-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | A compiler front-end generator. -- -- The BNF Converter is a compiler construction tool generating a -- compiler front-end from a Labelled BNF grammar. It was originally -- written to generate Haskell, but can also be used for generating Java, -- C, C++, C#, Ocaml and XML. -- -- Given a Labelled BNF grammar the tool produces: an abstract syntax as -- a Haskell, C, C++, C#, Ocaml module or Java directory, a case skeleton -- for the abstract syntax in the same language, an Alex, JLex, or Flex -- lexer generator file, a Happy, CUP, Bison, or Antlr parser generator -- file, a pretty-printer as a Haskell, Java, C, C++, C#, or Ocaml -- module, an XML representation, a Latex file containing a readable -- specification of the language. @package BNFC @version 2.8.2 module Data.Pair data Pair a (:/:) :: a -> a -> Pair a [leftOf] :: Pair a -> a [rightOf] :: Pair a -> a infixl 2 :/: instance GHC.Show.Show a => GHC.Show.Show (Data.Pair.Pair a) instance GHC.Base.Functor Data.Pair.Pair instance GHC.Base.Applicative Data.Pair.Pair module Algebra.RingUtils -- | Append two lists, i.e., -- --
-- [x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn] -- [x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...] ---- -- If the first list is not finite, the result is the first list. (++) :: () => [a] -> [a] -> [a] infixr 5 ++ -- | The value of seq a b is bottom if a is bottom, and -- otherwise equal to b. In other words, it evaluates the first -- argument a to weak head normal form (WHNF). seq is -- usually introduced to improve performance by avoiding unneeded -- laziness. -- -- A note on evaluation order: the expression seq a b does -- not guarantee that a will be evaluated before -- b. The only guarantee given by seq is that the both -- a and b will be evaluated before seq -- returns a value. In particular, this means that b may be -- evaluated before a. If you need to guarantee a specific order -- of evaluation, you must use the function pseq from the -- "parallel" package. seq :: () => a -> b -> b -- | filter, applied to a predicate and a list, returns the list of -- those elements that satisfy the predicate; i.e., -- --
-- filter p xs = [ x | x <- xs, p x] --filter :: () => (a -> Bool) -> [a] -> [a] -- | zip takes two lists and returns a list of corresponding pairs. -- --
-- zip [1, 2] ['a', 'b'] = [(1, 'a'), (2, 'b')] ---- -- If one input list is short, excess elements of the longer list are -- discarded: -- --
-- zip [1] ['a', 'b'] = [(1, 'a')] -- zip [1, 2] ['a'] = [(1, 'a')] ---- -- zip is right-lazy: -- --
-- zip [] _|_ = [] -- zip _|_ [] = _|_ --zip :: () => [a] -> [b] -> [(a, b)] -- | The print function outputs a value of any printable type to the -- standard output device. Printable types are those that are instances -- of class Show; print converts values to strings for -- output using the show operation and adds a newline. -- -- For example, a program to print the first 20 integers and their powers -- of 2 could be written as: -- --
-- main = print ([(n, 2^n) | n <- [0..19]]) --print :: Show a => a -> IO () -- | Extract the first component of a pair. fst :: () => (a, b) -> a -- | Extract the second component of a pair. snd :: () => (a, b) -> b -- | otherwise is defined as the value True. It helps to make -- guards more readable. eg. -- --
-- f x | x < 0 = ... -- | otherwise = ... --otherwise :: Bool -- | map f xs is the list obtained by applying f -- to each element of xs, i.e., -- --
-- map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn] -- map f [x1, x2, ...] == [f x1, f x2, ...] --map :: () => (a -> b) -> [a] -> [b] -- | Application operator. This operator is redundant, since ordinary -- application (f x) means the same as (f $ x). -- However, $ has low, right-associative binding precedence, so it -- sometimes allows parentheses to be omitted; for example: -- --
-- f $ g $ h x = f (g (h x)) ---- -- It is also useful in higher-order situations, such as map -- ($ 0) xs, or zipWith ($) fs xs. -- -- Note that ($) is levity-polymorphic in its result type, so -- that foo $ True where foo :: Bool -> Int# is well-typed ($) :: () => (a -> b) -> a -> b infixr 0 $ -- | general coercion from integral types fromIntegral :: (Integral a, Num b) => a -> b -- | general coercion to fractional types realToFrac :: (Real a, Fractional b) => a -> b -- | The Bounded class is used to name the upper and lower limits of -- a type. Ord is not a superclass of Bounded since types -- that are not totally ordered may also have upper and lower bounds. -- -- The Bounded class may be derived for any enumeration type; -- minBound is the first constructor listed in the data -- declaration and maxBound is the last. Bounded may also -- be derived for single-constructor datatypes whose constituent types -- are in Bounded. class Bounded a minBound :: Bounded a => a maxBound :: Bounded a => a -- | Class Enum defines operations on sequentially ordered types. -- -- The enumFrom... methods are used in Haskell's translation of -- arithmetic sequences. -- -- Instances of Enum may be derived for any enumeration type -- (types whose constructors have no fields). The nullary constructors -- are assumed to be numbered left-to-right by fromEnum from -- 0 through n-1. See Chapter 10 of the Haskell -- Report for more details. -- -- For any type that is an instance of class Bounded as well as -- Enum, the following should hold: -- --
-- enumFrom x = enumFromTo x maxBound -- enumFromThen x y = enumFromThenTo x y bound -- where -- bound | fromEnum y >= fromEnum x = maxBound -- | otherwise = minBound --class Enum a -- | the successor of a value. For numeric types, succ adds 1. succ :: Enum a => a -> a -- | the predecessor of a value. For numeric types, pred subtracts -- 1. pred :: Enum a => a -> a -- | Convert from an Int. toEnum :: Enum a => Int -> a -- | Convert to an Int. It is implementation-dependent what -- fromEnum returns when applied to a value that is too large to -- fit in an Int. fromEnum :: Enum a => a -> Int -- | Used in Haskell's translation of [n..] with [n..] = -- enumFrom n, a possible implementation being enumFrom n = n : -- enumFrom (succ n). For example: -- --
enumFrom 4 :: [Integer] = [4,5,6,7,...]
enumFrom 6 :: [Int] = [6,7,8,9,...,maxBound :: -- Int]
enumFromThen 4 6 :: [Integer] = [4,6,8,10...]
enumFromThen 6 2 :: [Int] = [6,2,-2,-6,...,minBound :: -- Int]
enumFromTo 6 10 :: [Int] = [6,7,8,9,10]
enumFromTo 42 1 :: [Integer] = []
enumFromThenTo 4 2 -6 :: [Integer] = -- [4,2,0,-2,-4,-6]
enumFromThenTo 6 8 2 :: [Int] = []
-- (x `quot` y)*y + (x `rem` y) == x --rem :: Integral a => a -> a -> a -- | integer division truncated toward negative infinity div :: Integral a => a -> a -> a -- | integer modulus, satisfying -- --
-- (x `div` y)*y + (x `mod` y) == x --mod :: Integral a => a -> a -> a -- | simultaneous quot and rem quotRem :: Integral a => a -> a -> (a, a) -- | simultaneous div and mod divMod :: Integral a => a -> a -> (a, a) -- | conversion to Integer toInteger :: Integral a => a -> Integer infixl 7 `quot` infixl 7 `rem` infixl 7 `div` infixl 7 `mod` -- | The Monad class defines the basic operations over a -- monad, a concept from a branch of mathematics known as -- category theory. From the perspective of a Haskell programmer, -- however, it is best to think of a monad as an abstract datatype -- of actions. Haskell's do expressions provide a convenient -- syntax for writing monadic expressions. -- -- Instances of Monad should satisfy the following laws: -- -- -- -- Furthermore, the Monad and Applicative operations should -- relate as follows: -- -- -- -- The above laws imply: -- -- -- -- and that pure and (<*>) satisfy the applicative -- functor laws. -- -- The instances of Monad for lists, Maybe and IO -- defined in the Prelude satisfy these laws. class Applicative m => Monad (m :: Type -> Type) -- | Sequentially compose two actions, passing any value produced by the -- first as an argument to the second. (>>=) :: Monad m => m a -> (a -> m b) -> m b -- | Sequentially compose two actions, discarding any value produced by the -- first, like sequencing operators (such as the semicolon) in imperative -- languages. (>>) :: Monad m => m a -> m b -> m b -- | Inject a value into the monadic type. return :: Monad m => a -> m a -- | Fail with a message. This operation is not part of the mathematical -- definition of a monad, but is invoked on pattern-match failure in a -- do expression. -- -- As part of the MonadFail proposal (MFP), this function is moved to its -- own class MonadFail (see Control.Monad.Fail for more -- details). The definition here will be removed in a future release. fail :: Monad m => String -> m a infixl 1 >>= infixl 1 >> -- | The Functor class is used for types that can be mapped over. -- Instances of Functor should satisfy the following laws: -- --
-- fmap id == id -- fmap (f . g) == fmap f . fmap g ---- -- The instances of Functor for lists, Maybe and IO -- satisfy these laws. class Functor (f :: Type -> Type) fmap :: Functor f => (a -> b) -> f a -> f b -- | Replace all locations in the input with the same value. The default -- definition is fmap . const, but this may be -- overridden with a more efficient version. (<$) :: Functor f => a -> f b -> f a infixl 4 <$ -- | Basic numeric class. -- -- The Haskell Report defines no laws for Num. However, '(+)' and -- '(*)' are customarily expected to define a ring and have the following -- properties: -- --
-- abs x * signum x == x ---- -- For real numbers, the signum is either -1 (negative), -- 0 (zero) or 1 (positive). signum :: Num a => a -> a -- | Conversion from an Integer. An integer literal represents the -- application of the function fromInteger to the appropriate -- value of type Integer, so such literals have type -- (Num a) => a. fromInteger :: Num a => Integer -> a infixl 6 - -- | The Ord class is used for totally ordered datatypes. -- -- Instances of Ord can be derived for any user-defined datatype -- whose constituent types are in Ord. The declared order of the -- constructors in the data declaration determines the ordering in -- derived Ord instances. The Ordering datatype allows a -- single comparison to determine the precise ordering of two objects. -- -- The Haskell Report defines no laws for Ord. However, -- <= is customarily expected to implement a non-strict partial -- order and have the following properties: -- --
-- infixr 5 :^: -- data Tree a = Leaf a | Tree a :^: Tree a ---- -- the derived instance of Read in Haskell 2010 is equivalent to -- --
-- instance (Read a) => Read (Tree a) where
--
-- readsPrec d r = readParen (d > app_prec)
-- (\r -> [(Leaf m,t) |
-- ("Leaf",s) <- lex r,
-- (m,t) <- readsPrec (app_prec+1) s]) r
--
-- ++ readParen (d > up_prec)
-- (\r -> [(u:^:v,w) |
-- (u,s) <- readsPrec (up_prec+1) r,
-- (":^:",t) <- lex s,
-- (v,w) <- readsPrec (up_prec+1) t]) r
--
-- where app_prec = 10
-- up_prec = 5
--
--
-- Note that right-associativity of :^: is unused.
--
-- The derived instance in GHC is equivalent to
--
-- -- instance (Read a) => Read (Tree a) where -- -- readPrec = parens $ (prec app_prec $ do -- Ident "Leaf" <- lexP -- m <- step readPrec -- return (Leaf m)) -- -- +++ (prec up_prec $ do -- u <- step readPrec -- Symbol ":^:" <- lexP -- v <- step readPrec -- return (u :^: v)) -- -- where app_prec = 10 -- up_prec = 5 -- -- readListPrec = readListPrecDefault ---- -- Why do both readsPrec and readPrec exist, and why does -- GHC opt to implement readPrec in derived Read instances -- instead of readsPrec? The reason is that readsPrec is -- based on the ReadS type, and although ReadS is mentioned -- in the Haskell 2010 Report, it is not a very efficient parser data -- structure. -- -- readPrec, on the other hand, is based on a much more efficient -- ReadPrec datatype (a.k.a "new-style parsers"), but its -- definition relies on the use of the RankNTypes language -- extension. Therefore, readPrec (and its cousin, -- readListPrec) are marked as GHC-only. Nevertheless, it is -- recommended to use readPrec instead of readsPrec -- whenever possible for the efficiency improvements it brings. -- -- As mentioned above, derived Read instances in GHC will -- implement readPrec instead of readsPrec. The default -- implementations of readsPrec (and its cousin, readList) -- will simply use readPrec under the hood. If you are writing a -- Read instance by hand, it is recommended to write it like so: -- --
-- instance Read T where -- readPrec = ... -- readListPrec = readListPrecDefault --class Read a -- | attempts to parse a value from the front of the string, returning a -- list of (parsed value, remaining string) pairs. If there is no -- successful parse, the returned list is empty. -- -- Derived instances of Read and Show satisfy the -- following: -- -- -- -- That is, readsPrec parses the string produced by -- showsPrec, and delivers the value that showsPrec started -- with. readsPrec :: Read a => Int -> ReadS a -- | The method readList is provided to allow the programmer to give -- a specialised way of parsing lists of values. For example, this is -- used by the predefined Read instance of the Char type, -- where values of type String should be are expected to use -- double quotes, rather than square brackets. readList :: Read a => ReadS [a] class (Num a, Ord a) => Real a -- | the rational equivalent of its real argument with full precision toRational :: Real a => a -> Rational -- | Efficient, machine-independent access to the components of a -- floating-point number. class (RealFrac a, Floating a) => RealFloat a -- | a constant function, returning the radix of the representation (often -- 2) floatRadix :: RealFloat a => a -> Integer -- | a constant function, returning the number of digits of -- floatRadix in the significand floatDigits :: RealFloat a => a -> Int -- | a constant function, returning the lowest and highest values the -- exponent may assume floatRange :: RealFloat a => a -> (Int, Int) -- | The function decodeFloat applied to a real floating-point -- number returns the significand expressed as an Integer and an -- appropriately scaled exponent (an Int). If -- decodeFloat x yields (m,n), then x -- is equal in value to m*b^^n, where b is the -- floating-point radix, and furthermore, either m and -- n are both zero or else b^(d-1) <= abs m < -- b^d, where d is the value of floatDigits -- x. In particular, decodeFloat 0 = (0,0). If the -- type contains a negative zero, also decodeFloat (-0.0) = -- (0,0). The result of decodeFloat x is -- unspecified if either of isNaN x or -- isInfinite x is True. decodeFloat :: RealFloat a => a -> (Integer, Int) -- | encodeFloat performs the inverse of decodeFloat in the -- sense that for finite x with the exception of -0.0, -- uncurry encodeFloat (decodeFloat x) = -- x. encodeFloat m n is one of the two closest -- representable floating-point numbers to m*b^^n (or -- ±Infinity if overflow occurs); usually the closer, but if -- m contains too many bits, the result may be rounded in the -- wrong direction. encodeFloat :: RealFloat a => Integer -> Int -> a -- | exponent corresponds to the second component of -- decodeFloat. exponent 0 = 0 and for finite -- nonzero x, exponent x = snd (decodeFloat x) -- + floatDigits x. If x is a finite floating-point -- number, it is equal in value to significand x * b ^^ -- exponent x, where b is the floating-point radix. -- The behaviour is unspecified on infinite or NaN values. exponent :: RealFloat a => a -> Int -- | The first component of decodeFloat, scaled to lie in the open -- interval (-1,1), either 0.0 or of absolute -- value >= 1/b, where b is the floating-point -- radix. The behaviour is unspecified on infinite or NaN -- values. significand :: RealFloat a => a -> a -- | multiplies a floating-point number by an integer power of the radix scaleFloat :: RealFloat a => Int -> a -> a -- | True if the argument is an IEEE "not-a-number" (NaN) value isNaN :: RealFloat a => a -> Bool -- | True if the argument is an IEEE infinity or negative infinity isInfinite :: RealFloat a => a -> Bool -- | True if the argument is too small to be represented in -- normalized format isDenormalized :: RealFloat a => a -> Bool -- | True if the argument is an IEEE negative zero isNegativeZero :: RealFloat a => a -> Bool -- | True if the argument is an IEEE floating point number isIEEE :: RealFloat a => a -> Bool -- | a version of arctangent taking two real floating-point arguments. For -- real floating x and y, atan2 y x -- computes the angle (from the positive x-axis) of the vector from the -- origin to the point (x,y). atan2 y x returns -- a value in the range [-pi, pi]. It follows the -- Common Lisp semantics for the origin when signed zeroes are supported. -- atan2 y 1, with y in a type that is -- RealFloat, should return the same value as atan -- y. A default definition of atan2 is provided, but -- implementors can provide a more accurate implementation. atan2 :: RealFloat a => a -> a -> a -- | Extracting components of fractions. class (Real a, Fractional a) => RealFrac a -- | The function properFraction takes a real fractional number -- x and returns a pair (n,f) such that x = -- n+f, and: -- --
-- infixr 5 :^: -- data Tree a = Leaf a | Tree a :^: Tree a ---- -- the derived instance of Show is equivalent to -- --
-- instance (Show a) => Show (Tree a) where -- -- showsPrec d (Leaf m) = showParen (d > app_prec) $ -- showString "Leaf " . showsPrec (app_prec+1) m -- where app_prec = 10 -- -- showsPrec d (u :^: v) = showParen (d > up_prec) $ -- showsPrec (up_prec+1) u . -- showString " :^: " . -- showsPrec (up_prec+1) v -- where up_prec = 5 ---- -- Note that right-associativity of :^: is ignored. For example, -- --
-- showsPrec d x r ++ s == showsPrec d x (r ++ s) ---- -- Derived instances of Read and Show satisfy the -- following: -- -- -- -- That is, readsPrec parses the string produced by -- showsPrec, and delivers the value that showsPrec started -- with. showsPrec :: Show a => Int -> a -> ShowS -- | A specialised variant of showsPrec, using precedence context -- zero, and returning an ordinary String. show :: Show a => a -> String -- | The method showList is provided to allow the programmer to give -- a specialised way of showing lists of values. For example, this is -- used by the predefined Show instance of the Char type, -- where values of type String should be shown in double quotes, -- rather than between square brackets. showList :: Show a => [a] -> ShowS -- | A functor with application, providing operations to -- --
-- (<*>) = liftA2 id ---- --
-- liftA2 f x y = f <$> x <*> y ---- -- Further, any definition must satisfy the following: -- --
pure id <*> -- v = v
pure (.) <*> u -- <*> v <*> w = u <*> (v -- <*> w)
pure f <*> -- pure x = pure (f x)
u <*> pure y = -- pure ($ y) <*> u
-- forall x y. p (q x y) = f x . g y ---- -- it follows from the above that -- --
-- liftA2 p (liftA2 q u v) = liftA2 f u . liftA2 g v ---- -- If f is also a Monad, it should satisfy -- -- -- -- (which implies that pure and <*> satisfy the -- applicative functor laws). class Functor f => Applicative (f :: Type -> Type) -- | Lift a value. pure :: Applicative f => a -> f a -- | Sequential application. -- -- A few functors support an implementation of <*> that is -- more efficient than the default one. (<*>) :: Applicative f => f (a -> b) -> f a -> f b -- | Sequence actions, discarding the value of the first argument. (*>) :: Applicative f => f a -> f b -> f b -- | Sequence actions, discarding the value of the second argument. (<*) :: Applicative f => f a -> f b -> f a infixl 4 <*> infixl 4 *> infixl 4 <* -- | Data structures that can be folded. -- -- For example, given a data type -- --
-- data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a) ---- -- a suitable instance would be -- --
-- instance Foldable Tree where -- foldMap f Empty = mempty -- foldMap f (Leaf x) = f x -- foldMap f (Node l k r) = foldMap f l `mappend` f k `mappend` foldMap f r ---- -- This is suitable even for abstract types, as the monoid is assumed to -- satisfy the monoid laws. Alternatively, one could define -- foldr: -- --
-- instance Foldable Tree where -- foldr f z Empty = z -- foldr f z (Leaf x) = f x z -- foldr f z (Node l k r) = foldr f (f k (foldr f z r)) l ---- -- Foldable instances are expected to satisfy the following -- laws: -- --
-- foldr f z t = appEndo (foldMap (Endo . f) t ) z ---- --
-- foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z ---- --
-- fold = foldMap id ---- --
-- length = getSum . foldMap (Sum . const 1) ---- -- sum, product, maximum, and minimum -- should all be essentially equivalent to foldMap forms, such -- as -- --
-- sum = getSum . foldMap Sum ---- -- but may be less defined. -- -- If the type is also a Functor instance, it should satisfy -- --
-- foldMap f = fold . fmap f ---- -- which implies that -- --
-- foldMap f . fmap g = foldMap (f . g) --class Foldable (t :: Type -> Type) -- | Map each element of the structure to a monoid, and combine the -- results. foldMap :: (Foldable t, Monoid m) => (a -> m) -> t a -> m -- | Right-associative fold of a structure. -- -- In the case of lists, foldr, when applied to a binary operator, -- a starting value (typically the right-identity of the operator), and a -- list, reduces the list using the binary operator, from right to left: -- --
-- foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...) ---- -- Note that, since the head of the resulting expression is produced by -- an application of the operator to the first element of the list, -- foldr can produce a terminating expression from an infinite -- list. -- -- For a general Foldable structure this should be semantically -- identical to, -- --
-- foldr f z = foldr f z . toList --foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b -- | Left-associative fold of a structure. -- -- In the case of lists, foldl, when applied to a binary operator, -- a starting value (typically the left-identity of the operator), and a -- list, reduces the list using the binary operator, from left to right: -- --
-- foldl f z [x1, x2, ..., xn] == (...((z `f` x1) `f` x2) `f`...) `f` xn ---- -- Note that to produce the outermost application of the operator the -- entire input list must be traversed. This means that foldl' -- will diverge if given an infinite list. -- -- Also note that if you want an efficient left-fold, you probably want -- to use foldl' instead of foldl. The reason for this is -- that latter does not force the "inner" results (e.g. z f -- x1 in the above example) before applying them to the operator -- (e.g. to (f x2)). This results in a thunk chain -- O(n) elements long, which then must be evaluated from the -- outside-in. -- -- For a general Foldable structure this should be semantically -- identical to, -- --
-- foldl f z = foldl f z . toList --foldl :: Foldable t => (b -> a -> b) -> b -> t a -> b -- | A variant of foldr that has no base case, and thus may only be -- applied to non-empty structures. -- --
-- foldr1 f = foldr1 f . toList --foldr1 :: Foldable t => (a -> a -> a) -> t a -> a -- | A variant of foldl that has no base case, and thus may only be -- applied to non-empty structures. -- --
-- foldl1 f = foldl1 f . toList --foldl1 :: Foldable t => (a -> a -> a) -> t a -> a -- | Test whether the structure is empty. The default implementation is -- optimized for structures that are similar to cons-lists, because there -- is no general way to do better. null :: Foldable t => t a -> Bool -- | Returns the size/length of a finite structure as an Int. The -- default implementation is optimized for structures that are similar to -- cons-lists, because there is no general way to do better. length :: Foldable t => t a -> Int -- | Does the element occur in the structure? elem :: (Foldable t, Eq a) => a -> t a -> Bool -- | The largest element of a non-empty structure. maximum :: (Foldable t, Ord a) => t a -> a -- | The least element of a non-empty structure. minimum :: (Foldable t, Ord a) => t a -> a -- | The product function computes the product of the numbers of a -- structure. product :: (Foldable t, Num a) => t a -> a infix 4 `elem` -- | Functors representing data structures that can be traversed from left -- to right. -- -- A definition of traverse must satisfy the following laws: -- --
-- t :: (Applicative f, Applicative g) => f a -> g a ---- -- preserving the Applicative operations, i.e. -- -- -- -- and the identity functor Identity and composition of functors -- Compose are defined as -- --
-- newtype Identity a = Identity a -- -- instance Functor Identity where -- fmap f (Identity x) = Identity (f x) -- -- instance Applicative Identity where -- pure x = Identity x -- Identity f <*> Identity x = Identity (f x) -- -- newtype Compose f g a = Compose (f (g a)) -- -- instance (Functor f, Functor g) => Functor (Compose f g) where -- fmap f (Compose x) = Compose (fmap (fmap f) x) -- -- instance (Applicative f, Applicative g) => Applicative (Compose f g) where -- pure x = Compose (pure (pure x)) -- Compose f <*> Compose x = Compose ((<*>) <$> f <*> x) ---- -- (The naturality law is implied by parametricity.) -- -- Instances are similar to Functor, e.g. given a data type -- --
-- data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a) ---- -- a suitable instance would be -- --
-- instance Traversable Tree where -- traverse f Empty = pure Empty -- traverse f (Leaf x) = Leaf <$> f x -- traverse f (Node l k r) = Node <$> traverse f l <*> f k <*> traverse f r ---- -- This is suitable even for abstract types, as the laws for -- <*> imply a form of associativity. -- -- The superclass instances should satisfy the following: -- --
x <> mempty = x
mempty <> x = x
mconcat = foldr '(<>)' -- mempty
-- >>> let s = Left "foo" :: Either String Int -- -- >>> s -- Left "foo" -- -- >>> let n = Right 3 :: Either String Int -- -- >>> n -- Right 3 -- -- >>> :type s -- s :: Either String Int -- -- >>> :type n -- n :: Either String Int ---- -- The fmap from our Functor instance will ignore -- Left values, but will apply the supplied function to values -- contained in a Right: -- --
-- >>> let s = Left "foo" :: Either String Int -- -- >>> let n = Right 3 :: Either String Int -- -- >>> fmap (*2) s -- Left "foo" -- -- >>> fmap (*2) n -- Right 6 ---- -- The Monad instance for Either allows us to chain -- together multiple actions which may fail, and fail overall if any of -- the individual steps failed. First we'll write a function that can -- either parse an Int from a Char, or fail. -- --
-- >>> import Data.Char ( digitToInt, isDigit )
--
-- >>> :{
-- let parseEither :: Char -> Either String Int
-- parseEither c
-- | isDigit c = Right (digitToInt c)
-- | otherwise = Left "parse error"
--
-- >>> :}
--
--
-- The following should work, since both '1' and '2'
-- can be parsed as Ints.
--
--
-- >>> :{
-- let parseMultiple :: Either String Int
-- parseMultiple = do
-- x <- parseEither '1'
-- y <- parseEither '2'
-- return (x + y)
--
-- >>> :}
--
--
-- -- >>> parseMultiple -- Right 3 ---- -- But the following should fail overall, since the first operation where -- we attempt to parse 'm' as an Int will fail: -- --
-- >>> :{
-- let parseMultiple :: Either String Int
-- parseMultiple = do
-- x <- parseEither 'm'
-- y <- parseEither '2'
-- return (x + y)
--
-- >>> :}
--
--
-- -- >>> parseMultiple -- Left "parse error" --data Either a b Left :: a -> Either a b Right :: b -> Either a b -- | The readIO function is similar to read except that it -- signals parse failure to the IO monad instead of terminating -- the program. readIO :: Read a => String -> IO a -- | The readLn function combines getLine and readIO. readLn :: Read a => IO a -- | The computation appendFile file str function appends -- the string str, to the file file. -- -- Note that writeFile and appendFile write a literal -- string to a file. To write a value of any printable type, as with -- print, use the show function to convert the value to a -- string first. -- --
-- main = appendFile "squares" (show [(x,x*x) | x <- [0,0.1..2]]) --appendFile :: FilePath -> String -> IO () -- | The computation writeFile file str function writes the -- string str, to the file file. writeFile :: FilePath -> String -> IO () -- | The readFile function reads a file and returns the contents of -- the file as a string. The file is read lazily, on demand, as with -- getContents. readFile :: FilePath -> IO String -- | The interact function takes a function of type -- String->String as its argument. The entire input from the -- standard input device is passed to this function as its argument, and -- the resulting string is output on the standard output device. interact :: (String -> String) -> IO () -- | The getContents operation returns all user input as a single -- string, which is read lazily as it is needed (same as -- hGetContents stdin). getContents :: IO String -- | Read a line from the standard input device (same as hGetLine -- stdin). getLine :: IO String -- | Read a character from the standard input device (same as -- hGetChar stdin). getChar :: IO Char -- | The same as putStr, but adds a newline character. putStrLn :: String -> IO () -- | Write a string to the standard output device (same as hPutStr -- stdout). putStr :: String -> IO () -- | Write a character to the standard output device (same as -- hPutChar stdout). putChar :: Char -> IO () -- | Raise an IOException in the IO monad. ioError :: () => IOError -> IO a -- | File and directory names are values of type String, whose -- precise meaning is operating system dependent. Files can be opened, -- yielding a handle which can then be used to operate on the contents of -- that file. type FilePath = String -- | Construct an IOException value with a string describing the -- error. The fail method of the IO instance of the -- Monad class raises a userError, thus: -- --
-- instance Monad IO where -- ... -- fail s = ioError (userError s) --userError :: String -> IOError -- | The Haskell 2010 type for exceptions in the IO monad. Any I/O -- operation may raise an IOException instead of returning a -- result. For a more general type of exception, including also those -- that arise in pure code, see Exception. -- -- In Haskell 2010, this is an opaque type. type IOError = IOException -- | notElem is the negation of elem. notElem :: (Foldable t, Eq a) => a -> t a -> Bool infix 4 `notElem` -- | Determines whether all elements of the structure satisfy the -- predicate. all :: Foldable t => (a -> Bool) -> t a -> Bool -- | Determines whether any element of the structure satisfies the -- predicate. any :: Foldable t => (a -> Bool) -> t a -> Bool -- | or returns the disjunction of a container of Bools. For the -- result to be False, the container must be finite; True, -- however, results from a True value finitely far from the left -- end. or :: Foldable t => t Bool -> Bool -- | and returns the conjunction of a container of Bools. For the -- result to be True, the container must be finite; False, -- however, results from a False value finitely far from the left -- end. and :: Foldable t => t Bool -> Bool -- | Map a function over all the elements of a container and concatenate -- the resulting lists. concatMap :: Foldable t => (a -> [b]) -> t a -> [b] -- | The concatenation of all the elements of a container of lists. concat :: Foldable t => t [a] -> [a] -- | Evaluate each monadic action in the structure from left to right, and -- ignore the results. For a version that doesn't ignore the results see -- sequence. -- -- As of base 4.8.0.0, sequence_ is just sequenceA_, -- specialized to Monad. sequence_ :: (Foldable t, Monad m) => t (m a) -> m () -- | Map each element of a structure to a monadic action, evaluate these -- actions from left to right, and ignore the results. For a version that -- doesn't ignore the results see mapM. -- -- As of base 4.8.0.0, mapM_ is just traverse_, specialized -- to Monad. mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m () -- | unwords is an inverse operation to words. It joins words -- with separating spaces. -- --
-- >>> unwords ["Lorem", "ipsum", "dolor"] -- "Lorem ipsum dolor" --unwords :: [String] -> String -- | words breaks a string up into a list of words, which were -- delimited by white space. -- --
-- >>> words "Lorem ipsum\ndolor" -- ["Lorem","ipsum","dolor"] --words :: String -> [String] -- | unlines is an inverse operation to lines. It joins -- lines, after appending a terminating newline to each. -- --
-- >>> unlines ["Hello", "World", "!"] -- "Hello\nWorld\n!\n" --unlines :: [String] -> String -- | lines breaks a string up into a list of strings at newline -- characters. The resulting strings do not contain newlines. -- -- Note that after splitting the string at newline characters, the last -- part of the string is considered a line even if it doesn't end with a -- newline. For example, -- --
-- >>> lines "" -- [] ---- --
-- >>> lines "\n" -- [""] ---- --
-- >>> lines "one" -- ["one"] ---- --
-- >>> lines "one\n" -- ["one"] ---- --
-- >>> lines "one\n\n" -- ["one",""] ---- --
-- >>> lines "one\ntwo" -- ["one","two"] ---- --
-- >>> lines "one\ntwo\n" -- ["one","two"] ---- -- Thus lines s contains at least as many elements as -- newlines in s. lines :: String -> [String] -- | The read function reads input from a string, which must be -- completely consumed by the input process. read fails with an -- error if the parse is unsuccessful, and it is therefore -- discouraged from being used in real applications. Use readMaybe -- or readEither for safe alternatives. -- --
-- >>> read "123" :: Int -- 123 ---- --
-- >>> read "hello" :: Int -- *** Exception: Prelude.read: no parse --read :: Read a => String -> a -- | equivalent to readsPrec with a precedence of 0. reads :: Read a => ReadS a -- | Case analysis for the Either type. If the value is -- Left a, apply the first function to a; if it -- is Right b, apply the second function to b. -- --
-- >>> let s = Left "foo" :: Either String Int -- -- >>> let n = Right 3 :: Either String Int -- -- >>> either length (*2) s -- 3 -- -- >>> either length (*2) n -- 6 --either :: () => (a -> c) -> (b -> c) -> Either a b -> c -- | The lex function reads a single lexeme from the input, -- discarding initial white space, and returning the characters that -- constitute the lexeme. If the input string contains only white space, -- lex returns a single successful `lexeme' consisting of the -- empty string. (Thus lex "" = [("","")].) If there is -- no legal lexeme at the beginning of the input string, lex fails -- (i.e. returns []). -- -- This lexer is not completely faithful to the Haskell lexical syntax in -- the following respects: -- --
-- ($) :: (a -> b) -> a -> b -- (<$>) :: Functor f => (a -> b) -> f a -> f b ---- -- Whereas $ is function application, <$> is -- function application lifted over a Functor. -- --
-- >>> show <$> Nothing -- Nothing -- -- >>> show <$> Just 3 -- Just "3" ---- -- Convert from an Either Int Int to -- an Either Int String using -- show: -- --
-- >>> show <$> Left 17 -- Left 17 -- -- >>> show <$> Right 17 -- Right "17" ---- -- Double each element of a list: -- --
-- >>> (*2) <$> [1,2,3] -- [2,4,6] ---- -- Apply even to the second element of a pair: -- --
-- >>> even <$> (2,2) -- (2,True) --(<$>) :: Functor f => (a -> b) -> f a -> f b infixl 4 <$> -- | lcm x y is the smallest positive integer that both -- x and y divide. lcm :: Integral a => a -> a -> a -- | gcd x y is the non-negative factor of both x -- and y of which every common factor of x and -- y is also a factor; for example gcd 4 2 = 2, -- gcd (-4) 6 = 2, gcd 0 4 = 4. -- gcd 0 0 = 0. (That is, the common divisor -- that is "greatest" in the divisibility preordering.) -- -- Note: Since for signed fixed-width integer types, abs -- minBound < 0, the result may be negative if one of the -- arguments is minBound (and necessarily is if the other -- is 0 or minBound) for such types. gcd :: Integral a => a -> a -> a -- | raise a number to an integral power (^^) :: (Fractional a, Integral b) => a -> b -> a infixr 8 ^^ -- | raise a number to a non-negative integral power (^) :: (Num a, Integral b) => a -> b -> a infixr 8 ^ odd :: Integral a => a -> Bool even :: Integral a => a -> Bool -- | utility function that surrounds the inner show function with -- parentheses when the Bool parameter is True. showParen :: Bool -> ShowS -> ShowS -- | utility function converting a String to a show function that -- simply prepends the string unchanged. showString :: String -> ShowS -- | utility function converting a Char to a show function that -- simply prepends the character unchanged. showChar :: Char -> ShowS -- | equivalent to showsPrec with a precedence of 0. shows :: Show a => a -> ShowS -- | The shows functions return a function that prepends the -- output String to an existing String. This allows -- constant-time concatenation of results using function composition. type ShowS = String -> String -- | The unzip3 function takes a list of triples and returns three -- lists, analogous to unzip. unzip3 :: () => [(a, b, c)] -> ([a], [b], [c]) -- | unzip transforms a list of pairs into a list of first -- components and a list of second components. unzip :: () => [(a, b)] -> ([a], [b]) -- | The zipWith3 function takes a function which combines three -- elements, as well as three lists and returns a list of their -- point-wise combination, analogous to zipWith. zipWith3 :: () => (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d] -- | zipWith generalises zip by zipping with the function -- given as the first argument, instead of a tupling function. For -- example, zipWith (+) is applied to two lists to -- produce the list of corresponding sums. -- -- zipWith is right-lazy: -- --
-- zipWith f [] _|_ = [] --zipWith :: () => (a -> b -> c) -> [a] -> [b] -> [c] -- | zip3 takes three lists and returns a list of triples, analogous -- to zip. zip3 :: () => [a] -> [b] -> [c] -> [(a, b, c)] -- | List index (subscript) operator, starting from 0. It is an instance of -- the more general genericIndex, which takes an index of any -- integral type. (!!) :: () => [a] -> Int -> a infixl 9 !! -- | lookup key assocs looks up a key in an association -- list. lookup :: Eq a => a -> [(a, b)] -> Maybe b -- | reverse xs returns the elements of xs in -- reverse order. xs must be finite. reverse :: () => [a] -> [a] -- | break, applied to a predicate p and a list -- xs, returns a tuple where first element is longest prefix -- (possibly empty) of xs of elements that do not satisfy -- p and second element is the remainder of the list: -- --
-- break (> 3) [1,2,3,4,1,2,3,4] == ([1,2,3],[4,1,2,3,4]) -- break (< 9) [1,2,3] == ([],[1,2,3]) -- break (> 9) [1,2,3] == ([1,2,3],[]) ---- -- break p is equivalent to span (not . -- p). break :: () => (a -> Bool) -> [a] -> ([a], [a]) -- | span, applied to a predicate p and a list xs, -- returns a tuple where first element is longest prefix (possibly empty) -- of xs of elements that satisfy p and second element -- is the remainder of the list: -- --
-- span (< 3) [1,2,3,4,1,2,3,4] == ([1,2],[3,4,1,2,3,4]) -- span (< 9) [1,2,3] == ([1,2,3],[]) -- span (< 0) [1,2,3] == ([],[1,2,3]) ---- -- span p xs is equivalent to (takeWhile p xs, -- dropWhile p xs) span :: () => (a -> Bool) -> [a] -> ([a], [a]) -- | drop n xs returns the suffix of xs after the -- first n elements, or [] if n > length -- xs: -- --
-- drop 6 "Hello World!" == "World!" -- drop 3 [1,2,3,4,5] == [4,5] -- drop 3 [1,2] == [] -- drop 3 [] == [] -- drop (-1) [1,2] == [1,2] -- drop 0 [1,2] == [1,2] ---- -- It is an instance of the more general genericDrop, in which -- n may be of any integral type. drop :: () => Int -> [a] -> [a] -- | take n, applied to a list xs, returns the -- prefix of xs of length n, or xs itself if -- n > length xs: -- --
-- take 5 "Hello World!" == "Hello" -- take 3 [1,2,3,4,5] == [1,2,3] -- take 3 [1,2] == [1,2] -- take 3 [] == [] -- take (-1) [1,2] == [] -- take 0 [1,2] == [] ---- -- It is an instance of the more general genericTake, in which -- n may be of any integral type. take :: () => Int -> [a] -> [a] -- | dropWhile p xs returns the suffix remaining after -- takeWhile p xs: -- --
-- dropWhile (< 3) [1,2,3,4,5,1,2,3] == [3,4,5,1,2,3] -- dropWhile (< 9) [1,2,3] == [] -- dropWhile (< 0) [1,2,3] == [1,2,3] --dropWhile :: () => (a -> Bool) -> [a] -> [a] -- | takeWhile, applied to a predicate p and a list -- xs, returns the longest prefix (possibly empty) of -- xs of elements that satisfy p: -- --
-- takeWhile (< 3) [1,2,3,4,1,2,3,4] == [1,2] -- takeWhile (< 9) [1,2,3] == [1,2,3] -- takeWhile (< 0) [1,2,3] == [] --takeWhile :: () => (a -> Bool) -> [a] -> [a] -- | cycle ties a finite list into a circular one, or equivalently, -- the infinite repetition of the original list. It is the identity on -- infinite lists. cycle :: () => [a] -> [a] -- | replicate n x is a list of length n with -- x the value of every element. It is an instance of the more -- general genericReplicate, in which n may be of any -- integral type. replicate :: () => Int -> a -> [a] -- | repeat x is an infinite list, with x the -- value of every element. repeat :: () => a -> [a] -- | iterate f x returns an infinite list of repeated -- applications of f to x: -- --
-- iterate f x == [x, f x, f (f x), ...] ---- -- Note that iterate is lazy, potentially leading to thunk -- build-up if the consumer doesn't force each iterate. See 'iterate\'' -- for a strict variant of this function. iterate :: () => (a -> a) -> a -> [a] -- | scanr1 is a variant of scanr that has no starting value -- argument. scanr1 :: () => (a -> a -> a) -> [a] -> [a] -- | scanr is the right-to-left dual of scanl. Note that -- --
-- head (scanr f z xs) == foldr f z xs. --scanr :: () => (a -> b -> b) -> b -> [a] -> [b] -- | scanl1 is a variant of scanl that has no starting value -- argument: -- --
-- scanl1 f [x1, x2, ...] == [x1, x1 `f` x2, ...] --scanl1 :: () => (a -> a -> a) -> [a] -> [a] -- | scanl is similar to foldl, but returns a list of -- successive reduced values from the left: -- --
-- scanl f z [x1, x2, ...] == [z, z `f` x1, (z `f` x1) `f` x2, ...] ---- -- Note that -- --
-- last (scanl f z xs) == foldl f z xs. --scanl :: () => (b -> a -> b) -> b -> [a] -> [b] -- | Return all the elements of a list except the last one. The list must -- be non-empty. init :: () => [a] -> [a] -- | Extract the last element of a list, which must be finite and -- non-empty. last :: () => [a] -> a -- | Extract the elements after the head of a list, which must be -- non-empty. tail :: () => [a] -> [a] -- | Extract the first element of a list, which must be non-empty. head :: () => [a] -> a -- | The maybe function takes a default value, a function, and a -- Maybe value. If the Maybe value is Nothing, the -- function returns the default value. Otherwise, it applies the function -- to the value inside the Just and returns the result. -- --
-- >>> maybe False odd (Just 3) -- True ---- --
-- >>> maybe False odd Nothing -- False ---- -- Read an integer from a string using readMaybe. If we succeed, -- return twice the integer; that is, apply (*2) to it. If -- instead we fail to parse an integer, return 0 by default: -- --
-- >>> import Text.Read ( readMaybe ) -- -- >>> maybe 0 (*2) (readMaybe "5") -- 10 -- -- >>> maybe 0 (*2) (readMaybe "") -- 0 ---- -- Apply show to a Maybe Int. If we have Just -- n, we want to show the underlying Int n. But if -- we have Nothing, we return the empty string instead of (for -- example) "Nothing": -- --
-- >>> maybe "" show (Just 5) -- "5" -- -- >>> maybe "" show Nothing -- "" --maybe :: () => b -> (a -> b) -> Maybe a -> b -- | uncurry converts a curried function to a function on pairs. -- --
-- >>> uncurry (+) (1,2) -- 3 ---- --
-- >>> uncurry ($) (show, 1) -- "1" ---- --
-- >>> map (uncurry max) [(1,2), (3,4), (6,8)] -- [2,4,8] --uncurry :: () => (a -> b -> c) -> (a, b) -> c -- | curry converts an uncurried function to a curried function. -- --
-- >>> curry fst 1 2 -- 1 --curry :: () => ((a, b) -> c) -> a -> b -> c -- | the same as flip (-). -- -- Because - is treated specially in the Haskell grammar, -- (- e) is not a section, but an application of -- prefix negation. However, (subtract -- exp) is equivalent to the disallowed section. subtract :: Num a => a -> a -> a -- | asTypeOf is a type-restricted version of const. It is -- usually used as an infix operator, and its typing forces its first -- argument (which is usually overloaded) to have the same type as the -- second. asTypeOf :: () => a -> a -> a -- | until p f yields the result of applying f -- until p holds. until :: () => (a -> Bool) -> (a -> a) -> a -> a -- | Strict (call-by-value) application operator. It takes a function and -- an argument, evaluates the argument to weak head normal form (WHNF), -- then calls the function with that value. ($!) :: () => (a -> b) -> a -> b infixr 0 $! -- | flip f takes its (first) two arguments in the reverse -- order of f. -- --
-- >>> flip (++) "hello" "world" -- "worldhello" --flip :: () => (a -> b -> c) -> b -> a -> c -- | Function composition. (.) :: () => (b -> c) -> (a -> b) -> a -> c infixr 9 . -- | const x is a unary function which evaluates to x for -- all inputs. -- --
-- >>> const 42 "hello" -- 42 ---- --
-- >>> map (const 42) [0..3] -- [42,42,42,42] --const :: () => a -> b -> a -- | Identity function. -- --
-- id x = x --id :: () => a -> a -- | Same as >>=, but with the arguments interchanged. (=<<) :: Monad m => (a -> m b) -> m a -> m b infixr 1 =<< -- | A String is a list of characters. String constants in Haskell -- are values of type String. type String = [Char] -- | A special case of error. It is expected that compilers will -- recognize this and insert error messages which are more appropriate to -- the context in which undefined appears. undefined :: HasCallStack => a -- | A variant of error that does not produce a stack trace. errorWithoutStackTrace :: () => [Char] -> a -- | error stops execution and displays an error message. error :: HasCallStack => [Char] -> a -- | Boolean "and" (&&) :: Bool -> Bool -> Bool infixr 3 && -- | Boolean "or" (||) :: Bool -> Bool -> Bool infixr 2 || -- | Boolean "not" not :: Bool -> Bool class AbelianGroup a zero :: AbelianGroup a => a (+) :: AbelianGroup a => a -> a -> a infixl 6 + class AbelianGroup a => AbelianGroupZ a isZero :: AbelianGroupZ a => a -> Bool class AbelianGroupZ a => Ring a (*) :: Ring a => a -> a -> a infixl 7 * class (AbelianGroupZ a) => RingP a mul :: RingP a => Bool -> a -> a -> Pair a data Pair a (:/:) :: a -> a -> Pair a [leftOf] :: Pair a -> a [rightOf] :: Pair a -> a infixl 2 :/: select :: () => Bool -> [a] -> Pair [a] onlyLeft :: () => [a] -> Pair [a] onlyRight :: () => [a] -> Pair [a] newtype O f g a O :: f (g a) -> O f g a [fromO] :: O f g a -> f (g a) sum :: AbelianGroup a => [a] -> a mulDefault :: RingP a => a -> a -> a instance GHC.Show.Show (f (g a)) => GHC.Show.Show (Algebra.RingUtils.O f g a) instance Algebra.RingUtils.AbelianGroupZ (f (g a)) => Algebra.RingUtils.AbelianGroupZ (Algebra.RingUtils.O f g a) instance Algebra.RingUtils.AbelianGroup (f (g a)) => Algebra.RingUtils.AbelianGroup (Algebra.RingUtils.O f g a) instance (GHC.Base.Functor f, GHC.Base.Functor g) => GHC.Base.Functor (Algebra.RingUtils.O f g) instance Algebra.RingUtils.Ring GHC.Types.Int instance Algebra.RingUtils.AbelianGroupZ GHC.Types.Int instance Algebra.RingUtils.AbelianGroupZ a => Algebra.RingUtils.AbelianGroupZ (Data.Pair.Pair a) instance Algebra.RingUtils.AbelianGroup GHC.Types.Int instance Algebra.RingUtils.AbelianGroup a => Algebra.RingUtils.AbelianGroup (Data.Pair.Pair a) instance Algebra.RingUtils.AbelianGroup GHC.Types.Bool module Data.Matrix.Quad data Shape Bin :: Shape -> Shape -> Shape Leaf :: Shape data Shape' :: Shape -> * [Bin'] :: !Int -> Shape' s -> Shape' s' -> Shape' (Bin s s') [Leaf'] :: Shape' Leaf data SomeShape [S] :: Shape' s -> SomeShape data Mat :: Shape -> Shape -> * -> * [Quad] :: !Mat x1 y1 a -> !Mat x2 y1 a -> !Mat x1 y2 a -> !Mat x2 y2 a -> Mat (Bin x1 x2) (Bin y1 y2) a [Zero] :: Mat x y a [One] :: !a -> Mat Leaf Leaf a [Row] :: Mat x1 Leaf a -> Mat x2 Leaf a -> Mat (Bin x1 x2) Leaf a [Col] :: Mat Leaf y1 a -> Mat Leaf y2 a -> Mat Leaf (Bin y1 y2) a data Vec :: Shape -> * -> * [Z] :: Vec s a [O] :: a -> Vec Leaf a [:!] :: Vec s a -> Vec s' a -> Vec (Bin s s') a row :: () => Mat x1 Leaf a -> Mat x2 Leaf a -> Mat (Bin x1 x2) Leaf a col :: Mat Leaf y1 a -> Mat Leaf y2 a -> Mat Leaf (Bin y1 y2) a quad :: () => Mat x1 y1 a -> Mat x2 y1 a -> Mat x1 y2 a -> Mat x2 y2 a -> Mat (Bin x1 x2) (Bin y1 y2) a one :: AbelianGroupZ a => a -> Mat Leaf Leaf a (.+.) :: AbelianGroupZ a => Mat x y a -> Mat x y a -> Mat x y a mult :: RingP a => Bool -> Mat x y a -> Mat z x a -> Mat z y (Pair a) trav :: AbelianGroupZ a => Mat y x (Pair a) -> Pair (Mat y x a) q0 :: Mat (Bin x x') (Bin y y') a closeDisjointP :: RingP a => Bool -> Mat x x a -> Mat y x (Pair a) -> Mat y y a -> Pair (Mat y x a) showR :: Mat x y a -> String bin' :: Shape' s -> Shape' s' -> Shape' (Bin s s') mkShape :: Int -> SomeShape mkSing :: AbelianGroupZ a => Shape' x -> Shape' y -> a -> Mat x y a data SomeTri a [T] :: Shape' s -> Pair (Mat s s a) -> SomeTri a type Q a = SomeTri a mkUpDiag :: AbelianGroupZ a => [a] -> Shape' s -> Mat s s a close :: RingP a => Bool -> Mat s s (Pair a) -> Pair (Mat s s a) mkTree :: RingP a => [Pair a] -> SomeTri a quad' :: Applicative f => f (Mat x1 y1 a) -> f (Mat x2 y1 a) -> f (Mat x1 y2 a) -> f (Mat x2 y2 a) -> f (Mat (Bin x1 x2) (Bin y1 y2) a) mergein :: RingP a => Bool -> SomeTri a -> Pair a -> SomeTri a -> SomeTri a -- | A variant of zipWith on vectors zw :: (AbelianGroup a, AbelianGroup b) => (a -> b -> c) -> Vec y a -> Vec y b -> Vec y c -- | Lookup in a vector lk :: AbelianGroup a => Int -> Shape' x -> Vec x a -> a -- | Linearize a matrix lin' :: AbelianGroup a => Mat x y a -> Vec y (Vec x a) -- | Contents of a vector contents :: Shape' x -> Vec x a -> [(Int, a)] first :: () => (t -> a) -> (t, b) -> (a, b) second :: () => (t -> b) -> (a, t) -> (a, b) data Path :: Shape -> * [Here] :: Path Leaf [Low] :: Path s -> Path (Bin s s') [High] :: Path s -> Path (Bin s' s) (<||>) :: Maybe (a, Path x) -> Maybe (a, Path x') -> Maybe (a, Path (Bin x x')) -- | What is, and where is the rightmost non-zero element on a given line -- of the matrix? rightmostOnLine :: Path y -> Mat x y a -> Maybe (a, Path x) -- | Is this the rightmost path? isRightmost :: Path x -> Bool results' :: AbelianGroup a => Mat y y a -> Path y -> [(Path y, a, Path y)] results :: AbelianGroupZ a => SomeTri a -> [(Int, a, Int)] leftMost :: Shape' s -> Path s fromPath :: Shape' y -> Path y -> Int root' :: AbelianGroup a => Mat x y a -> a root :: AbelianGroup p => SomeTri p -> p single :: AbelianGroupZ a => Pair a -> SomeTri a square2 :: AbelianGroupZ a => Pair a -> SomeTri a square3 :: RingP a => Bool -> Pair a -> Pair a -> SomeTri a sz' :: Shape' s -> Int (|+|) :: () => [[a]] -> [[a]] -> [[a]] (-+-) :: () => [a] -> [a] -> [a] lin :: AbelianGroup a => Shape' x -> Shape' y -> Mat x y a -> [[a]] sparse :: AbelianGroup a => Shape' x -> Shape' y -> Mat x y a -> [(Int, Int, a)] shiftX :: () => Shape' s -> [(Int, b, c)] -> [(Int, b, c)] shiftY :: () => Shape' s -> [(a, Int, c)] -> [(a, Int, c)] fingerprint :: AbelianGroupZ a => SomeTri a -> [[Char]] scatterplot :: AbelianGroup a => SomeTri a -> [Char] instance Algebra.RingUtils.AbelianGroup a => Algebra.RingUtils.AbelianGroup (Data.Matrix.Quad.Vec x a) instance Algebra.RingUtils.AbelianGroupZ a => Algebra.RingUtils.AbelianGroup (Data.Matrix.Quad.Mat x y a) module Data.Matrix.Class fingerprint :: (AbelianGroupZ a, Matrix m) => m a -> [[Char]] (***) :: () => (t1 -> a) -> (t2 -> b) -> (t1, t2) -> (a, b) data Dimension XD :: Dimension YD :: Dimension quad :: (AbelianGroup a, Matrix m) => m a -> m a -> m a -> m a -> m a nextDim :: Dimension -> Dimension type Extent = (Int, Int) ext :: () => Dimension -> (p, p) -> p glueExt :: (AbelianGroup a1, AbelianGroup a2) => Dimension -> (a1, a2) -> (a1, a2) -> (a1, a2) splitExt :: Num a => Dimension -> a -> (a, a) -> ((a, a), (a, a)) class Matrix m at :: (Matrix m, AbelianGroupZ a) => Int -> Int -> m a -> a extent :: Matrix m => m a -> Extent -- | Sigleton matrix singleton :: (Matrix m, AbelianGroupZ a) => a -> m a glue :: (Matrix m, AbelianGroup a) => Dimension -> m a -> m a -> m a split :: (Matrix m, AbelianGroupZ a) => Dimension -> Int -> m a -> (m a, m a) zeroMatrix :: (Matrix m, AbelianGroup a) => Int -> Int -> m a (<|>) :: (AbelianGroup a, Matrix m) => m a -> m a -> m a (<->) :: (AbelianGroup a, Matrix m) => m a -> m a -> m a countColumns :: Matrix m => m a -> Int countRows :: Matrix m => m a -> Int chopLastColumn :: (AbelianGroupZ a, Matrix m) => m a -> m a chopFirstRow :: (AbelianGroupZ a, Matrix m) => m a -> m a chopFirstColumn :: (AbelianGroupZ a, Matrix m) => m a -> m a chopLastRow :: (AbelianGroupZ a, Matrix m) => m a -> m a lastColumn :: (AbelianGroupZ a, Matrix m) => m a -> m a firstRow :: (AbelianGroupZ a, Matrix m) => m a -> m a instance GHC.Show.Show Data.Matrix.Class.Dimension instance GHC.Classes.Eq Data.Matrix.Class.Dimension instance Data.Matrix.Class.Matrix m => Data.Matrix.Class.Matrix (Algebra.RingUtils.O Data.Pair.Pair m) module Parsing.Chart fingerprint :: AbelianGroupZ a => SomeTri a -> [[Char]] mkTree2 :: RingP a => Bool -> [Pair a] -> Q a mkTree :: RingP a => [Pair a] -> Q a mkTree' :: RingP a => [Pair a] -> Q a type Set a = [a] type MT2 a = Q a genXPM :: [[Char]] -> String root :: AbelianGroup p => SomeTri p -> p mergein :: RingP a => Bool -> SomeTri a -> Pair a -> SomeTri a -> SomeTri a single :: AbelianGroupZ a => Pair a -> SomeTri a instance Algebra.RingUtils.AbelianGroup (Parsing.Chart.Set a) instance Algebra.RingUtils.AbelianGroupZ (Parsing.Chart.Set a) module Parsing.TestProgram type Verbosity = Int putStrV :: Verbosity -> String -> IO () mainTest :: forall category token. (RingP [(category, Any)], Eq category) => ((category, Any) -> String) -> (Bool -> token -> Pair [(category, Any)]) -> (String -> [token]) -> (token -> (Int, Int)) -> (category -> String) -> (category -> [category]) -> IO () pairs :: () => [a] -> [(a, a)] resSz :: Num a => (a, b, a) -> a