h1) e1 r1 DECINT1(h1)
 u (Z l0 e0 r0) h0 (Z l1 e1 r1) h1 = u_ l0 DECINT1(h0) e0 r0 DECINT1(h0) l1 DECINT1(h1) e1 r1 DECINT1(h1)
 u (Z l0 e0 r0) h0 (P l1 e1 r1) h1 = u_ l0 DECINT1(h0) e0 r0 DECINT1(h0) l1 DECINT1(h1) e1 r1 DECINT2(h1)
 u (P l0 e0 r0) h0 (N l1 e1 r1) h1 = u_ l0 DECINT1(h0) e0 r0 DECINT2(h0) l1 DECINT2(h1) e1 r1 DECINT1(h1)
 u (P l0 e0 r0) h0 (Z l1 e1 r1) h1 = u_ l0 DECINT1(h0) e0 r0 DECINT2(h0) l1 DECINT1(h1) e1 r1 DECINT1(h1)
 u (P l0 e0 r0) h0 (P l1 e1 r1) h1 = u_ l0 DECINT1(h0) e0 r0 DECINT2(h0) l1 DECINT1(h1) e1 r1 DECINT2(h1)
 u_ l0 hl0 e0 r0 hr0 l1 hl1 e1 r1 hr1 =
  case c e0 e1 of
  -- e0 < e1, so (l0 < e0 < e1) & (e0 < e1 < r1)
  Lt   ->                                 case forkR r0 hr0 e1 of
          UBT5(rl0,hrl0,e1_,rr0,hrr0)  -> case forkL e0 l1 hl1 of -- (e0  < rl0 < e1) & (e0 < e1  < rr0)
           UBT5(ll1,hll1,e0_,lr1,hlr1) ->                         -- (ll1 < e0  < e1) & (e0 < lr1 < e1)
            -- (l0 + ll1) < e0 < (rl0 + lr1) < e1 < (rr0 + r1)
                                          case u  l0  hl0 ll1 hll1 of
            UBT2(l,hl)                 -> case u rl0 hrl0 lr1 hlr1 of
             UBT2(m,hm)                -> case u rr0 hrr0  r1  hr1 of
              UBT2(r,hr)               -> case spliceH m hm e1_ r hr of
               UBT2(t,ht)              -> spliceH l hl e0_ t ht
  -- e0 = e1
  Eq e ->                case u l0 hl0 l1 hl1 of
          UBT2(l,hl)  -> case u r0 hr0 r1 hr1 of
           UBT2(r,hr) -> spliceH l hl e r hr
  -- e1 < e0, so (l1 < e1 < e0) & (e1 < e0 < r0)
  Gt   ->                                 case forkL e0 r1 hr1 of
          UBT5(rl1,hrl1,e0_,rr1,hrr1)  -> case forkR l0 hl0 e1 of -- (e1  < rl1 < e0) & (e1 < e0  < rr1)
           UBT5(ll0,hll0,e1_,lr0,hlr0) ->                         -- (ll0 < e1  < e0) & (e1 < lr0 < e0)
            -- (ll0 + l1) < e1 < (lr0  + rl1) < e0 < (r0 + rr1)
                                          case u ll0 hll0  l1  hl1 of
            UBT2(l,hl)                 -> case u lr0 hlr0 rl1 hrl1 of
             UBT2(m,hm)                -> case u  r0  hr0 rr1 hrr1 of
              UBT2(r,hr)               -> case spliceH l hl e1_ m hm of
               UBT2(t,ht)              -> spliceH t ht e0_ r hr
 -- We need 2 different versions of fork (L & R) to ensure that comparison arguments are used in
 -- the right order (c e0 e1)
 -- forkL :: e -> AVL e -> UINT -> UBT5(AVL e,UINT,e,AVL e,UINT)
 forkL e0 t1 ht1 = forkL_ t1 ht1 where
  forkL_  E        _ = UBT5(E, L(0), e0, E, L(0))
  forkL_ (N l e r) h = forkL__ l DECINT2(h) e r DECINT1(h)
  forkL_ (Z l e r) h = forkL__ l DECINT1(h) e r DECINT1(h)
  forkL_ (P l e r) h = forkL__ l DECINT1(h) e r DECINT2(h)
  forkL__ l hl e r hr = case c e0 e of
                        Lt     ->                            case forkL_ l hl of
                                  UBT5(l0,hl0,e0_,l1,hl1) -> case spliceH l1 hl1 e r hr of
                                   UBT2(l1_,hl1_)         -> UBT5(l0,hl0,e0_,l1_,hl1_)
                        Eq e0_ -> UBT5(l,hl,e0_,r,hr)
                        Gt     ->                            case forkL_ r hr of
                                  UBT5(l0,hl0,e0_,l1,hl1) -> case spliceH l hl e l0 hl0 of
                                   UBT2(l0_,hl0_)         -> UBT5(l0_,hl0_,e0_,l1,hl1)
 -- forkR :: AVL e -> UINT -> e -> UBT5(AVL e,UINT,e,AVL e,UINT)
 forkR t0 ht0 e1 = forkR_ t0 ht0 where
  forkR_  E        _ = UBT5(E, L(0), e1, E, L(0))
  forkR_ (N l e r) h = forkR__ l DECINT2(h) e r DECINT1(h)
  forkR_ (Z l e r) h = forkR__ l DECINT1(h) e r DECINT1(h)
  forkR_ (P l e r) h = forkR__ l DECINT1(h) e r DECINT2(h)
  forkR__ l hl e r hr = case c e e1 of
                        Lt     ->                            case forkR_ r hr of
                                  UBT5(l0,hl0,e1_,l1,hl1) -> case spliceH l hl e l0 hl0 of
                                   UBT2(l0_,hl0_)         -> UBT5(l0_,hl0_,e1_,l1,hl1)
                        Eq e1_ -> UBT5(l,hl,e1_,r,hr)
                        Gt     ->                            case forkR_ l hl of
                                  UBT5(l0,hl0,e1_,l1,hl1) -> case spliceH l1 hl1 e r hr of
                                   UBT2(l1_,hl1_)         -> UBT5(l0,hl0,e1_,l1_,hl1_)
-----------------------------------------------------------------------
-------------------------- unionH Ends Here ---------------------------
-----------------------------------------------------------------------

-- | Similar to _unionH_, but the resulting tree does not include elements in cases where
-- the supplied combining comparison returns @(Eq Nothing)@.
--
-- Complexity: Not sure, but I_d appreciate it if someone could figure it out.
unionMaybeH :: (e -> e -> COrdering (Maybe e)) -> AVL e -> UINT -> AVL e -> UINT -> UBT2(AVL e,UINT)
unionMaybeH c = u where
 -- u :: AVL e -> UINT -> AVL e -> UINT -> UBT2(AVL e,UINT)
 u  E           _   t1          h1 = UBT2(t1,h1)
 u  t0          h0  E           _  = UBT2(t0,h0)
 u (N l0 e0 r0) h0 (N l1 e1 r1) h1 = u_ l0 DECINT2(h0) e0 r0 DECINT1(h0) l1 DECINT2(h1) e1 r1 DECINT1(h1)
 u (N l0 e0 r0) h0 (Z l1 e1 r1) h1 = u_ l0 DECINT2(h0) e0 r0 DECINT1(h0) l1 DECINT1(h1) e1 r1 DECINT1(h1)
 u (N l0 e0 r0) h0 (P l1 e1 r1) h1 = u_ l0 DECINT2(h0) e0 r0 DECINT1(h0) l1 DECINT1(h1) e1 r1 DECINT2(h1)
 u (Z l0 e0 r0) h0 (N l1 e1 r1) h1 = u_ l0 DECINT1(h0) e0 r0 DECINT1(h0) l1 DECINT2(h1) e1 r1 DECINT1(h1)
 u (Z l0 e0 r0) h0 (Z l1 e1 r1) h1 = u_ l0 DECINT1(h0) e0 r0 DECINT1(h0) l1 DECINT1(h1) e1 r1 DECINT1(h1)
 u (Z l0 e0 r0) h0 (P l1 e1 r1) h1 = u_ l0 DECINT1(h0) e0 r0 DECINT1(h0) l1 DECINT1(h1) e1 r1 DECINT2(h1)
 u (P l0 e0 r0) h0 (N l1 e1 r1) h1 = u_ l0 DECINT1(h0) e0 r0 DECINT2(h0) l1 DECINT2(h1) e1 r1 DECINT1(h1)
 u (P l0 e0 r0) h0 (Z l1 e1 r1) h1 = u_ l0 DECINT1(h0) e0 r0 DECINT2(h0) l1 DECINT1(h1) e1 r1 DECINT1(h1)
 u (P l0 e0 r0) h0 (P l1 e1 r1) h1 = u_ l0 DECINT1(h0) e0 r0 DECINT2(h0) l1 DECINT1(h1) e1 r1 DECINT2(h1)
 u_ l0 hl0 e0 r0 hr0 l1 hl1 e1 r1 hr1 =
  case c e0 e1 of
  -- e0 < e1, so (l0 < e0 < e1) & (e0 < e1 < r1)
  Lt   ->                                   case forkR r0 hr0 e1 of
          UBT5(rl0,hrl0,mbe1_,rr0,hrr0)  -> case forkL e0 l1 hl1 of -- (e0  < rl0 < e1) & (e0 < e1  < rr0)
           UBT5(ll1,hll1,mbe0_,lr1,hlr1) ->                         -- (ll1 < e0  < e1) & (e0 < lr1 < e1)
            -- (l0 + ll1) < e0 < (rl0 + lr1) < e1 < (rr0 + r1)
                                            case u  l0  hl0 ll1 hll1 of
            UBT2(l,hl)                   -> case u rl0 hrl0 lr1 hlr1 of
             UBT2(m,hm)                  -> case u rr0 hrr0  r1  hr1 of
              UBT2(r,hr)                 -> case (case mbe1_ of
                                                  Just e1_ -> spliceH m hm e1_ r hr
                                                  Nothing  -> joinH   m hm     r hr
                                                 ) of
               UBT2(t,ht)                -> case mbe0_ of
                                            Just e0_ -> spliceH l hl e0_ t ht
                                            Nothing  -> joinH   l hl     t ht
  -- e0 = e1
  Eq mbe ->                case u l0 hl0 l1 hl1 of
            UBT2(l,hl)  -> case u r0 hr0 r1 hr1 of
             UBT2(r,hr) -> case mbe of
                           Just e  -> spliceH l hl e r hr
                           Nothing -> joinH   l hl   r hr
  -- e1 < e0, so (l1 < e1 < e0) & (e1 < e0 < r0)
  Gt   ->                                   case forkL e0 r1 hr1 of
          UBT5(rl1,hrl1,mbe0_,rr1,hrr1)  -> case forkR l0 hl0 e1 of -- (e1  < rl1 < e0) & (e1 < e0  < rr1)
           UBT5(ll0,hll0,mbe1_,lr0,hlr0) ->                         -- (ll0 < e1  < e0) & (e1 < lr0 < e0)
            -- (ll0 + l1) < e1 < (lr0  + rl1) < e0 < (r0 + rr1)
                                            case u ll0 hll0  l1  hl1 of
            UBT2(l,hl)                   -> case u lr0 hlr0 rl1 hrl1 of
             UBT2(m,hm)                  -> case u  r0  hr0 rr1 hrr1 of
              UBT2(r,hr)                 -> case (case mbe1_ of
                                                  Just e1_ -> spliceH l hl e1_ m hm
                                                  Nothing  -> joinH   l hl     m hm
                                                 ) of
               UBT2(t,ht)                -> case mbe0_ of
                                            Just e0_ -> spliceH t ht e0_ r hr
                                            Nothing  -> joinH   t ht     r hr
 -- We need 2 different versions of fork (L & R) to ensure that comparison arguments are used in
 -- the right order (c e0 e1)
 -- forkL :: e -> AVL e -> UINT -> UBT5(AVL e,UINT,Maybe e,AVL e,UINT)
 forkL e0 t1 ht1 = forkL_ t1 ht1 where
  forkL_  E        _ = UBT5(E, L(0), Just e0, E, L(0))
  forkL_ (N l e r) h = forkL__ l DECINT2(h) e r DECINT1(h)
  forkL_ (Z l e r) h = forkL__ l DECINT1(h) e r DECINT1(h)
  forkL_ (P l e r) h = forkL__ l DECINT1(h) e r DECINT2(h)
  forkL__ l hl e r hr = case c e0 e of
                        Lt       ->                              case forkL_ l hl of
                                    UBT5(l0,hl0,mbe0_,l1,hl1) -> case spliceH l1 hl1 e r hr of
                                     UBT2(l1_,hl1_)           -> UBT5(l0,hl0,mbe0_,l1_,hl1_)
                        Eq mbe0_ -> UBT5(l,hl,mbe0_,r,hr)
                        Gt       ->                              case forkL_ r hr of
                                    UBT5(l0,hl0,mbe0_,l1,hl1) -> case spliceH l hl e l0 hl0 of
                                     UBT2(l0_,hl0_)           -> UBT5(l0_,hl0_,mbe0_,l1,hl1)
 -- forkR :: AVL e -> UINT -> e -> UBT5(AVL e,UINT,Maybe e,AVL e,UINT)
 forkR t0 ht0 e1 = forkR_ t0 ht0 where
  forkR_  E        _ = UBT5(E, L(0), Just e1, E, L(0))
  forkR_ (N l e r) h = forkR__ l DECINT2(h) e r DECINT1(h)
  forkR_ (Z l e r) h = forkR__ l DECINT1(h) e r DECINT1(h)
  forkR_ (P l e r) h = forkR__ l DECINT1(h) e r DECINT2(h)
  forkR__ l hl e r hr = case c e e1 of
                        Lt       ->                              case forkR_ r hr of
                                    UBT5(l0,hl0,mbe1_,l1,hl1) -> case spliceH l hl e l0 hl0 of
                                     UBT2(l0_,hl0_)           -> UBT5(l0_,hl0_,mbe1_,l1,hl1)
                        Eq mbe1_ -> UBT5(l,hl,mbe1_,r,hr)
                        Gt       ->                              case forkR_ l hl of
                                    UBT5(l0,hl0,mbe1_,l1,hl1) -> case spliceH l1 hl1 e r hr of
                                     UBT2(l1_,hl1_)           -> UBT5(l0,hl0,mbe1_,l1_,hl1_)
-----------------------------------------------------------------------
----------------------- unionMaybeH Ends Here -------------------------
-----------------------------------------------------------------------


-- | Uses the supplied combining comparison to evaluate the intersection of two sets represented as
-- sorted AVL trees. This function requires no height information at all for
-- the two tree inputs. The absolute height of the resulting tree is returned also.
--
-- Complexity: Not sure, but I_d appreciate it if someone could figure it out.
intersectionH :: (a -> b -> COrdering c) -> AVL a -> AVL b -> UBT2(AVL c,UINT)
intersectionH comp = i where
 -- i :: AVL a -> AVL b -> UBT2(AVL c,UINT)
 i  E            _           = UBT2(E,L(0))
 i  _            E           = UBT2(E,L(0))
 i (N l0 e0 r0) (N l1 e1 r1) = i_ l0 e0 r0 l1 e1 r1
 i (N l0 e0 r0) (Z l1 e1 r1) = i_ l0 e0 r0 l1 e1 r1
 i (N l0 e0 r0) (P l1 e1 r1) = i_ l0 e0 r0 l1 e1 r1
 i (Z l0 e0 r0) (N l1 e1 r1) = i_ l0 e0 r0 l1 e1 r1
 i (Z l0 e0 r0) (Z l1 e1 r1) = i_ l0 e0 r0 l1 e1 r1
 i (Z l0 e0 r0) (P l1 e1 r1) = i_ l0 e0 r0 l1 e1 r1
 i (P l0 e0 r0) (N l1 e1 r1) = i_ l0 e0 r0 l1 e1 r1
 i (P l0 e0 r0) (Z l1 e1 r1) = i_ l0 e0 r0 l1 e1 r1
 i (P l0 e0 r0) (P l1 e1 r1) = i_ l0 e0 r0 l1 e1 r1
 i_ l0 e0 r0 l1 e1 r1 =
  case comp e0 e1 of
  -- e0 < e1, so (l0 < e0 < e1) & (e0 < e1 < r1)
  Lt   ->                            case forkR r0 e1 of
          UBT5(rl0,_,mbc1,rr0,_)  -> case forkL e0 l1 of -- (e0  < rl0 < e1) & (e0 < e1  < rr0)
           UBT5(ll1,_,mbc0,lr1,_) ->                     -- (ll1 < e0  < e1) & (e0 < lr1 < e1)
            -- (l0 + ll1) < e0 < (rl0 + lr1) < e1 < (rr0 + r1)
                                     case i rr0  r1 of
                    UBT2(r,hr)    -> case i rl0 lr1 of
                     UBT2(m,hm)   -> case i  l0 ll1 of
                      UBT2(l,hl)  -> case (case mbc1 of
                                           Just c1 -> spliceH m hm c1 r hr
                                           Nothing -> joinH   m hm    r hr
                                          ) of
                       UBT2(t,ht) -> case mbc0 of
                                     Just c0 -> spliceH l hl c0 t ht
                                     Nothing -> joinH   l hl    t ht
  -- e0 = e1
  Eq c ->                case i l0 l1 of
          UBT2(l,hl)  -> case i r0 r1 of
           UBT2(r,hr) -> spliceH l hl c r hr
  -- e1 < e0, so (l1 < e1 < e0) & (e1 < e0 < r0)
  Gt   ->                            case forkL e0 r1 of
          UBT5(rl1,_,mbc0,rr1,_)  -> case forkR l0 e1 of -- (e1  < rl1 < e0) & (e1 < e0  < rr1)
           UBT5(ll0,_,mbc1,lr0,_) ->                     -- (ll0 < e1  < e0) & (e1 < lr0 < e0)
            -- (ll0 + l1) < e1 < (lr0 + rl1) < e0 < (r0 + rr1)
                                     case i  r0 rr1 of
                    UBT2(r,hr)    -> case i lr0 rl1 of
                     UBT2(m,hm)   -> case i ll0  l1 of
                      UBT2(l,hl)  -> case (case mbc0 of
                                           Just c0 -> spliceH m hm c0 r hr
                                           Nothing -> joinH   m hm    r hr
                                          ) of
                       UBT2(t,ht) -> case mbc1 of
                                     Just c1 -> spliceH l hl c1 t ht
                                     Nothing -> joinH   l hl    t ht
 -- We need 2 different versions of fork (L & R) to ensure that comparison arguments are used in
 -- the right order (c e0 e1)
 -- forkL :: a -> AVL b -> UBT5(AVL b,UINT,Maybe c,AVL b,UINT)
 forkL e0 t1 = forkL_ t1 L(0) where
  forkL_  E        h = UBT5(E,h,Nothing,E,h) -- Relative heights!!
  forkL_ (N l e r) h = forkL__ l DECINT2(h) e r DECINT1(h)
  forkL_ (Z l e r) h = forkL__ l DECINT1(h) e r DECINT1(h)
  forkL_ (P l e r) h = forkL__ l DECINT1(h) e r DECINT2(h)
  forkL__ l hl e r hr = case comp e0 e of
                        Lt    ->                             case forkL_ l hl of
                                 UBT5(l0,hl0,mbc0,l1,hl1) -> case spliceH l1 hl1 e r hr of
                                  UBT2(l1_,hl1_)          -> UBT5(l0,hl0,mbc0,l1_,hl1_)
                        Eq c0 -> UBT5(l,hl,Just c0,r,hr)
                        Gt    ->                             case forkL_ r hr of
                                 UBT5(l0,hl0,mbc0,l1,hl1) -> case spliceH l hl e l0 hl0 of
                                  UBT2(l0_,hl0_)          -> UBT5(l0_,hl0_,mbc0,l1,hl1)
 -- forkR :: AVL a -> b -> UBT5(AVL a,UINT,Maybe c,AVL a,UINT)
 forkR t0 e1 = forkR_ t0 L(0) where
  forkR_  E        h = UBT5(E,h,Nothing,E,h) -- Relative heights!!
  forkR_ (N l e r) h = forkR__ l DECINT2(h) e r DECINT1(h)
  forkR_ (Z l e r) h = forkR__ l DECINT1(h) e r DECINT1(h)
  forkR_ (P l e r) h = forkR__ l DECINT1(h) e r DECINT2(h)
  forkR__ l hl e r hr = case comp e e1 of
                        Lt    ->                             case forkR_ r hr of
                                 UBT5(l0,hl0,mbc1,l1,hl1) -> case spliceH l hl e l0 hl0 of
                                  UBT2(l0_,hl0_)          -> UBT5(l0_,hl0_,mbc1,l1,hl1)
                        Eq c1 -> UBT5(l,hl,Just c1,r,hr)
                        Gt    ->                             case forkR_ l hl of
                                 UBT5(l0,hl0,mbc1,l1,hl1) -> case spliceH l1 hl1 e r hr of
                                  UBT2(l1_,hl1_)          -> UBT5(l0,hl0,mbc1,l1_,hl1_)
-----------------------------------------------------------------------
---------------------- intersectionH Ends Here ------------------------
-----------------------------------------------------------------------

-- | Similar to _intersectionH_, but the resulting tree does not include elements in cases where
-- the supplied combining comparison returns @(Eq Nothing)@.
--
-- Complexity: Not sure, but I_d appreciate it if someone could figure it out.
intersectionMaybeH :: (a -> b -> COrdering (Maybe c)) -> AVL a -> AVL b -> UBT2(AVL c,UINT)
intersectionMaybeH comp = i where
 -- i :: AVL a -> AVL b -> UBT2(AVL c,UINT)
 i  E            _           = UBT2(E,L(0))
 i  _            E           = UBT2(E,L(0))
 i (N l0 e0 r0) (N l1 e1 r1) = i_ l0 e0 r0 l1 e1 r1
 i (N l0 e0 r0) (Z l1 e1 r1) = i_ l0 e0 r0 l1 e1 r1
 i (N l0 e0 r0) (P l1 e1 r1) = i_ l0 e0 r0 l1 e1 r1
 i (Z l0 e0 r0) (N l1 e1 r1) = i_ l0 e0 r0 l1 e1 r1
 i (Z l0 e0 r0) (Z l1 e1 r1) = i_ l0 e0 r0 l1 e1 r1
 i (Z l0 e0 r0) (P l1 e1 r1) = i_ l0 e0 r0 l1 e1 r1
 i (P l0 e0 r0) (N l1 e1 r1) = i_ l0 e0 r0 l1 e1 r1
 i (P l0 e0 r0) (Z l1 e1 r1) = i_ l0 e0 r0 l1 e1 r1
 i (P l0 e0 r0) (P l1 e1 r1) = i_ l0 e0 r0 l1 e1 r1
 i_ l0 e0 r0 l1 e1 r1 =
  case comp e0 e1 of
  -- e0 < e1, so (l0 < e0 < e1) & (e0 < e1 < r1)
  Lt   ->                            case forkR r0 e1 of
          UBT5(rl0,_,mbc1,rr0,_)  -> case forkL e0 l1 of -- (e0  < rl0 < e1) & (e0 < e1  < rr0)
           UBT5(ll1,_,mbc0,lr1,_) ->                     -- (ll1 < e0  < e1) & (e0 < lr1 < e1)
            -- (l0 + ll1) < e0 < (rl0 + lr1) < e1 < (rr0 + r1)
                                     case i rr0  r1 of
                    UBT2(r,hr)    -> case i rl0 lr1 of
                     UBT2(m,hm)   -> case i  l0 ll1 of
                      UBT2(l,hl)  -> case (case mbc1 of
                                           Just c1 -> spliceH m hm c1 r hr
                                           Nothing -> joinH   m hm    r hr
                                          ) of
                       UBT2(t,ht) -> case mbc0 of
                                     Just c0 -> spliceH l hl c0 t ht
                                     Nothing -> joinH   l hl    t ht
  -- e0 = e1
  Eq mbc ->                case i l0 l1 of
            UBT2(l,hl)  -> case i r0 r1 of
             UBT2(r,hr) -> case mbc of
                           Just c  -> spliceH l hl c r hr
                           Nothing -> joinH   l hl   r hr
  -- e1 < e0, so (l1 < e1 < e0) & (e1 < e0 < r0)
  Gt   ->                            case forkL e0 r1 of
          UBT5(rl1,_,mbc0,rr1,_)  -> case forkR l0 e1 of -- (e1  < rl1 < e0) & (e1 < e0  < rr1)
           UBT5(ll0,_,mbc1,lr0,_) ->                     -- (ll0 < e1  < e0) & (e1 < lr0 < e0)
            -- (ll0 + l1) < e1 < (lr0 + rl1) < e0 < (r0 + rr1)
                                     case i  r0 rr1 of
                    UBT2(r,hr)    -> case i lr0 rl1 of
                     UBT2(m,hm)   -> case i ll0  l1 of
                      UBT2(l,hl)  -> case (case mbc0 of
                                           Just c0 -> spliceH m hm c0 r hr
                                           Nothing -> joinH   m hm    r hr
                                          ) of
                       UBT2(t,ht) -> case mbc1 of
                                     Just c1 -> spliceH l hl c1 t ht
                                     Nothing -> joinH   l hl    t ht
 -- We need 2 different versions of fork (L & R) to ensure that comparison arguments are used in
 -- the right order (c e0 e1)
 -- forkL :: a -> AVL b -> UBT5(AVL b,UINT,Maybe c,AVL b,UINT)
 forkL e0 t1 = forkL_ t1 L(0) where
  forkL_  E        h = UBT5(E,h,Nothing,E,h) -- Relative heights!!
  forkL_ (N l e r) h = forkL__ l DECINT2(h) e r DECINT1(h)
  forkL_ (Z l e r) h = forkL__ l DECINT1(h) e r DECINT1(h)
  forkL_ (P l e r) h = forkL__ l DECINT1(h) e r DECINT2(h)
  forkL__ l hl e r hr = case comp e0 e of
                        Lt       ->                             case forkL_ l hl of
                                    UBT5(l0,hl0,mbc0,l1,hl1) -> case spliceH l1 hl1 e r hr of
                                     UBT2(l1_,hl1_)          -> UBT5(l0,hl0,mbc0,l1_,hl1_)
                        Eq mbc0_ -> UBT5(l,hl,mbc0_,r,hr)
                        Gt       ->                             case forkL_ r hr of
                                    UBT5(l0,hl0,mbc0,l1,hl1) -> case spliceH l hl e l0 hl0 of
                                     UBT2(l0_,hl0_)          -> UBT5(l0_,hl0_,mbc0,l1,hl1)
 -- forkR :: AVL a -> b -> UBT5(AVL a,UINT,Maybe c,AVL a,UINT)
 forkR t0 e1 = forkR_ t0 L(0) where
  forkR_  E        h = UBT5(E,h,Nothing,E,h) -- Relative heights!!
  forkR_ (N l e r) h = forkR__ l DECINT2(h) e r DECINT1(h)
  forkR_ (Z l e r) h = forkR__ l DECINT1(h) e r DECINT1(h)
  forkR_ (P l e r) h = forkR__ l DECINT1(h) e r DECINT2(h)
  forkR__ l hl e r hr = case comp e e1 of
                        Lt       ->                             case forkR_ r hr of
                                    UBT5(l0,hl0,mbc1,l1,hl1) -> case spliceH l hl e l0 hl0 of
                                     UBT2(l0_,hl0_)          -> UBT5(l0_,hl0_,mbc1,l1,hl1)
                        Eq mbc1_ -> UBT5(l,hl,mbc1_,r,hr)
                        Gt       ->                             case forkR_ l hl of
                                    UBT5(l0,hl0,mbc1,l1,hl1) -> case spliceH l1 hl1 e r hr of
                                     UBT2(l1_,hl1_)          -> UBT5(l0,hl0,mbc1,l1_,hl1_)
-----------------------------------------------------------------------
-------------------- intersectionMaybeH Ends Here ---------------------
-----------------------------------------------------------------------

-- | Uses the supplied comparison to evaluate the difference between two sets represented as
-- sorted AVL trees.
--
-- N.B. This function works with relative heights for the first tree and needs no height
-- information for the second tree, so it_s OK to initialise the height of the first to zero,
-- rather than calculating the absolute height. However, if you do this the height of the resulting
-- tree will be incorrect also (it will have the same fixed offset as the first tree).
--
-- Complexity: Not sure, but I_d appreciate it if someone could figure it out.
differenceH :: (a -> b -> Ordering) -> AVL a -> UINT -> AVL b -> UBT2(AVL a,UINT)
differenceH comp = d where
 -- d :: AVL a -> UINT -> AVL b -> UBT2(AVL a,UINT)
 d  E           h0  _           = UBT2(E ,h0) -- Relative heights!!
 d  t0          h0  E           = UBT2(t0,h0)
 d (N l0 e0 r0) h0 (N l1 e1 r1) = d_ l0 DECINT2(h0) e0 r0 DECINT1(h0) l1 e1 r1
 d (N l0 e0 r0) h0 (Z l1 e1 r1) = d_ l0 DECINT2(h0) e0 r0 DECINT1(h0) l1 e1 r1
 d (N l0 e0 r0) h0 (P l1 e1 r1) = d_ l0 DECINT2(h0) e0 r0 DECINT1(h0) l1 e1 r1
 d (Z l0 e0 r0) h0 (N l1 e1 r1) = d_ l0 DECINT1(h0) e0 r0 DECINT1(h0) l1 e1 r1
 d (Z l0 e0 r0) h0 (Z l1 e1 r1) = d_ l0 DECINT1(h0) e0 r0 DECINT1(h0) l1 e1 r1
 d (Z l0 e0 r0) h0 (P l1 e1 r1) = d_ l0 DECINT1(h0) e0 r0 DECINT1(h0) l1 e1 r1
 d (P l0 e0 r0) h0 (N l1 e1 r1) = d_ l0 DECINT1(h0) e0 r0 DECINT2(h0) l1 e1 r1
 d (P l0 e0 r0) h0 (Z l1 e1 r1) = d_ l0 DECINT1(h0) e0 r0 DECINT2(h0) l1 e1 r1
 d (P l0 e0 r0) h0 (P l1 e1 r1) = d_ l0 DECINT1(h0) e0 r0 DECINT2(h0) l1 e1 r1
 d_ l0 hl0 e0 r0 hr0 l1 e1 r1 =
  case comp e0 e1 of
  -- e0 < e1, so (l0 < e0 < e1) & (e0 < e1 < r1)
  LT ->                                 case forkR r0 hr0 e1 of
        UBT4(rl0,hrl0,    rr0,hrr0)  -> case forkL e0 l1     of -- (e0  < rl0 < e1) & (e0 < e1  < rr0)
         UBT5(ll1,_   ,be0,lr1,_   ) ->                         -- (ll1 < e0  < e1) & (e0 < lr1 < e1)
          -- (l0 + ll1) < e0 < (rl0 + lr1) < e1 < (rr0 + r1)
                           case d rr0 hrr0  r1  of  -- right
          UBT2(r,hr)    -> case d rl0 hrl0 lr1  of  -- middle
           UBT2(m,hm)   -> case d  l0  hl0 ll1  of  -- left
            UBT2(l,hl)  -> case joinH m hm r hr of  -- join middle right
             UBT2(y,hy) -> if be0
                           then spliceH l hl e0 y hy
                           else joinH   l hl    y hy
  -- e0 = e1
  EQ ->                case d r0 hr0 r1 of -- right
        UBT2(r,hr)  -> case d l0 hl0 l1 of -- left
         UBT2(l,hl) -> joinH l hl r hr
  -- e1 < e0, so (l1 < e1 < e0) & (e1 < e0 < r0)
  GT ->                                 case forkL e0 r1     of
        UBT5(rl1,_   ,be0,rr1,_   )  -> case forkR l0 hl0 e1 of -- (e1  < rl1 < e0) & (e1 < e0  < rr1)
         UBT4(ll0,hll0,    lr0,hlr0) ->                         -- (ll0 < e1  < e0) & (e1 < lr0 < e0)
            -- (ll0 + l1) < e1 < (lr0 + rl1) < e0 < (r0 + rr1)
                           case d  r0  hr0 rr1  of  -- right
          UBT2(r,hr)    -> case d lr0 hlr0 rl1  of  -- middle
           UBT2(m,hm)   -> case d ll0 hll0  l1  of  -- left
            UBT2(l,hl)  -> case joinH l hl m hm of  -- join left middle
             UBT2(x,hx) -> if be0
                           then spliceH x hx e0 r hr
                           else joinH   x hx    r hr
 -- We need 2 different versions of fork (L & R) to ensure that comparison arguments are used in
 -- the right order (c e0 e1), and for other algorithmic reasons in this case.
 -- N.B. forkL returns True if t1 does not contain e0 (I.E. If e0 is an element of the result).
 -- forkL :: a -> AVL b -> UBT5(AVL b, UINT, Bool, AVL b, UINT)
 forkL e0 t1 = forkL_ t1 L(0) where
  forkL_  E        h = UBT5(E,h,True,E,h) -- Relative heights!!
  forkL_ (N l e r) h = forkL__ l DECINT2(h) e r DECINT1(h)
  forkL_ (Z l e r) h = forkL__ l DECINT1(h) e r DECINT1(h)
  forkL_ (P l e r) h = forkL__ l DECINT1(h) e r DECINT2(h)
  forkL__ l hl e r hr = case comp e0 e of
                        LT ->                            case forkL_ l hl           of
                              UBT5(x0,hx0,be0,x1,hx1) -> case spliceH x1 hx1 e r hr of
                               UBT2(x1_,hx1_)         -> UBT5(x0,hx0,be0,x1_,hx1_)
                        EQ -> UBT5(l,hl,False,r,hr)
                        GT ->                            case forkL_ r hr           of
                              UBT5(x0,hx0,be0,x1,hx1) -> case spliceH l hl e x0 hx0 of
                               UBT2(x0_,hx0_)         -> UBT5(x0_,hx0_,be0,x1,hx1)
 -- N.B. forkR t0, according to e1. Neither of the resulting forks will contain an element
 -- which is "equal" to e1.
 -- forkR :: AVL a -> UINT -> b -> UBT4(AVL a, UINT, AVL a, UINT)
 forkR t0 ht0 e1 = forkR_ t0 ht0 where
  forkR_  E        h = UBT4(E,h,E,h) -- Relative heights!!
  forkR_ (N l e r) h = forkR__ l DECINT2(h) e r DECINT1(h)
  forkR_ (Z l e r) h = forkR__ l DECINT1(h) e r DECINT1(h)
  forkR_ (P l e r) h = forkR__ l DECINT1(h) e r DECINT2(h)
  forkR__ l hl e r hr = case comp e e1 of
                        LT ->                        case forkR_ r hr           of
                              UBT4(x0,hx0,x1,hx1) -> case spliceH l hl e x0 hx0 of
                               UBT2(x0_,hx0_)     -> UBT4(x0_,hx0_,x1,hx1)
                        EQ -> UBT4(l,hl,r,hr)  -- e1 is dropped.
                        GT ->                        case forkR_ l hl           of
                              UBT4(x0,hx0,x1,hx1) -> case spliceH x1 hx1 e r hr of
                               UBT2(x1_,hx1_)     -> UBT4(x0,hx0,x1_,hx1_)
-----------------------------------------------------------------------
----------------------- differenceH Ends Here -------------------------
-----------------------------------------------------------------------

-- | Similar to _differenceH_, but the resulting tree also includes those elements a\_ for which the
-- combining comparison returns @Eq (Just a\_)@.
--
-- N.B. This function works with relative heights for the first tree and needs no height
-- information for the second tree, so it_s OK to initialise the height of the first to zero,
-- rather than calculating the absolute height. However, if you do this the height of the resulting
-- tree will be incorrect also (it will have the same fixed offset as the first tree).
--
-- Complexity: Not sure, but I_d appreciate it if someone could figure it out.
differenceMaybeH :: (a -> b -> COrdering (Maybe a)) -> AVL a -> UINT -> AVL b -> UBT2(AVL a,UINT)
differenceMaybeH comp = d where
 -- d :: AVL a -> UINT -> AVL b -> UBT2(AVL a,UINT)
 d  E           h0  _           = UBT2(E ,h0) -- Relative heights!!
 d  t0          h0  E           = UBT2(t0,h0)
 d (N l0 e0 r0) h0 (N l1 e1 r1) = d_ l0 DECINT2(h0) e0 r0 DECINT1(h0) l1 e1 r1
 d (N l0 e0 r0) h0 (Z l1 e1 r1) = d_ l0 DECINT2(h0) e0 r0 DECINT1(h0) l1 e1 r1
 d (N l0 e0 r0) h0 (P l1 e1 r1) = d_ l0 DECINT2(h0) e0 r0 DECINT1(h0) l1 e1 r1
 d (Z l0 e0 r0) h0 (N l1 e1 r1) = d_ l0 DECINT1(h0) e0 r0 DECINT1(h0) l1 e1 r1
 d (Z l0 e0 r0) h0 (Z l1 e1 r1) = d_ l0 DECINT1(h0) e0 r0 DECINT1(h0) l1 e1 r1
 d (Z l0 e0 r0) h0 (P l1 e1 r1) = d_ l0 DECINT1(h0) e0 r0 DECINT1(h0) l1 e1 r1
 d (P l0 e0 r0) h0 (N l1 e1 r1) = d_ l0 DECINT1(h0) e0 r0 DECINT2(h0) l1 e1 r1
 d (P l0 e0 r0) h0 (Z l1 e1 r1) = d_ l0 DECINT1(h0) e0 r0 DECINT2(h0) l1 e1 r1
 d (P l0 e0 r0) h0 (P l1 e1 r1) = d_ l0 DECINT1(h0) e0 r0 DECINT2(h0) l1 e1 r1
 d_ l0 hl0 e0 r0 hr0 l1 e1 r1 =
  case comp e0 e1 of
  -- e0 < e1, so (l0 < e0 < e1) & (e0 < e1 < r1)
  Lt ->                                  case forkR r0 hr0 e1 of
        UBT5( rl0,hrl0,mbe1,rr0,hrr0) -> case forkL e0 l1     of -- (e0  < rl0 < e1) & (e0 < e1  < rr0)
         UBT5(ll1,_   ,mbe0,lr1,_   ) ->                         -- (ll1 < e0  < e1) & (e0 < lr1 < e1)
          -- (l0 + ll1) < e0 < (rl0 + lr1) < e1 < (rr0 + r1)
                           case d rr0 hrr0  r1  of  -- right
          UBT2(r,hr)    -> case d rl0 hrl0 lr1  of  -- middle
           UBT2(m,hm)   -> case d  l0  hl0 ll1  of  -- left
            UBT2(l,hl)  -> case (case mbe1 of
                                 Just e1_ -> spliceH m hm e1_ r hr      -- splice middle right with e1_
                                 Nothing  -> joinH   m hm     r hr) of  -- join   middle right
             UBT2(y,hy) -> case mbe0 of
                           Just e0_ -> spliceH l hl e0_ y hy
                           Nothing  -> joinH   l hl    y hy
  -- e0 = e1
  Eq mbe0 ->           case d r0 hr0 r1 of -- right
        UBT2(r,hr)  -> case d l0 hl0 l1 of -- left
         UBT2(l,hl) -> case mbe0 of
                       Just e0_ -> spliceH l hl e0_ r hr -- retain updated e0
                       Nothing  -> joinH   l hl     r hr -- discard original e0
  -- e1 < e0, so (l1 < e1 < e0) & (e1 < e0 < r0)
  Gt ->                                  case forkL e0 r1     of
        UBT5( rl1,_   ,mbe0,rr1,_   ) -> case forkR l0 hl0 e1 of -- (e1  < rl1 < e0) & (e1 < e0  < rr1)
         UBT5(ll0,hll0,mbe1,lr0,hlr0) ->                         -- (ll0 < e1  < e0) & (e1 < lr0 < e0)
            -- (ll0 + l1) < e1 < (lr0 + rl1) < e0 < (r0 + rr1)
                           case d  r0  hr0 rr1  of  -- right
          UBT2(r,hr)    -> case d lr0 hlr0 rl1  of  -- middle
           UBT2(m,hm)   -> case d ll0 hll0  l1  of  -- left
            UBT2(l,hl)  -> case (case mbe1 of
                                 Just e1_ -> spliceH l hl e1_ m hm      -- splice left middle with e1_
                                 Nothing  -> joinH   l hl     m hm) of  -- join left middle
             UBT2(x,hx) -> case mbe0 of
                           Just e0_ -> spliceH x hx e0_ r hr
                           Nothing  -> joinH   x hx     r hr
 -- We need 2 different versions of fork (L & R) to ensure that comparison arguments are used in
 -- the right order (c e0 e1), and for other algorithmic reasons in this case.
 -- N.B. forkL returns (Just e0) if t1 does not contain e0 (I.E. If original e0 is an element of the result).
 -- forkL :: a -> AVL b -> UBT5(AVL b, UINT, Maybe a, AVL b, UINT)
 forkL e0 t1 = forkL_ t1 L(0) where
  forkL_  E        h = UBT5(E,h,Just e0,E,h) -- Relative heights!!
  forkL_ (N l e r) h = forkL__ l DECINT2(h) e r DECINT1(h)
  forkL_ (Z l e r) h = forkL__ l DECINT1(h) e r DECINT1(h)
  forkL_ (P l e r) h = forkL__ l DECINT1(h) e r DECINT2(h)
  forkL__ l hl e r hr = case comp e0 e of
                        Lt      ->                             case forkL_ l hl           of
                                   UBT5(x0,hx0,mbe0,x1,hx1) -> case spliceH x1 hx1 e r hr of
                                    UBT2(x1_,hx1_)          -> UBT5(x0,hx0,mbe0,x1_,hx1_)
                        Eq mbe0 -> UBT5(l,hl,mbe0,r,hr)
                        Gt      ->                             case forkL_ r hr           of
                                   UBT5(x0,hx0,mbe0,x1,hx1) -> case spliceH l hl e x0 hx0 of
                                    UBT2(x0_,hx0_)          -> UBT5(x0_,hx0_,mbe0,x1,hx1)
 -- N.B. forkR t0, according to e1. Returns Nothing if t0 does not contain e1.
 -- forkR :: AVL a -> UINT -> b -> UBT5(AVL a, UINT, Maybe a, AVL a, UINT)
 forkR t0 ht0 e1 = forkR_ t0 ht0 where
  forkR_  E        h = UBT5(E,h,Nothing,E,h) -- Relative heights!!
  forkR_ (N l e r) h = forkR__ l DECINT2(h) e r DECINT1(h)
  forkR_ (Z l e r) h = forkR__ l DECINT1(h) e r DECINT1(h)
  forkR_ (P l e r) h = forkR__ l DECINT1(h) e r DECINT2(h)
  forkR__ l hl e r hr = case comp e e1 of
                        Lt      ->                             case forkR_ r hr           of
                                   UBT5(x0,hx0,mbe1,x1,hx1) -> case spliceH l hl e x0 hx0 of
                                    UBT2(x0_,hx0_)          -> UBT5(x0_,hx0_,mbe1,x1,hx1)
                        Eq mbe1 -> UBT5(l,hl,mbe1,r,hr)
                        Gt      ->                             case forkR_ l hl           of
                                   UBT5(x0,hx0,mbe1,x1,hx1) -> case spliceH x1 hx1 e r hr of
                                    UBT2(x1_,hx1_)          -> UBT5(x0,hx0,mbe1,x1_,hx1_)
-----------------------------------------------------------------------
--------------------- differenceMaybeH Ends Here ----------------------
-----------------------------------------------------------------------

-- | The symmetric difference is the set of elements which occur in one set or the other but /not both/.
--
-- Complexity: Not sure, but I_d appreciate it if someone could figure it out.
symDifferenceH :: (e -> e -> Ordering) -> AVL e -> UINT -> AVL e -> UINT -> UBT2(AVL e,UINT)
symDifferenceH c = u where
 -- u :: AVL e -> UINT -> AVL e -> UINT -> UBT2(AVL e,UINT)
 u  E           _   t1          h1 = UBT2(t1,h1)
 u  t0          h0  E           _  = UBT2(t0,h0)
 u (N l0 e0 r0) h0 (N l1 e1 r1) h1 = u_ l0 DECINT2(h0) e0 r0 DECINT1(h0) l1 DECINT2(h1) e1 r1 DECINT1(h1)
 u (N l0 e0 r0) h0 (Z l1 e1 r1) h1 = u_ l0 DECINT2(h0) e0 r0 DECINT1(h0) l1 DECINT1(h1) e1 r1 DECINT1(h1)
 u (N l0 e0 r0) h0 (P l1 e1 r1) h1 = u_ l0 DECINT2(h0) e0 r0 DECINT1(h0) l1 DECINT1(h1) e1 r1 DECINT2(h1)
 u (Z l0 e0 r0) h0 (N l1 e1 r1) h1 = u_ l0 DECINT1(h0) e0 r0 DECINT1(h0) l1 DECINT2(h1) e1 r1 DECINT1(h1)
 u (Z l0 e0 r0) h0 (Z l1 e1 r1) h1 = u_ l0 DECINT1(h0) e0 r0 DECINT1(h0) l1 DECINT1(h1) e1 r1 DECINT1(h1)
 u (Z l0 e0 r0) h0 (P l1 e1 r1) h1 = u_ l0 DECINT1(h0) e0 r0 DECINT1(h0) l1 DECINT1(h1) e1 r1 DECINT2(h1)
 u (P l0 e0 r0) h0 (N l1 e1 r1) h1 = u_ l0 DECINT1(h0) e0 r0 DECINT2(h0) l1 DECINT2(h1) e1 r1 DECINT1(h1)
 u (P l0 e0 r0) h0 (Z l1 e1 r1) h1 = u_ l0 DECINT1(h0) e0 r0 DECINT2(h0) l1 DECINT1(h1) e1 r1 DECINT1(h1)
 u (P l0 e0 r0) h0 (P l1 e1 r1) h1 = u_ l0 DECINT1(h0) e0 r0 DECINT2(h0) l1 DECINT1(h1) e1 r1 DECINT2(h1)
 u_ l0 hl0 e0 r0 hr0 l1 hl1 e1 r1 hr1 =
  case c e0 e1 of
  -- e0 < e1, so (l0 < e0 < e1) & (e0 < e1 < r1)
  LT ->                                 case forkR r0 hr0 e1 of
        UBT5(rl0,hrl0,be1,rr0,hrr0)  -> case forkL e0 l1 hl1 of -- (e0  < rl0 < e1) & (e0 < e1  < rr0)
         UBT5(ll1,hll1,be0,lr1,hlr1) ->                         -- (ll1 < e0  < e1) & (e0 < lr1 < e1)
          -- (l0 + ll1) < e0 < (rl0 + lr1) < e1 < (rr0 + r1)
                                        case u  l0  hl0 ll1 hll1 of
          UBT2(l,hl)                 -> case u rl0 hrl0 lr1 hlr1 of
           UBT2(m,hm)                -> case u rr0 hrr0  r1  hr1 of
            UBT2(r,hr)               -> case (if be1 then spliceH m hm e1 r hr
                                                     else joinH   m hm    r hr
                                             ) of
             UBT2(t,ht)              -> if be0 then spliceH l hl e0 t ht
                                               else joinH   l hl    t ht
  -- e0 = e1
  EQ ->                case u l0 hl0 l1 hl1 of
        UBT2(l,hl)  -> case u r0 hr0 r1 hr1 of
         UBT2(r,hr) -> joinH l hl r hr
  -- e1 < e0, so (l1 < e1 < e0) & (e1 < e0 < r0)
  GT ->                                 case forkL e0 r1 hr1 of
        UBT5(rl1,hrl1,be0,rr1,hrr1)  -> case forkR l0 hl0 e1 of -- (e1  < rl1 < e0) & (e1 < e0  < rr1)
         UBT5(ll0,hll0,be1,lr0,hlr0) ->                         -- (ll0 < e1  < e0) & (e1 < lr0 < e0)
          -- (ll0 + l1) < e1 < (lr0  + rl1) < e0 < (r0 + rr1)
                                        case u ll0 hll0  l1  hl1 of
          UBT2(l,hl)                 -> case u lr0 hlr0 rl1 hrl1 of
           UBT2(m,hm)                -> case u  r0  hr0 rr1 hrr1 of
            UBT2(r,hr)               -> case (if be1 then spliceH l hl e1 m hm
                                                     else joinH   l hl    m hm
                                             ) of
             UBT2(t,ht)              -> if be0 then spliceH t ht e0 r hr
                                               else joinH   t ht    r hr
 -- We need 2 different versions of fork (L & R) to ensure that comparison arguments are used in
 -- the right order (c e0 e1)
 -- forkL :: e -> AVL e -> UINT -> UBT5(AVL e,UINT,Bool,AVL e,UINT)
 forkL e0 t1 ht1 = forkL_ t1 ht1 where
  forkL_  E        _ = UBT5(E, L(0), True, E, L(0))
  forkL_ (N l e r) h = forkL__ l DECINT2(h) e r DECINT1(h)
  forkL_ (Z l e r) h = forkL__ l DECINT1(h) e r DECINT1(h)
  forkL_ (P l e r) h = forkL__ l DECINT1(h) e r DECINT2(h)
  forkL__ l hl e r hr = case c e0 e of
                        LT ->                            case forkL_ l hl of
                              UBT5(l0,hl0,be0,l1,hl1) -> case spliceH l1 hl1 e r hr of
                               UBT2(l1_,hl1_)         -> UBT5(l0,hl0,be0,l1_,hl1_)
                        EQ -> UBT5(l,hl,False,r,hr)
                        GT ->                            case forkL_ r hr of
                              UBT5(l0,hl0,be0,l1,hl1) -> case spliceH l hl e l0 hl0 of
                               UBT2(l0_,hl0_)         -> UBT5(l0_,hl0_,be0,l1,hl1)
 -- forkR :: AVL e -> UINT -> e -> UBT5(AVL e,UINT,Bool,AVL e,UINT)
 forkR t0 ht0 e1 = forkR_ t0 ht0 where
  forkR_  E        _ = UBT5(E, L(0), True, E, L(0))
  forkR_ (N l e r) h = forkR__ l DECINT2(h) e r DECINT1(h)
  forkR_ (Z l e r) h = forkR__ l DECINT1(h) e r DECINT1(h)
  forkR_ (P l e r) h = forkR__ l DECINT1(h) e r DECINT2(h)
  forkR__ l hl e r hr = case c e e1 of
                        LT ->                            case forkR_ r hr of
                              UBT5(l0,hl0,be1,l1,hl1) -> case spliceH l hl e l0 hl0 of
                               UBT2(l0_,hl0_)         -> UBT5(l0_,hl0_,be1,l1,hl1)
                        EQ -> UBT5(l,hl,False,r,hr)
                        GT ->                            case forkR_ l hl of
                              UBT5(l0,hl0,be1,l1,hl1) -> case spliceH l1 hl1 e r hr of
                               UBT2(l1_,hl1_)         -> UBT5(l0,hl0,be1,l1_,hl1_)
-----------------------------------------------------------------------
----------------------- symDifferenceH Ends Here ----------------------
-----------------------------------------------------------------------