úÎ ä+None8Returns true if the conjunction of literals given as an 6 argument is satisfiable in the first order theory of ' uninterpreted functions with equality :Build a conjunction of literals out of a list of literals 'eq a b' builds the literal a = b 'neq a b' builds the literal ' not (a = b)' Returns a new variable Returns a new function 5  !"#$%&'()*+,-./01234,   !"#$%&'()*+,-./012345      !"#$%&'()*+,-./01234EqualitySolver-0.1.0.1EqualitySolver.SolversatisfiableInEqeqFeqneqvarfunEqStatepointMap superTermsDecideEqEqTermVariableFunctionNameArity PredicateNeqEq EqLiteral EqFormulaallTerms extractTermscontainsisEq showEqTermsubTerms runDecideEqdecideEqtermsContaininggetRep sameClass defaultMergefindCongruences congruentWith congruentequivalentArgs classConflictaddEq showEqState newEqState nodeForTermgetNodeaddTermaddTermsbuildContainsMapallTermsContainingprocessEqualitiesprocessDisequalities $fShowEqState $fShowEqTerm