úÎCÊ=(?      !"#$%&'()*+,-./0123456789:;<=>(c) Conal Elliott 2009-2012BSD3conal@conal.net experimental Safe-Inferred 23468=KM 3Types with inequality. Minimum definition: '(<*)'.2Types with equality. Minimum definition: '(==*)'.Types with conditionals  0 computed the boolean analog of a specific type. Generalized boolean class1Expression-lifted conditional with condition lastPoint-wise conditional!Generalized cropping, filling in ? where the test yields false.5A generalized replacement for guards and chained ifs.7A generalized version of a case like control structure. Variant of @ using   and '(<=*)' Variant of A using   and '(>=*)' Variant of @ and A using   and '(<=*)'@ BCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefgh    4  BCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghBSD3 Safe-Inferred  !"#$%  !"#$  !"#$  !"#$(c) Jan Bracker 2013BSD3jbra@informatik.uni-kiel.de experimental Safe-Inferred3=K%Deep embedded version of i[. Efficient, machine-independent access to the components of a floating-point number.2A complete definition has to define all functions.& 7 if the argument is an IEEE "not-a-number" (NaN) value.' : if the argument is an IEEE infinity or negative infinity.( * if the argument is an IEEE negative zero.) 2 if the argument is an IEEE floating point number.*Wa version of arctangent taking two real floating-point arguments. For real floating x and y, j y x` computes the angle (from the positive x-axis) of the vector from the origin to the point (x,y). j y x returns a value in the range [-pi, pi^]. It follows the Common Lisp semantics for the origin when signed zeroes are supported. j y 1, with y in a type that is %", should return the same value as k y.+Deep embedded version of i(. Extracting components of fractions.Minimal complete definition: ,, l, m and n., The function , takes a real fractional number x and returns a pair (n,f) such that x = n+f, and:n- is an integral number with the same sign as x; andf. is a fraction with the same type and sign as x', and with absolute value less than 1.The default definitions of the n, m, o and l functions are in terms of ,.-o x returns the integer nearest x between zero and x.l x returns the nearest integer to x; the even integer if x$ is equidistant between two integers/n x) returns the least integer not less than x0m x/ returns the greatest integer not greater than x.1A deep embedded version of p3. Integral numbers, supporting integer division.&Minimal complete definition is either 6 and 7. or the other four functions. Besides that 8! always has to be implemented.2(Integer division truncated towards zero.3!Integer reminder, satisfying: (x 2 y) * y + (x 3 y) == x44Integer division truncated toward negative infinity.5 Integer modulus, satisfying: (x 4 y) * y + (x 5 y) == x6 Simultaneous 2 and 3.7 Simultaneous 4 and 5.8$Create a integer from this integral.9An extension of qp that supplies the integer type of a given number type and a way to create that number from the integer.:*The accociated integer type of the number.;1Construct the number from the associated integer.< Variant of r for generalized booleans.= Variant of s for generalized booleans.> Variant of t for generalized booleans.uOnly for internal use.'%&'()*+,-./0123456789:;vw<=>uxyz{|}~€%&'()*+,-./0123456789:;<=>9:;12345678+,-./0%&'()*<=>%&'()*+,-./0123456789:;vw<=>uxyz{|}~€v ‚      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFG'FG(HIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnCopCo.CoqCr2Cr4Cr3Cr1CrsCtuCrvCrwCrxyz{|}~€‚ƒ„…† Boolean-0.2.3 Data.BooleanData.Boolean.OverloadData.Boolean.NumbersOrdB<*>=*>*<=*EqB==*/=*IfBifB BooleanOfBooleantruefalsenotB&&*||*booleancondcropguardedBcaseBminBmaxBsort2B&&||not ifThenElse==/=<><=>=minmax RealFloatBisNaN isInfiniteisNegativeZeroisIEEEatan2 RealFracBproperFractiontruncateroundceilingfloor IntegralBquotremdivmodquotRemdivMod toIntegerBNumB IntegerOf fromIntegerBevenBoddB fromIntegralBbase Data.Monoidmemptyghc-prim GHC.Classesife $fOrdB(->) $fEqB(->) $fIfB(->) $fBoolean(->) $fIfB(,,,) $fIfB(,,)$fIfB(,)$fIfB[]TFCo:R:BooleanOf(->)TFCo:R:BooleanOf(,,,)TFCo:R:BooleanOf(,,)TFCo:R:BooleanOf(,)TFCo:R:BooleanOf[] $fOrdBChar $fEqBChar $fIfBCharTFCo:R:BooleanOfChar $fOrdBBool $fEqBBool $fIfBBoolTFCo:R:BooleanOfBool $fOrdBDouble $fEqBDouble $fIfBDoubleTFCo:R:BooleanOfDouble $fOrdBFloat $fEqBFloat $fIfBFloatTFCo:R:BooleanOfFloat $fOrdBInteger $fEqBInteger $fIfBIntegerTFCo:R:BooleanOfInteger $fOrdBInt$fEqBInt$fIfBIntTFCo:R:BooleanOfInt $fBooleanBool GHC.Float RealFloatatanGHC.RealIntegralGHC.NumNumevenodd fromIntegral fromInteger'.:##$fRealFloatBDouble$fRealFracBDouble$fRealFloatBFloat$fRealFracBFloat$fIntegralBInteger$fIntegralBInt $fNumBDouble $fNumBFloat $fNumBInteger $fNumBInt