-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | A natural language generator (specifically, an FB-LTAG surface realiser) -- -- A natural language generator (specifically, an FB-LTAG surface -- realiser) @package GenI @version 0.25.0 module NLP.GenI.Statistics data Statistics type StatisticsState a = forall m. (MonadState Statistics m) => m a emptyStats :: Statistics showFinalStats :: Statistics -> String initialStatisticsStateFor :: (m a -> Statistics -> b) -> m a -> b -- | Adds a metric at the beginning of the list (note we reverse the order -- whene we want to print the metrics) addMetric :: Metric -> StatisticsState () data Metric IntMetric :: String -> Int -> Metric queryMetrics :: (Metric -> Maybe a) -> Statistics -> [a] updateMetrics :: (Metric -> Metric) -> Statistics -> Statistics incrIntMetric :: String -> Int -> Metric -> Metric queryIntMetric :: String -> Metric -> Maybe Int instance GHC.Show.Show NLP.GenI.Statistics.Metric instance Text.JSON.JSON NLP.GenI.Statistics.Statistics instance Control.DeepSeq.NFData NLP.GenI.Statistics.Statistics instance Control.DeepSeq.NFData NLP.GenI.Statistics.Metric -- | This is not a proper pretty printer. I aim is to replace this with a -- (de-facto) standard library if one should appear module NLP.GenI.Pretty -- | An alternative Show instance (the idea being that we should -- reserve Show for outputting actual Haskell) -- -- Minimal implementation is pretty or prettyStr class Pretty a where pretty = pack . prettyStr prettyStr = unpack . pretty pretty :: Pretty a => a -> Text prettyStr :: Pretty a => a -> String -- | An infix synonym for mappend. (<>) :: Monoid m => m -> m -> m infixr 6 <> -- | Separated by space unless one of them is empty (in which case just the -- non-empty one) (<+>) :: Text -> Text -> Text -- | I think I want ($+$) here but I'm not sure I understand the -- documentation from the pretty package. -- -- t1 above t2 separates the two by a newline, unless one -- of them is empty. The vertical equivalent to '(+)' above :: Text -> Text -> Text -- |
--   between l r t == l <> t <> r
--   
between :: Text -> Text -> Text -> Text -- | parens t puts t between parentheses (()) parens :: Text -> Text -- | squares t puts t between square brackets -- ([]) squares :: Text -> Text -- | Puts list items on the same line if they are smaller than a certain -- width otherwise, puts a newline in between them squeezed :: Int -> [Text] -> Text -- |
--   prettyCount toBlah ""     (x,1) == "blah"
--   prettyCount toBlah "foos" (x,1) == "blah"
--   prettyCount toBlah ""     (x,4) == "blah ×4"
--   prettyCount toBlah "foos" (x,4) == "blah ×4 foos"
--   
prettyCount :: (a -> Text) -> Text -> (a, Int) -> Text instance NLP.GenI.Pretty.Pretty GHC.Base.String instance NLP.GenI.Pretty.Pretty Data.Text.Internal.Text instance NLP.GenI.Pretty.Pretty GHC.Types.Int instance NLP.GenI.Pretty.Pretty GHC.Integer.Type.Integer module NLP.GenI.Polarity.Types data PolarityKey PolarityKeyAv :: Text -> Text -> PolarityKey PolarityKeyStr :: Text -> PolarityKey -- | attribute PolarityKeyVar :: Text -> PolarityKey type SemPols = [Int] -- | PolarityAttr is something you want to perform detect polarities -- on. data PolarityAttr SimplePolarityAttr :: Text -> PolarityAttr [spkAtt] :: PolarityAttr -> Text -- | RestrictedPolarityKey c att is a polarity key in -- which we only pay attention to nodes that have the category -- c. This makes it possible to have polarities for a just a -- small subset of nodes RestrictedPolarityAttr :: Text -> Text -> PolarityAttr [_rpkCat] :: PolarityAttr -> Text [rpkAtt] :: PolarityAttr -> Text readPolarityAttrs :: String -> Set PolarityAttr showPolarityAttrs :: Set PolarityAttr -> String instance GHC.Classes.Ord NLP.GenI.Polarity.Types.PolarityAttr instance GHC.Classes.Eq NLP.GenI.Polarity.Types.PolarityAttr instance Data.Data.Data NLP.GenI.Polarity.Types.PolarityKey instance GHC.Classes.Ord NLP.GenI.Polarity.Types.PolarityKey instance GHC.Classes.Eq NLP.GenI.Polarity.Types.PolarityKey instance NLP.GenI.Pretty.Pretty NLP.GenI.Polarity.Types.PolarityKey instance GHC.Show.Show NLP.GenI.Polarity.Types.PolarityAttr instance Control.DeepSeq.NFData NLP.GenI.Polarity.Types.PolarityKey instance Control.DeepSeq.NFData NLP.GenI.Polarity.Types.PolarityAttr module NLP.GenI.GeniShow -- | GenI format; should round-trip with Parser by rights -- -- Minimal definition, either one of geniShow or -- geniShowText class GeniShow a where geniShow = unpack . geniShowText geniShowText = pack . geniShow geniShow :: GeniShow a => a -> String geniShowText :: GeniShow a => a -> Text geniShowTree :: GeniShow a => Int -> Tree a -> Text geniKeyword :: Text -> Text -> Text instance NLP.GenI.GeniShow.GeniShow a => NLP.GenI.GeniShow.GeniShow (Data.Tree.Tree a) -- | This module provides some very generic, non-GenI specific functions on -- strings, trees and other miscellaneous odds and ends. Whenever -- possible, one should try to replace these functions with versions that -- are available in the standard libraries, or the Haskell platform ones, -- or on hackage. module NLP.GenI.General -- | putStr on stderr ePutStr :: String -> IO () ePutStrLn :: String -> IO () eFlush :: IO () isGeniIdentLetter :: Char -> Bool -- | Drop all characters up to and including the one in question dropTillIncluding :: Char -> String -> String trim :: String -> String -- | Make the first character of a string upper case toUpperHead :: String -> String -- | Make the first character of a string lower case toLowerHead :: String -> String -- | An alphanumeric sort is one where you treat the numbers in the string -- as actual numbers. An alphanumeric sort would put x2 before x100, -- because 2 < 10, wheraeas a naive sort would put it the other way -- around because the characters 1 < 2. To sort alphanumerically, just -- 'sortBy (comparing toAlphaNum)' toAlphaNum :: String -> [AlphaNum] quoteString :: String -> String quoteText :: Text -> Text -- | quoteText but only if it contains characters that are not used -- in GenI identifiers maybeQuoteText :: Text -> Text -- | break a list of items into sublists of length < the clump size, -- taking into consideration that each item in the clump will have a -- single gap of padding interspersed -- -- any item whose length is greater than the clump size is put into a -- clump by itself -- -- given a length function clumpBy (length.show) 8 ["hello", "this", -- "is", "a", "list"] clumpBy :: (a -> Int) -> Int -> [a] -> [[a]] first3 :: (a -> a2) -> (a, b, c) -> (a2, b, c) second3 :: (b -> b2) -> (a, b, c) -> (a, b2, c) third3 :: (c -> c2) -> (a, b, c) -> (a, b, c2) fst3 :: (a, b, c) -> a snd3 :: (a, b, c) -> b thd3 :: (a, b, c) -> c -- | A strict version of map map' :: (a -> b) -> [a] -> [b] buckets :: Ord b => (a -> b) -> [a] -> [(b, [a])] -- | True if the intersection of two lists is empty. isEmptyIntersect :: (Eq a) => [a] -> [a] -> Bool -- | Serves the same function as groupBy. It groups together items -- by some property they have in common. The difference is that the -- property is used as a key to a Map that you can lookup. groupByFM :: (Ord b) => (a -> b) -> [a] -> (Map b [a]) insertToListMap :: (Ord b) => b -> a -> Map b [a] -> Map b [a] histogram :: Ord a => [a] -> Map a Int combinations :: [[a]] -> [[a]] mapMaybeM :: (Monad m) => (a -> m (Maybe b)) -> [a] -> m [b] -- | Return the list, modifying only the first matching item. repList :: (a -> Bool) -> (a -> a) -> [a] -> [a] -- | Strict version of mapTree (for non-strict, just use fmap) mapTree' :: (a -> b) -> Tree a -> Tree b -- | Like filter, except on Trees. Filter might not be a good name, -- though, because we return a list of nodes, not a tree. filterTree :: (a -> Bool) -> Tree a -> [a] -- | The leaf nodes of a Tree treeLeaves :: Tree a -> [a] -- | Return pairs of (parent, terminal) preTerminals :: Tree a -> [(a, a)] -- | repNode fn filt t returns a version of t in -- which the first node which filt matches is transformed using -- fn. repNode :: (Tree a -> Tree a) -> (Tree a -> Bool) -> Tree a -> Maybe (Tree a) -- | Like repNode except that it performs the operations on all -- nodes that match and doesn't care if any nodes match or not repAllNode :: (Tree a -> Tree a) -> (Tree a -> Bool) -> Tree a -> Tree a -- | Like repNode but on a list of tree nodes listRepNode :: (Tree a -> Tree a) -> (Tree a -> Bool) -> [Tree a] -> ([Tree a], Bool) -- | Replace a node in the tree in-place with another node; keep the -- children the same. If the node is not found in the tree, or if there -- are multiple instances of the node, this is treated as an error. repNodeByNode :: (a -> Bool) -> a -> Tree a -> Tree a type Interval = (Int, Int) -- | Add two intervals (!+!) :: Interval -> Interval -> Interval -- | ival x builds a trivial interval from x to -- x ival :: Int -> Interval showInterval :: Interval -> String newtype BitVector BitVector :: Integer -> BitVector -- | displays a bit vector, using a minimum number of bits showBitVector :: Int -> BitVector -> String -- | Ignore error string hush :: Either e a -> Maybe a -- | errors specifically in GenI, which is very likely NOT the user's -- fault. geniBug :: String -> a prettyException :: IOException -> String -- | The module name for an arbitrary data type mkLogname :: Typeable a => a -> String instance Control.DeepSeq.NFData NLP.GenI.General.BitVector instance GHC.Num.Num NLP.GenI.General.BitVector instance Data.Bits.Bits NLP.GenI.General.BitVector instance GHC.Classes.Eq NLP.GenI.General.BitVector instance GHC.Classes.Eq NLP.GenI.General.AlphaNum instance GHC.Classes.Ord NLP.GenI.General.AlphaNum module NLP.GenI.ErrorIO liftEither :: (Monad m) => Either e a -> ExceptT e m a -- | This module provides a simple, naive implementation of -- nondeterministic finite automata (NFA). -- -- The transition function consists of a Map, but there are also -- accessor function which help you query the automaton without worrying -- about how it's implemented. -- --
    --
  1. The states are a list of lists, not just a simple flat list as you -- might expect. This allows you to optionally group your states into -- "columns" which is something we use in the GenI polarity automaton -- optimisation.
  2. --
  3. We model the empty an empty transition as the transition on -- Nothing. All other transitions are Just -- something.
  4. --
module NLP.GenI.Automaton -- | Note: you can define the final state either by setting -- isFinalSt to Just f where f is some function -- or by putting them in finalStList data NFA st ab NFA :: st -> Maybe (st -> Bool) -> [st] -> Map st (Map st [Maybe ab]) -> [[st]] -> NFA st ab [startSt] :: NFA st ab -> st -- | finalSt will use this if defined [isFinalSt] :: NFA st ab -> Maybe (st -> Bool) -- | can be ignored if isFinalSt is defined [finalStList] :: NFA st ab -> [st] -- | there can be more than one transition between any two states and a -- transition could be the empty symbol [transitions] :: NFA st ab -> Map st (Map st [Maybe ab]) -- | if you don't care about grouping states into columns you can just dump -- everything in one big list [states] :: NFA st ab -> [[st]] -- | finalSt returns all the final states of an automaton finalSt :: NFA st ab -> [st] addTrans :: (Ord st) => NFA st ab -> st -> Maybe ab -> st -> NFA st ab -- | lookupTrans aut st1 ab returns the states that -- st1 transitions to via a. lookupTrans :: (Ord ab, Ord st) => NFA st ab -> st -> (Maybe ab) -> [st] -- | Returns all possible paths through an automaton from the start state -- to any dead-end. -- -- Each path is represented as a list of labels. -- -- We assume that the automaton does not have any loops in it. automatonPaths :: (Ord st) => (NFA st ab) -> [[ab]] -- | The set of all bundled paths. A bundled path is a sequence of states -- through the automaton from the start state to any dead end. Any two -- neighbouring states can have more than one possible transition between -- them, so the bundles can multiply out to a lot of different possible -- paths. -- -- The output is a list of lists of lists: -- -- automatonPathSets :: (Ord st) => (NFA st ab) -> [[[ab]]] numStates :: NFA st ab -> Int numTransitions :: NFA st ab -> Int module Data.FullList.Internal newtype FullList a FullList :: [a] -> FullList a fromFL :: FullList a -> [a] indeedFL :: [a] -> w -> (FullList a -> w) -> w head :: FullList a -> a tail :: FullList a -> [a] (++) :: FullList a -> FullList a -> FullList a sortNub :: (Eq a, Ord a) => FullList a -> FullList a class Listable l (!:) :: Listable l => a -> l a -> FullList a instance Data.Data.Data a => Data.Data.Data (Data.FullList.Internal.FullList a) instance GHC.Show.Show a => GHC.Show.Show (Data.FullList.Internal.FullList a) instance GHC.Classes.Ord a => GHC.Classes.Ord (Data.FullList.Internal.FullList a) instance GHC.Classes.Eq a => GHC.Classes.Eq (Data.FullList.Internal.FullList a) instance GHC.Base.Functor Data.FullList.Internal.FullList instance Data.FullList.Internal.Listable [] instance Data.FullList.Internal.Listable Data.FullList.Internal.FullList instance Control.DeepSeq.NFData a => Control.DeepSeq.NFData (Data.FullList.Internal.FullList a) instance Data.Binary.Class.Binary a => Data.Binary.Class.Binary (Data.FullList.Internal.FullList a) module Data.FullList data FullList a fromFL :: FullList a -> [a] indeedFL :: [a] -> w -> (FullList a -> w) -> w head :: FullList a -> a tail :: FullList a -> [a] (++) :: FullList a -> FullList a -> FullList a sortNub :: (Eq a, Ord a) => FullList a -> FullList a class Listable l (!:) :: Listable l => a -> l a -> FullList a -- | Gory details for GeniVal module NLP.GenI.GeniVal.Internal -- | data GeniVal GeniVal :: Maybe Text -> Maybe (FullList Text) -> GeniVal -- | Optional label (?X would have Just X) [gLabel] :: GeniVal -> Maybe Text -- | Optional values/constraints Must have at least one if at all -- -- Though it may seem a bit redudant, this is not quite the same as -- having '[Text]' because Nothing means no constraints; whereas -- Just [] (impossible here) would mean bottom. [gConstraints] :: GeniVal -> Maybe (FullList Text) -- | mkGConst x :! [] creates a single constant. -- mkGConst x :! xs creates an atomic disjunction. It -- makes no difference which of the values you supply for x and -- xs as they will be sorted and nubed anyway. mkGConst :: FullList Text -> GeniVal -- | Create a singleton constant (no disjunction here) mkGConstNone :: Text -> GeniVal -- | Create a variable mkGVar :: Text -> Maybe (FullList Text) -> GeniVal -- | Create a variable with no constraints mkGVarNone :: Text -> GeniVal -- | Create an anonymous value mkGAnon :: GeniVal -- | If v has exactly one value/constraint, returns it singletonVal :: GeniVal -> Maybe Text -- | An anonymous GeniVal (_ or ?_) has no -- labels/constraints isAnon :: GeniVal -> Bool -- | A variable substitution map. GenI unification works by rewriting -- variables type Subst = Map Text GeniVal -- | For debugging prettySubst :: Subst -> Text class (MonadPlus m, MonadError String m, Functor m) => MonadUnify m -- | unify performs unification on two lists of GeniVal. If -- unification succeeds, it returns Just (r,s) where r -- is the result of unification and verb!s! is a list of substitutions -- that this unification results in. unify :: MonadUnify m => [GeniVal] -> [GeniVal] -> m ([GeniVal], Subst) -- | l1 allSubsume l2 returns the result of l1 -- unify l2 if doing a simultaneous traversal of both lists, -- each item in l1 subsumes the corresponding item in -- l2 allSubsume :: MonadUnify m => [GeniVal] -> [GeniVal] -> m ([GeniVal], Subst) -- | unifyHelper unf gs1 gs2 zips two lists with some unification -- function. -- -- It's meant to serve as a helper to unify and allSubsume unifyHelper :: (MonadError String m) => (GeniVal -> GeniVal -> UnificationResult) -> [GeniVal] -> [GeniVal] -> m ([GeniVal], Subst) -- | Note that the first Subst is assumed to come chronologically before -- the second one; so merging { X -> Y } and { Y -> 3 -- } should give us { X -> 3; Y -> 3 }; -- -- See prependToSubst for a warning! appendSubst :: Subst -> Subst -> Subst -- | Add to variable replacement to a Subst that logical comes -- before the other stuff in it. So for example, if we have Y -> -- foo and we want to insert X -> Y, we notice that, in -- fact, Y has already been replaced by foo, so we add -- X -> foo instead -- -- Note that it is undefined if you try to append something like Y -- -> foo to Y -> bar, because that would mean that -- unification is broken prependToSubst :: (Text, GeniVal) -> Subst -> Subst -- | Unification can either… data UnificationResult -- | succeed for free (no substitutions), SuccessSans :: GeniVal -> UnificationResult -- | succeed with a one-way substitution, SuccessRep :: Text -> GeniVal -> UnificationResult -- | succeed w both vars needing substitution (constraint intersection), SuccessRep2 :: Text -> Text -> GeniVal -> UnificationResult -- | or fail Failure :: UnificationResult -- | See source code for details -- -- Note that we assume that it's acceptable to generate new variable -- names by appending an x to them; this assumption is only safe -- if the variables have gone through the function -- finaliseVarsById or have been pre-processed and rewritten with -- some kind of common suffix to avoid an accidental match unifyOne :: GeniVal -> GeniVal -> UnificationResult -- | intersectConstraints (Just cs1) (Just cs2) returns the -- intersection of cs1 and cs2 if non-empty (or -- Nothing if there's nothing in common) -- -- If any of the arguments is unconstrained (Nothing), we simply -- return the other. intersectConstraints :: Eq a => Maybe (FullList a) -> Maybe (FullList a) -> Maybe (Maybe (FullList a)) -- | subsumeOne x y returns the same result as unifyOne -- x y if x subsumes y or Failure otherwise subsumeOne :: GeniVal -> GeniVal -> UnificationResult -- | Apply variable substitutions replace :: DescendGeniVal a => Subst -> a -> a -- | Apply a single variable substitution replaceOne :: DescendGeniVal a => (Text, GeniVal) -> a -> a -- | Here it is safe to say (X -> Y; Y -> Z) because this would be -- crushed down into a final value of (X -> Z; Y -> Z) replaceList :: DescendGeniVal a => [(Text, GeniVal)] -> a -> a -- | Core implementation for replace For use by the Uniplate-esq -- descendGeniVal replaceMapG :: Subst -> GeniVal -> GeniVal -- | Core implementation for replaceOne For use by the Uniplate-esq -- descendGeniVal replaceOneG :: (Text, GeniVal) -> GeniVal -> GeniVal -- | A variable label and its constraints type CollectedVar = (Text, Maybe (FullList Text)) -- | A Collectable is something which can return its variables as a -- map from the variable to the number of times that variable occurs in -- it. -- -- Important invariant: if the variable does not occur, then it does not -- appear in the map (ie. all counts must be >= 1 or the item does not -- occur at all) -- -- By variables, what I most had in mind was the GVar values in a -- GeniVal. This notion is probably not very useful outside the context -- of alpha-conversion task, but it seems general enough that I'll keep -- it around for a good bit, until either some use for it creeps up, or I -- find a more general notion that I can transform this into. class Collectable a -- | collect x m increments our count for any variables in -- x (adds not-yet-seen variables as needed) collect :: Collectable a => a -> Map CollectedVar Int -> Map CollectedVar Int -- | An Idable is something that can be mapped to a unique id. You might -- consider using this to implement Ord, but I won't. Note that the only -- use I have for this so far (20 dec 2005) is in alpha-conversion. class Idable a idOf :: Idable a => a -> Integer -- | Anonymise any variable that occurs only once in the object anonymiseSingletons :: (Collectable a, DescendGeniVal a) => a -> a -- | finaliseVarsById appends a unique suffix to all variables in an -- object. This avoids us having to alpha convert all the time and relies -- on the assumption finding that a unique suffix is possible. finaliseVarsById :: (Collectable a, DescendGeniVal a, Idable a) => a -> a -- | finaliseVars does the following: -- -- finaliseVars :: (Collectable a, DescendGeniVal a) => Text -> a -> a -- | A schema value is a disjunction of GenI values. It allows us to -- express “fancy” disjunctions in tree schemata, ie. disjunctions over -- variables and not just atoms (?X;?Y). -- -- Our rule is that that when a tree schema is instantiated, any fancy -- disjunctions must be “crushed” into a single GeniVal lest it be -- rejected (see crushOne) -- -- Note that this is still not recursive; we don't have disjunction over -- schema values, nor can schema values refer to schema values. It just -- allows us to express the idea that in tree schemata, you can have -- either variable ?X or ?Y. newtype SchemaVal SchemaVal :: [GeniVal] -> SchemaVal -- | Convert a fancy disjunction (allowing disjunction over variables) -- value into a plain old atomic disjunction. The idea is to support a -- limited notion of fancy disjunction by requiring that there be a -- single point where this disjunction can be converted into a plain old -- variable. Note that we currently convert these to constants only. crushOne :: SchemaVal -> Maybe GeniVal -- | Convert a list of fancy disjunctions crushList :: [SchemaVal] -> Maybe [GeniVal] -- | A structure that can be traversed with a GeniVal-replacing -- function (typical use case: substitution after unification) -- -- Approach suggested by Neil Mitchell after I found that Uniplate seemed -- to hurt GenI performance a bit. class DescendGeniVal a -- | descendGeniVal f x applies f to all GeniVal -- in x descendGeniVal :: DescendGeniVal a => (GeniVal -> GeniVal) -> a -> a instance GHC.Classes.Ord NLP.GenI.GeniVal.Internal.SchemaVal instance GHC.Classes.Eq NLP.GenI.GeniVal.Internal.SchemaVal instance Data.Data.Data NLP.GenI.GeniVal.Internal.GeniVal instance GHC.Classes.Ord NLP.GenI.GeniVal.Internal.GeniVal instance GHC.Classes.Eq NLP.GenI.GeniVal.Internal.GeniVal instance NLP.GenI.Pretty.Pretty NLP.GenI.GeniVal.Internal.GeniVal instance NLP.GenI.GeniShow.GeniShow NLP.GenI.GeniVal.Internal.GeniVal instance NLP.GenI.GeniVal.Internal.MonadUnify (Data.Either.Either GHC.Base.String) instance NLP.GenI.GeniVal.Internal.Collectable a => NLP.GenI.GeniVal.Internal.Collectable (GHC.Base.Maybe a) instance NLP.GenI.GeniVal.Internal.Collectable a => NLP.GenI.GeniVal.Internal.Collectable [a] instance NLP.GenI.GeniVal.Internal.Collectable NLP.GenI.GeniVal.Internal.GeniVal instance NLP.GenI.GeniVal.Internal.Collectable NLP.GenI.GeniVal.Internal.SchemaVal instance NLP.GenI.GeniVal.Internal.DescendGeniVal NLP.GenI.GeniVal.Internal.SchemaVal instance NLP.GenI.GeniShow.GeniShow NLP.GenI.GeniVal.Internal.SchemaVal instance NLP.GenI.GeniVal.Internal.DescendGeniVal NLP.GenI.GeniVal.Internal.GeniVal instance (GHC.Base.Functor f, NLP.GenI.GeniVal.Internal.DescendGeniVal a) => NLP.GenI.GeniVal.Internal.DescendGeniVal (f a) instance Control.DeepSeq.NFData NLP.GenI.GeniVal.Internal.GeniVal instance Control.DeepSeq.NFData NLP.GenI.GeniVal.Internal.SchemaVal instance Data.Binary.Class.Binary NLP.GenI.GeniVal.Internal.GeniVal instance Data.Binary.Class.Binary NLP.GenI.GeniVal.Internal.SchemaVal -- | GenI values (variables, constants) module NLP.GenI.GeniVal -- | data GeniVal -- | Optional label (?X would have Just X) gLabel :: GeniVal -> Maybe Text -- | Optional values/constraints Must have at least one if at all -- -- Though it may seem a bit redudant, this is not quite the same as -- having '[Text]' because Nothing means no constraints; whereas -- Just [] (impossible here) would mean bottom. gConstraints :: GeniVal -> Maybe (FullList Text) -- | mkGConst x :! [] creates a single constant. -- mkGConst x :! xs creates an atomic disjunction. It -- makes no difference which of the values you supply for x and -- xs as they will be sorted and nubed anyway. mkGConst :: FullList Text -> GeniVal -- | Create a singleton constant (no disjunction here) mkGConstNone :: Text -> GeniVal -- | Create a variable mkGVar :: Text -> Maybe (FullList Text) -> GeniVal -- | Create a variable with no constraints mkGVarNone :: Text -> GeniVal -- | Create an anonymous value mkGAnon :: GeniVal -- | An anonymous GeniVal (_ or ?_) has no -- labels/constraints isAnon :: GeniVal -> Bool -- | If v has exactly one value/constraint, returns it singletonVal :: GeniVal -> Maybe Text -- | A schema value is a disjunction of GenI values. It allows us to -- express “fancy” disjunctions in tree schemata, ie. disjunctions over -- variables and not just atoms (?X;?Y). -- -- Our rule is that that when a tree schema is instantiated, any fancy -- disjunctions must be “crushed” into a single GeniVal lest it be -- rejected (see crushOne) -- -- Note that this is still not recursive; we don't have disjunction over -- schema values, nor can schema values refer to schema values. It just -- allows us to express the idea that in tree schemata, you can have -- either variable ?X or ?Y. newtype SchemaVal SchemaVal :: [GeniVal] -> SchemaVal -- | Convert a fancy disjunction (allowing disjunction over variables) -- value into a plain old atomic disjunction. The idea is to support a -- limited notion of fancy disjunction by requiring that there be a -- single point where this disjunction can be converted into a plain old -- variable. Note that we currently convert these to constants only. crushOne :: SchemaVal -> Maybe GeniVal -- | finaliseVars does the following: -- -- finaliseVars :: (Collectable a, DescendGeniVal a) => Text -> a -> a -- | finaliseVarsById appends a unique suffix to all variables in an -- object. This avoids us having to alpha convert all the time and relies -- on the assumption finding that a unique suffix is possible. finaliseVarsById :: (Collectable a, DescendGeniVal a, Idable a) => a -> a -- | Anonymise any variable that occurs only once in the object anonymiseSingletons :: (Collectable a, DescendGeniVal a) => a -> a class (MonadPlus m, MonadError String m, Functor m) => MonadUnify m -- | unify performs unification on two lists of GeniVal. If -- unification succeeds, it returns Just (r,s) where r -- is the result of unification and verb!s! is a list of substitutions -- that this unification results in. unify :: MonadUnify m => [GeniVal] -> [GeniVal] -> m ([GeniVal], Subst) -- | Unification can either… data UnificationResult -- | succeed for free (no substitutions), SuccessSans :: GeniVal -> UnificationResult -- | succeed with a one-way substitution, SuccessRep :: Text -> GeniVal -> UnificationResult -- | succeed w both vars needing substitution (constraint intersection), SuccessRep2 :: Text -> Text -> GeniVal -> UnificationResult -- | or fail Failure :: UnificationResult -- | A variable substitution map. GenI unification works by rewriting -- variables type Subst = Map Text GeniVal -- | Note that the first Subst is assumed to come chronologically before -- the second one; so merging { X -> Y } and { Y -> 3 -- } should give us { X -> 3; Y -> 3 }; -- -- See prependToSubst for a warning! appendSubst :: Subst -> Subst -> Subst -- | subsumeOne x y returns the same result as unifyOne -- x y if x subsumes y or Failure otherwise subsumeOne :: GeniVal -> GeniVal -> UnificationResult -- | l1 allSubsume l2 returns the result of l1 -- unify l2 if doing a simultaneous traversal of both lists, -- each item in l1 subsumes the corresponding item in -- l2 allSubsume :: MonadUnify m => [GeniVal] -> [GeniVal] -> m ([GeniVal], Subst) -- | A structure that can be traversed with a GeniVal-replacing -- function (typical use case: substitution after unification) -- -- Approach suggested by Neil Mitchell after I found that Uniplate seemed -- to hurt GenI performance a bit. class DescendGeniVal a -- | descendGeniVal f x applies f to all GeniVal -- in x descendGeniVal :: DescendGeniVal a => (GeniVal -> GeniVal) -> a -> a -- | A Collectable is something which can return its variables as a -- map from the variable to the number of times that variable occurs in -- it. -- -- Important invariant: if the variable does not occur, then it does not -- appear in the map (ie. all counts must be >= 1 or the item does not -- occur at all) -- -- By variables, what I most had in mind was the GVar values in a -- GeniVal. This notion is probably not very useful outside the context -- of alpha-conversion task, but it seems general enough that I'll keep -- it around for a good bit, until either some use for it creeps up, or I -- find a more general notion that I can transform this into. class Collectable a -- | collect x m increments our count for any variables in -- x (adds not-yet-seen variables as needed) collect :: Collectable a => a -> Map CollectedVar Int -> Map CollectedVar Int -- | An Idable is something that can be mapped to a unique id. You might -- consider using this to implement Ord, but I won't. Note that the only -- use I have for this so far (20 dec 2005) is in alpha-conversion. class Idable a idOf :: Idable a => a -> Integer -- | Apply variable substitutions replace :: DescendGeniVal a => Subst -> a -> a -- | Here it is safe to say (X -> Y; Y -> Z) because this would be -- crushed down into a final value of (X -> Z; Y -> Z) replaceList :: DescendGeniVal a => [(Text, GeniVal)] -> a -> a -- | Feature structures in GenI can be seen as a simple mapping from -- attributes to values (no fancy recursion). -- -- From an implementation standpoint, we do truck around lists of -- AvPair quite a bit which unfortunately means we don't guarantee -- things like uniqueness of attributes. We may phase this out over time -- in favour of FeatStruct module NLP.GenI.FeatureStructure -- | A list of attribute-value pairs. It's not a great idea to represent -- feature structures with this because it allows for duplicates in the -- attributes. But maybe sometimes you really do mean a list. type Flist a = [AvPair a] -- | An attribute-value pair, the typical use being AvPair GeniVal -- or if you have something even simpler AvPair Text data AvPair a AvPair :: Text -> a -> AvPair a [avAtt] :: AvPair a -> Text [avVal] :: AvPair a -> a -- | Experimental, alternative representation of Flist which guarantees -- uniqueness of keys type FeatStruct a = Map Text a -- | A feature structure with no pairs emptyFeatStruct :: FeatStruct a -- | Convert an Flist to a proper FeatStruct Unsafely assumes -- the keys are unique mkFeatStruct :: Flist GeniVal -> FeatStruct GeniVal -- | Convert an FeatStruct to a simpler to process Flist fromFeatStruct :: FeatStruct a -> Flist a -- | Sort an Flist according with its attributes sortFlist :: Flist a -> Flist a -- | unifyFeat performs feature structure unification, under the -- these assumptions about the input: -- -- -- -- The features are allowed to have different sets of attributes, beacuse -- we use alignFeat to realign them. unifyFeat :: MonadUnify m => Flist GeniVal -> Flist GeniVal -> m (Flist GeniVal, Subst) -- | alignFeat is a pre-procesing step used to ensure that feature -- structures have the same set of keys. If a key is missing in one, we -- copy it to the other with an anonymous value. -- -- The two feature structures must be sorted for this to work alignFeat :: Flist GeniVal -> Flist GeniVal -> [(Text, GeniVal, GeniVal)] -- | Helper for alignFeat; ignore alignFeatH :: Flist GeniVal -> Flist GeniVal -> [(Text, GeniVal, GeniVal)] -> [(Text, GeniVal, GeniVal)] -- | Flatten a fancy disjunction attribute-value pair -- -- See crushOne for details crushAvPair :: AvPair SchemaVal -> Maybe (AvPair GeniVal) -- | Flatten a fancy-disjunction feature structure -- -- See crushOne for details crushFlist :: Flist SchemaVal -> Maybe (Flist GeniVal) instance Data.Data.Data a => Data.Data.Data (NLP.GenI.FeatureStructure.AvPair a) instance GHC.Classes.Eq a => GHC.Classes.Eq (NLP.GenI.FeatureStructure.AvPair a) instance GHC.Classes.Ord a => GHC.Classes.Ord (NLP.GenI.FeatureStructure.AvPair a) instance NLP.GenI.Pretty.Pretty (NLP.GenI.FeatureStructure.FeatStruct NLP.GenI.GeniVal.Internal.GeniVal) instance NLP.GenI.GeniShow.GeniShow (NLP.GenI.FeatureStructure.FeatStruct NLP.GenI.GeniVal.Internal.GeniVal) instance NLP.GenI.GeniVal.Internal.DescendGeniVal v => NLP.GenI.GeniVal.Internal.DescendGeniVal (NLP.GenI.FeatureStructure.AvPair v) instance NLP.GenI.GeniVal.Internal.DescendGeniVal a => NLP.GenI.GeniVal.Internal.DescendGeniVal (GHC.Base.String, a) instance NLP.GenI.GeniVal.Internal.Collectable a => NLP.GenI.GeniVal.Internal.Collectable (NLP.GenI.FeatureStructure.AvPair a) instance NLP.GenI.Pretty.Pretty (NLP.GenI.FeatureStructure.Flist NLP.GenI.GeniVal.Internal.GeniVal) instance NLP.GenI.Pretty.Pretty (NLP.GenI.FeatureStructure.AvPair NLP.GenI.GeniVal.Internal.GeniVal) instance NLP.GenI.GeniShow.GeniShow gv => NLP.GenI.GeniShow.GeniShow (NLP.GenI.FeatureStructure.Flist gv) instance NLP.GenI.GeniShow.GeniShow gv => NLP.GenI.GeniShow.GeniShow (NLP.GenI.FeatureStructure.AvPair gv) instance Data.Binary.Class.Binary a => Data.Binary.Class.Binary (NLP.GenI.FeatureStructure.AvPair a) instance Control.DeepSeq.NFData a => Control.DeepSeq.NFData (NLP.GenI.FeatureStructure.AvPair a) -- | Internal representation of GenI configuration options, typically -- passed in through the command line or via the GUI. -- -- We don't yet use the record based approach, or something like cmdargs -- because our use case involves -- -- -- -- What we have is fairly clunky, but it seems to be quite flexible for -- that need. module NLP.GenI.Flag -- | Requested optimisations -- -- At the time of this writing (2012-08-21), this is fairly sparse as a -- lot of proposed optimisations have just been absorbed into GenI as -- mandatory things. data Optimisation -- | all polarity-related optimisations PolOpts :: Optimisation -- | all adjunction-related optimisations AdjOpts :: Optimisation -- | polarity filtering Polarised :: Optimisation -- | ignore literal constraints (pessimisation?) NoConstraints :: Optimisation -- | guided realisation (needs polarity filtering) Guided :: Optimisation -- | A test suite and any test cases within that we want to pick out type Instruction = (FilePath, Maybe [Text]) -- | The tree assembly algorithm we want to use data BuilderType SimpleBuilder :: BuilderType SimpleOnePhaseBuilder :: BuilderType -- | What kind of elementary trees we're getting. The typical use case is -- to provide tree schemata with GeniHand (which then get anchored -- into the lexicon to give us elmentary trees). You can also have -- precompiled trees hardcoded into your GenI-like program, or read -- preanchored elementary trees from somewhere else. data GrammarType -- | geni's text format GeniHand :: GrammarType -- | built into geni, no parsing needed PreCompiled :: GrammarType -- | lexical selection already done PreAnchored :: GrammarType defaultGrammarType :: GrammarType getGrammarType :: [Flag] -> GrammarType hasOpt :: Optimisation -> [Flag] -> Bool -- | Flags are GenI's internal representation of command line arguments. We -- use phantom existential types (?) for representing GenI flags. This -- makes it simpler to do things such as ``get the value of the -- MacrosFlg'' whilst preserving type safety (we always know that -- MacrosFlg is associated with String). The alternative would be writing -- getters and setters for each flag, and that gets really boring after a -- while. data Flag Flag :: (x -> f) -> x -> Flag class HasFlags x flags :: HasFlags x => x -> [Flag] onFlags :: HasFlags x => ([Flag] -> [Flag]) -> x -> x isFlag :: (Typeable f, Typeable x) => (x -> f) -> Flag -> Bool hasFlag :: (Typeable f, Typeable x, HasFlags flags) => (x -> f) -> flags -> Bool deleteFlag :: (Typeable f, Typeable x, HasFlags flags) => (x -> f) -> flags -> flags -- | This only has an effect if the flag is set modifyFlag :: (Eq f, Typeable f, Typeable x, HasFlags flags) => (x -> f) -> (x -> x) -> flags -> flags setFlag :: (Eq f, Typeable f, Typeable x, HasFlags flags) => (x -> f) -> x -> flags -> flags getFlag :: (Typeable f, Typeable x, HasFlags flags) => (x -> f) -> flags -> Maybe x getAllFlags :: (Typeable f, Typeable x, HasFlags flags) => (x -> f) -> flags -> [x] getListFlag :: (Typeable f, Typeable x, HasFlags flags) => ([x] -> f) -> flags -> [x] -- | updateFlags new old takes the flags from new plus -- any from old that aren't mentioned in it updateFlags :: (HasFlags flags) => flags -> flags -> flags newtype BatchDirFlg BatchDirFlg :: FilePath -> BatchDirFlg newtype DisableGuiFlg DisableGuiFlg :: () -> DisableGuiFlg newtype DetectPolaritiesFlg DetectPolaritiesFlg :: (Set PolarityAttr) -> DetectPolaritiesFlg newtype DumpDerivationFlg DumpDerivationFlg :: () -> DumpDerivationFlg newtype EarlyDeathFlg EarlyDeathFlg :: () -> EarlyDeathFlg newtype FromStdinFlg FromStdinFlg :: () -> FromStdinFlg newtype HelpFlg HelpFlg :: () -> HelpFlg newtype InstructionsFileFlg InstructionsFileFlg :: FilePath -> InstructionsFileFlg newtype LexiconFlg LexiconFlg :: FilePath -> LexiconFlg newtype MacrosFlg MacrosFlg :: FilePath -> MacrosFlg newtype TracesFlg TracesFlg :: FilePath -> TracesFlg newtype MaxStepsFlg MaxStepsFlg :: Integer -> MaxStepsFlg newtype MaxResultsFlg MaxResultsFlg :: Integer -> MaxResultsFlg newtype MetricsFlg MetricsFlg :: [String] -> MetricsFlg newtype MorphCmdFlg MorphCmdFlg :: String -> MorphCmdFlg newtype MorphInfoFlg MorphInfoFlg :: FilePath -> MorphInfoFlg newtype OptimisationsFlg OptimisationsFlg :: [Optimisation] -> OptimisationsFlg newtype OutputFileFlg OutputFileFlg :: String -> OutputFileFlg newtype PartialFlg PartialFlg :: () -> PartialFlg newtype RankingConstraintsFlg RankingConstraintsFlg :: FilePath -> RankingConstraintsFlg newtype RootFeatureFlg RootFeatureFlg :: (Flist GeniVal) -> RootFeatureFlg newtype NoLoadTestSuiteFlg NoLoadTestSuiteFlg :: () -> NoLoadTestSuiteFlg newtype StatsFileFlg StatsFileFlg :: FilePath -> StatsFileFlg newtype TestCaseFlg TestCaseFlg :: Text -> TestCaseFlg newtype TestInstructionsFlg TestInstructionsFlg :: [Instruction] -> TestInstructionsFlg newtype TestSuiteFlg TestSuiteFlg :: FilePath -> TestSuiteFlg newtype TimeoutFlg TimeoutFlg :: Int -> TimeoutFlg newtype VerboseModeFlg VerboseModeFlg :: () -> VerboseModeFlg newtype VersionFlg VersionFlg :: () -> VersionFlg newtype ViewCmdFlg ViewCmdFlg :: String -> ViewCmdFlg newtype BuilderFlg BuilderFlg :: BuilderType -> BuilderFlg newtype GrammarTypeFlg GrammarTypeFlg :: GrammarType -> GrammarTypeFlg newtype WeirdFlg WeirdFlg :: String -> WeirdFlg instance GHC.Classes.Eq NLP.GenI.Flag.WeirdFlg instance GHC.Classes.Eq NLP.GenI.Flag.GrammarTypeFlg instance GHC.Classes.Eq NLP.GenI.Flag.BuilderFlg instance GHC.Classes.Eq NLP.GenI.Flag.ViewCmdFlg instance GHC.Classes.Eq NLP.GenI.Flag.VersionFlg instance GHC.Classes.Eq NLP.GenI.Flag.VerboseModeFlg instance GHC.Classes.Eq NLP.GenI.Flag.TimeoutFlg instance GHC.Classes.Eq NLP.GenI.Flag.TestSuiteFlg instance GHC.Classes.Eq NLP.GenI.Flag.TestInstructionsFlg instance GHC.Classes.Eq NLP.GenI.Flag.TestCaseFlg instance GHC.Classes.Eq NLP.GenI.Flag.StatsFileFlg instance GHC.Classes.Eq NLP.GenI.Flag.NoLoadTestSuiteFlg instance GHC.Classes.Eq NLP.GenI.Flag.RootFeatureFlg instance GHC.Classes.Eq NLP.GenI.Flag.RankingConstraintsFlg instance GHC.Classes.Eq NLP.GenI.Flag.PartialFlg instance GHC.Classes.Eq NLP.GenI.Flag.OutputFileFlg instance GHC.Classes.Eq NLP.GenI.Flag.OptimisationsFlg instance GHC.Classes.Eq NLP.GenI.Flag.MorphInfoFlg instance GHC.Classes.Eq NLP.GenI.Flag.MorphCmdFlg instance GHC.Classes.Eq NLP.GenI.Flag.MetricsFlg instance GHC.Classes.Eq NLP.GenI.Flag.MaxResultsFlg instance GHC.Classes.Eq NLP.GenI.Flag.MaxStepsFlg instance GHC.Classes.Eq NLP.GenI.Flag.TracesFlg instance GHC.Classes.Eq NLP.GenI.Flag.MacrosFlg instance GHC.Classes.Eq NLP.GenI.Flag.LexiconFlg instance GHC.Classes.Eq NLP.GenI.Flag.InstructionsFileFlg instance GHC.Classes.Eq NLP.GenI.Flag.HelpFlg instance GHC.Classes.Eq NLP.GenI.Flag.FromStdinFlg instance GHC.Classes.Eq NLP.GenI.Flag.EarlyDeathFlg instance GHC.Classes.Eq NLP.GenI.Flag.DumpDerivationFlg instance GHC.Classes.Eq NLP.GenI.Flag.DetectPolaritiesFlg instance GHC.Classes.Eq NLP.GenI.Flag.DisableGuiFlg instance GHC.Classes.Eq NLP.GenI.Flag.BatchDirFlg instance GHC.Classes.Eq NLP.GenI.Flag.GrammarType instance GHC.Show.Show NLP.GenI.Flag.GrammarType instance GHC.Classes.Eq NLP.GenI.Flag.BuilderType instance GHC.Classes.Eq NLP.GenI.Flag.Optimisation instance GHC.Show.Show NLP.GenI.Flag.Optimisation instance GHC.Show.Show NLP.GenI.Flag.BuilderType instance NLP.GenI.Flag.HasFlags [NLP.GenI.Flag.Flag] instance GHC.Classes.Eq NLP.GenI.Flag.Flag module NLP.GenI.LexicalSelection.Types -- | Left hand side of a path equation data PathEqLhs PeqInterface :: Text -> PathEqLhs PeqJust :: NodePathEqLhs -> PathEqLhs PeqUnknown :: Text -> PathEqLhs -- | Path equations can either hit a feature or a node's lexeme attribute data NodePathEqLhs PeqFeat :: Text -> TopBottom -> Text -> NodePathEqLhs PeqLex :: Text -> NodePathEqLhs data TopBottom Top :: TopBottom Bottom :: TopBottom type PathEqPair = (NodePathEqLhs, GeniVal) -- | Parse a path equation using the GenI conventions This always succeeds, -- but can return Just warning if anything anomalous comes up -- FIXME : make more efficient parsePathEq :: Text -> Writer [LexCombineError] PathEqLhs showPathEqLhs :: PathEqLhs -> Text data LexCombineError BoringError :: Text -> LexCombineError FamilyNotFoundError :: Text -> LexCombineError SchemaError :: [Text] -> LexCombineError2 -> LexCombineError data LexCombineError2 EnrichError :: PathEqLhs -> LexCombineError2 StringError :: Text -> LexCombineError2 showLexCombineError :: LexCombineError -> (Text, Text) compressLexCombineErrors :: [LexCombineError] -> [LexCombineError] instance GHC.Classes.Eq NLP.GenI.LexicalSelection.Types.LexCombineError instance GHC.Classes.Ord NLP.GenI.LexicalSelection.Types.LexCombineError2 instance GHC.Classes.Eq NLP.GenI.LexicalSelection.Types.LexCombineError2 instance GHC.Classes.Ord NLP.GenI.LexicalSelection.Types.PathEqLhs instance GHC.Classes.Eq NLP.GenI.LexicalSelection.Types.PathEqLhs instance GHC.Classes.Ord NLP.GenI.LexicalSelection.Types.NodePathEqLhs instance GHC.Classes.Eq NLP.GenI.LexicalSelection.Types.NodePathEqLhs instance GHC.Classes.Ord NLP.GenI.LexicalSelection.Types.TopBottom instance GHC.Classes.Eq NLP.GenI.LexicalSelection.Types.TopBottom instance Data.Poset.Internal.Poset NLP.GenI.LexicalSelection.Types.LexCombineError instance Data.Poset.Internal.Poset NLP.GenI.LexicalSelection.Types.LexCombineError2 instance Data.Poset.Internal.Poset NLP.GenI.LexicalSelection.Types.PathEqLhs instance Data.Poset.Internal.Poset Data.Text.Internal.Text instance NLP.GenI.Pretty.Pretty NLP.GenI.LexicalSelection.Types.LexCombineError instance NLP.GenI.Pretty.Pretty NLP.GenI.LexicalSelection.Types.LexCombineError2 -- | We use a flat semantics in GenI (bag of literals). module NLP.GenI.Semantics -- | A single semantic literal containing its handle, predicate, and -- arguments -- -- This can be paramaterised on the kinds of variables it uses, for -- example, GeniVal for a semantics that you might still want to -- do unification on or Text if it's supposed to be ground. data Literal gv Literal :: gv -> gv -> [gv] -> Literal gv -- | the handle can be seen as a special kind of argument; stored -- separately [lHandle] :: Literal gv -> gv [lPredicate] :: Literal gv -> gv [lArgs] :: Literal gv -> [gv] -- | A semantics is just a set of literals. type Sem = [Literal GeniVal] -- | A literal and any constraints associated with it (semantic input) type LitConstr = (Literal GeniVal, [Text]) -- | Semantics, index constraints, literal constraints -- -- The intention here is that for (sem, icons, lcons) all -- (elem sem) lcons type SemInput = (Sem, Flist GeniVal, [LitConstr]) -- | An empty literal, not sure you should really be using this emptyLiteral :: Literal GeniVal -- | Strip any index or literal constraints from an input. Use with care. removeConstraints :: SemInput -> SemInput -- | Default sorting for a semantics sortSem :: Ord a => [Literal a] -> [Literal a] -- | Default comparison for a literal compareOnLiteral :: Ord a => Literal a -> Literal a -> Ordering -- | Sort primarily putting the ones with the most constants first and -- secondarily by the number of instances a predicate occurs (if plain -- string; atomic disjunction/vars treated as infinite) sortByAmbiguity :: Sem -> Sem -- | Anything that we would want to count the number constants in (as -- opposed to variables) class HasConstants a -- | Number of constants constants :: HasConstants a => a -> Int -- | Helper for displaying or pretty printing a semantic input -- -- This gives you a bit of control over how each literal is displayed displaySemInput :: ([LitConstr] -> Text) -> SemInput -> Text -- | Is a handle generated by GenI. GenI lets you write literals without a -- handle; in these cases a unique handle is generated and hidden from -- the UI. isInternalHandle :: Text -> Bool -- | x subsumeSem y returns all the possible ways to unify -- x with some SUBSET of y so that x subsumes -- y. If x does NOT subsume y, we return the -- empty list. subsumeSem :: Sem -> Sem -> [(Sem, Subst)] -- | Helper for subsumeSem traversal subsumeSemH :: Sem -> Sem -> [(Sem, Subst)] -- | p1 subsumeLiteral p2 is the unification of p1 -- and p2 if both literals have the same arity, and the handles, -- predicates, and arguments in p1 all subsume their -- counterparts in p2 subsumeLiteral :: MonadUnify m => Literal GeniVal -> Literal GeniVal -> m (Literal GeniVal, Subst) -- | Return the list of minimal ways to unify two semantics, ie. where any -- literals that are not the product of a succesful unification really do -- not unify with anything else. unifySem :: Sem -> Sem -> [(Sem, Subst)] -- | Helper traversal for unifySem unifySemH :: Sem -> Sem -> [(Sem, Subst)] -- | Two literals unify if they have the same arity, and their handles, -- predicates, and arguments also unify unifyLiteral :: MonadUnify m => Literal GeniVal -> Literal GeniVal -> m (Literal GeniVal, Subst) instance Data.Data.Data gv => Data.Data.Data (NLP.GenI.Semantics.Literal gv) instance GHC.Classes.Eq gv => GHC.Classes.Eq (NLP.GenI.Semantics.Literal gv) instance GHC.Classes.Ord gv => GHC.Classes.Ord (NLP.GenI.Semantics.Literal gv) instance NLP.GenI.GeniVal.Internal.Collectable a => NLP.GenI.GeniVal.Internal.Collectable (NLP.GenI.Semantics.Literal a) instance NLP.GenI.Semantics.HasConstants NLP.GenI.GeniVal.Internal.GeniVal instance NLP.GenI.Semantics.HasConstants a => NLP.GenI.Semantics.HasConstants [a] instance NLP.GenI.Semantics.HasConstants (NLP.GenI.Semantics.Literal NLP.GenI.GeniVal.Internal.GeniVal) instance NLP.GenI.GeniVal.Internal.DescendGeniVal a => NLP.GenI.GeniVal.Internal.DescendGeniVal (NLP.GenI.Semantics.Literal a) instance NLP.GenI.Pretty.Pretty NLP.GenI.Semantics.Sem instance NLP.GenI.GeniShow.GeniShow NLP.GenI.Semantics.Sem instance NLP.GenI.Pretty.Pretty (NLP.GenI.Semantics.Literal NLP.GenI.GeniVal.Internal.GeniVal) instance NLP.GenI.GeniShow.GeniShow (NLP.GenI.Semantics.Literal NLP.GenI.GeniVal.Internal.GeniVal) instance NLP.GenI.Pretty.Pretty NLP.GenI.Semantics.SemInput instance NLP.GenI.GeniShow.GeniShow NLP.GenI.Semantics.SemInput instance NLP.GenI.GeniShow.GeniShow NLP.GenI.Semantics.LitConstr instance Control.DeepSeq.NFData g => Control.DeepSeq.NFData (NLP.GenI.Semantics.Literal g) instance Data.Binary.Class.Binary g => Data.Binary.Class.Binary (NLP.GenI.Semantics.Literal g) module NLP.GenI.Morphology.Types type MorphInputFn = Literal GeniVal -> Maybe (Flist GeniVal) type MorphRealiser = [Flag] -> [LemmaPlusSentence] -> [MorphOutput] data MorphOutput MorphOutput :: [Text] -> [Text] -> MorphOutput [moWarnings] :: MorphOutput -> [Text] [moRealisations] :: MorphOutput -> [Text] -- | A lemma plus its morphological features data LemmaPlus LemmaPlus :: Text -> Flist GeniVal -> LemmaPlus [lpLemma] :: LemmaPlus -> Text [lpFeats] :: LemmaPlus -> Flist GeniVal -- | A sentence composed of LemmaPlus instead of plain old words type LemmaPlusSentence = [LemmaPlus] instance GHC.Classes.Ord NLP.GenI.Morphology.Types.LemmaPlus instance GHC.Classes.Eq NLP.GenI.Morphology.Types.LemmaPlus instance GHC.Classes.Eq NLP.GenI.Morphology.Types.MorphOutput instance GHC.Classes.Ord NLP.GenI.Morphology.Types.MorphOutput instance Control.DeepSeq.NFData NLP.GenI.Morphology.Types.MorphOutput instance Control.DeepSeq.NFData NLP.GenI.Morphology.Types.LemmaPlus -- | Internals of lexical entry manipulation module NLP.GenI.Lexicon.Internal -- | Collection of lexical entries type Lexicon = [LexEntry] -- | Lexical entry data LexEntry LexEntry :: FullList Text -> Text -> [GeniVal] -> Flist GeniVal -> Flist GeniVal -> Flist GeniVal -> Sem -> [SemPols] -> LexEntry -- | normally just a singleton, useful for merging synonyms [iword] :: LexEntry -> FullList Text -- | tree family to anchor to [ifamname] :: LexEntry -> Text -- | parameters (deprecrated; use the interface) [iparams] :: LexEntry -> [GeniVal] -- | features to unify with tree schema interface [iinterface] :: LexEntry -> Flist GeniVal -- | features to pick out family members we want [ifilters] :: LexEntry -> Flist GeniVal -- | path equations [iequations] :: LexEntry -> Flist GeniVal -- | lexical semantics [isemantics] :: LexEntry -> Sem -- | polarities (must be same length as isemantics) [isempols] :: LexEntry -> [SemPols] -- | See also mkFullLexEntry This version comes with some sensible -- defaults. mkLexEntry :: FullList Text -> Text -> [GeniVal] -> Flist GeniVal -> Flist GeniVal -> Flist GeniVal -> Sem -> LexEntry -- | Variant of mkLexEntry but with more control mkFullLexEntry :: FullList Text -> Text -> [GeniVal] -> Flist GeniVal -> Flist GeniVal -> Flist GeniVal -> Sem -> [SemPols] -> LexEntry -- | An annotated GeniVal. This is for a rather old, obscure variant on the -- polarity filtering optimisation. To account for zero literal -- semantics, we annotate each value in the semantics with a -- positive/negative marker. These markers are then counted up to -- determine with we need to insert more literals into the semantics or -- not. See the manual on polarity filtering for more details type PolValue = (GeniVal, Int) -- | Separate an input lexical semantics into the actual semantics and the -- semantic polarity entries (which aren't used very much in practice, -- being a sort of experimental feature to solve an obscure-ish technical -- problem) fromLexSem :: [Literal PolValue] -> (Sem, [SemPols]) -- | Note that by convention we ignore the polarity associated with the -- predicate itself fromLexLiteral :: Literal PolValue -> (Literal GeniVal, SemPols) instance Data.Data.Data NLP.GenI.Lexicon.Internal.LexEntry instance GHC.Classes.Eq NLP.GenI.Lexicon.Internal.LexEntry instance NLP.GenI.GeniVal.Internal.DescendGeniVal NLP.GenI.Lexicon.Internal.LexEntry instance NLP.GenI.GeniVal.Internal.Collectable NLP.GenI.Lexicon.Internal.LexEntry instance NLP.GenI.GeniShow.GeniShow NLP.GenI.Lexicon.Internal.LexEntry instance NLP.GenI.GeniShow.GeniShow [NLP.GenI.Lexicon.Internal.LexEntry] instance NLP.GenI.Pretty.Pretty NLP.GenI.Lexicon.Internal.LexEntry instance Data.Binary.Class.Binary NLP.GenI.Lexicon.Internal.LexEntry instance Control.DeepSeq.NFData NLP.GenI.Lexicon.Internal.LexEntry -- | Lexical entries -- -- As a factorisation technique, LTAG grammars are commonly separated -- into tree schemata (see TreeSchema) and lexical entries. The -- grammar is what you get by “anchoring” each lexical entry to the -- relevant tree schemata. module NLP.GenI.Lexicon -- | Collection of lexical entries type Lexicon = [LexEntry] -- | Lexical entry data LexEntry -- | See also mkFullLexEntry This version comes with some sensible -- defaults. mkLexEntry :: FullList Text -> Text -> [GeniVal] -> Flist GeniVal -> Flist GeniVal -> Flist GeniVal -> Sem -> LexEntry -- | Variant of mkLexEntry but with more control mkFullLexEntry :: FullList Text -> Text -> [GeniVal] -> Flist GeniVal -> Flist GeniVal -> Flist GeniVal -> Sem -> [SemPols] -> LexEntry -- | normally just a singleton, useful for merging synonyms iword :: LexEntry -> FullList Text -- | tree family to anchor to ifamname :: LexEntry -> Text -- | parameters (deprecrated; use the interface) iparams :: LexEntry -> [GeniVal] -- | features to unify with tree schema interface iinterface :: LexEntry -> Flist GeniVal -- | features to pick out family members we want ifilters :: LexEntry -> Flist GeniVal -- | path equations iequations :: LexEntry -> Flist GeniVal -- | lexical semantics isemantics :: LexEntry -> Sem -- | polarities (must be same length as isemantics) isempols :: LexEntry -> [SemPols] -- | An annotated GeniVal. This is for a rather old, obscure variant on the -- polarity filtering optimisation. To account for zero literal -- semantics, we annotate each value in the semantics with a -- positive/negative marker. These markers are then counted up to -- determine with we need to insert more literals into the semantics or -- not. See the manual on polarity filtering for more details type PolValue = (GeniVal, Int) -- | Separate an input lexical semantics into the actual semantics and the -- semantic polarity entries (which aren't used very much in practice, -- being a sort of experimental feature to solve an obscure-ish technical -- problem) fromLexSem :: [Literal PolValue] -> (Sem, [SemPols]) -- | Note that by convention we ignore the polarity associated with the -- predicate itself fromLexLiteral :: Literal PolValue -> (Literal GeniVal, SemPols) -- | This module provides basic datatypes specific to Tree Adjoining -- Grammar tree schemata. module NLP.GenI.TreeSchema type Macros = [SchemaTree] type SchemaTree = Ttree (GNode SchemaVal) data Ttree a TT :: [GeniVal] -> Text -> Text -> Flist GeniVal -> Ptype -> Maybe Sem -> [Text] -> Tree a -> Ttree a [params] :: Ttree a -> [GeniVal] [pfamily] :: Ttree a -> Text [pidname] :: Ttree a -> Text [pinterface] :: Ttree a -> Flist GeniVal [ptype] :: Ttree a -> Ptype [psemantics] :: Ttree a -> Maybe Sem [ptrace] :: Ttree a -> [Text] [tree] :: Ttree a -> Tree a data Ptype Initial :: Ptype Auxiliar :: Ptype root :: Tree a -> a rootUpd :: Tree a -> a -> Tree a foot :: Tree (GNode a) -> GNode a -- | Given a lexical item l and a tree node n (actually a -- subtree with no children), return the same node with the lexical item -- as its unique child. The idea is that it converts terminal lexeme -- nodes into preterminal nodes where the actual terminal is the given -- lexical item setLexeme :: [Text] -> Tree (GNode a) -> Tree (GNode a) -- | Given a lexical item s and a Tree GNode t, returns the tree -- t' where l has been assigned to the anchor node in t' setAnchor :: FullList Text -> Tree (GNode a) -> Tree (GNode a) -- | Attributes recognised as lexemes, in order of preference lexemeAttributes :: [Text] crushTreeGNode :: Tree (GNode SchemaVal) -> Maybe (Tree (GNode GeniVal)) -- | Essentially boolean representation of adjunction constraint data AdjunctionConstraint MaybeAdj :: AdjunctionConstraint -- | hard-coded null-adjunction constraint ExplicitNoAdj :: AdjunctionConstraint -- | inferred by GenI to be adjunction free (ie. during realisation) InferredNoAdj :: AdjunctionConstraint isAdjConstrained :: GNode gv -> Bool -- | Add an inferred adjunction constraint marker unless we already see an -- explicit one addInferredAdjConstraint :: GNode gv -> GNode gv -- | A single node of a TAG tree. data GNode gv GN :: NodeName -> Flist gv -> Flist gv -> Bool -> [Text] -> GType -> AdjunctionConstraint -> Text -> GNode gv [gnname] :: GNode gv -> NodeName -- | top feature structure [gup] :: GNode gv -> Flist gv -- | bottom feature structure [gdown] :: GNode gv -> Flist gv -- | False for na nodes [ganchor] :: GNode gv -> Bool -- | [] for na nodes [glexeme] :: GNode gv -> [Text] [gtype] :: GNode gv -> GType [gaconstr] :: GNode gv -> AdjunctionConstraint -- | for TAG, this would be the elementary tree that this node originally -- came from [gorigin] :: GNode gv -> Text gnnameIs :: NodeName -> GNode gv -> Bool type NodeName = Text data GType Subs :: GType Foot :: GType Lex :: GType Other :: GType -- | Return the value of the "cat" attribute, if available gCategory :: Flist GeniVal -> Maybe GeniVal showLexeme :: [Text] -> Text -- | A schema value is a disjunction of GenI values. It allows us to -- express “fancy” disjunctions in tree schemata, ie. disjunctions over -- variables and not just atoms (?X;?Y). -- -- Our rule is that that when a tree schema is instantiated, any fancy -- disjunctions must be “crushed” into a single GeniVal lest it be -- rejected (see crushOne) -- -- Note that this is still not recursive; we don't have disjunction over -- schema values, nor can schema values refer to schema values. It just -- allows us to express the idea that in tree schemata, you can have -- either variable ?X or ?Y. data SchemaVal crushGNode :: GNode SchemaVal -> Maybe (GNode GeniVal) instance Data.Data.Data gv => Data.Data.Data (NLP.GenI.TreeSchema.GNode gv) instance GHC.Classes.Eq gv => GHC.Classes.Eq (NLP.GenI.TreeSchema.GNode gv) instance Data.Data.Data NLP.GenI.TreeSchema.GType instance GHC.Classes.Eq NLP.GenI.TreeSchema.GType instance GHC.Show.Show NLP.GenI.TreeSchema.GType instance Data.Data.Data NLP.GenI.TreeSchema.AdjunctionConstraint instance GHC.Classes.Eq NLP.GenI.TreeSchema.AdjunctionConstraint instance GHC.Classes.Eq a => GHC.Classes.Eq (NLP.GenI.TreeSchema.Ttree a) instance Data.Data.Data a => Data.Data.Data (NLP.GenI.TreeSchema.Ttree a) instance Data.Data.Data NLP.GenI.TreeSchema.Ptype instance GHC.Classes.Eq NLP.GenI.TreeSchema.Ptype instance GHC.Show.Show NLP.GenI.TreeSchema.Ptype instance NLP.GenI.GeniVal.Internal.DescendGeniVal v => NLP.GenI.GeniVal.Internal.DescendGeniVal (NLP.GenI.TreeSchema.Ttree v) instance NLP.GenI.GeniVal.Internal.Collectable a => NLP.GenI.GeniVal.Internal.Collectable (NLP.GenI.TreeSchema.Ttree a) instance NLP.GenI.GeniVal.Internal.DescendGeniVal a => NLP.GenI.GeniVal.Internal.DescendGeniVal (Data.Map.Base.Map k a) instance NLP.GenI.GeniVal.Internal.Collectable a => NLP.GenI.GeniVal.Internal.Collectable (Data.Tree.Tree a) instance NLP.GenI.GeniVal.Internal.Collectable gv => NLP.GenI.GeniVal.Internal.Collectable (NLP.GenI.TreeSchema.GNode gv) instance NLP.GenI.GeniVal.Internal.DescendGeniVal v => NLP.GenI.GeniVal.Internal.DescendGeniVal (NLP.GenI.TreeSchema.GNode v) instance NLP.GenI.GeniShow.GeniShow NLP.GenI.TreeSchema.Ptype instance NLP.GenI.GeniShow.GeniShow a => NLP.GenI.GeniShow.GeniShow (NLP.GenI.TreeSchema.Ttree a) instance NLP.GenI.GeniShow.GeniShow a => NLP.GenI.GeniShow.GeniShow [NLP.GenI.TreeSchema.Ttree a] instance NLP.GenI.Pretty.Pretty (NLP.GenI.TreeSchema.GNode NLP.GenI.GeniVal.Internal.GeniVal) instance NLP.GenI.GeniShow.GeniShow gv => NLP.GenI.GeniShow.GeniShow (NLP.GenI.TreeSchema.GNode gv) instance Data.Binary.Class.Binary NLP.GenI.TreeSchema.Ptype instance Data.Binary.Class.Binary gv => Data.Binary.Class.Binary (NLP.GenI.TreeSchema.GNode gv) instance Data.Binary.Class.Binary NLP.GenI.TreeSchema.GType instance Data.Binary.Class.Binary NLP.GenI.TreeSchema.AdjunctionConstraint instance Control.DeepSeq.NFData NLP.GenI.TreeSchema.AdjunctionConstraint instance Data.Binary.Class.Binary a => Data.Binary.Class.Binary (NLP.GenI.TreeSchema.Ttree a) instance Control.DeepSeq.NFData NLP.GenI.TreeSchema.GType instance Control.DeepSeq.NFData NLP.GenI.TreeSchema.Ptype instance Control.DeepSeq.NFData gv => Control.DeepSeq.NFData (NLP.GenI.TreeSchema.GNode gv) -- | This module provides basic datatypes specific to Tree Adjoining -- Grammar (TAG) elementary trees and some low-level operations. module NLP.GenI.Tag -- | An anchored grammar. The grammar associates a set of semantic -- predicates to a list of trees each. type Tags = Map String [TagElem] data TagElem TE :: Text -> Text -> Integer -> Ptype -> Tree (GNode GeniVal) -> Sem -> Map PolarityKey (Int, Int) -> Flist GeniVal -> [Text] -> [SemPols] -> TagElem [idname] :: TagElem -> Text [ttreename] :: TagElem -> Text [tidnum] :: TagElem -> Integer [ttype] :: TagElem -> Ptype [ttree] :: TagElem -> Tree (GNode GeniVal) [tsemantics] :: TagElem -> Sem [tpolarities] :: TagElem -> Map PolarityKey (Int, Int) [tinterface] :: TagElem -> Flist GeniVal [ttrace] :: TagElem -> [Text] -- | can be empty [tsempols] :: TagElem -> [SemPols] -- | TagItem is a generalisation of TagElem. class TagItem t tgIdName :: TagItem t => t -> Text tgIdNum :: TagItem t => t -> Integer tgSemantics :: TagItem t => t -> Sem tgTree :: TagItem t => t -> Tree (GNode GeniVal) data TagSite TagSite :: Text -> Flist GeniVal -> Flist GeniVal -> Text -> TagSite [tsName] :: TagSite -> Text [tsUp] :: TagSite -> Flist GeniVal [tsDown] :: TagSite -> Flist GeniVal [tsOrigin] :: TagSite -> Text type TagDerivation = [DerivationStep] data DerivationStep SubstitutionStep :: Text -> Text -> Text -> DerivationStep AdjunctionStep :: Text -> Text -> Text -> DerivationStep InitStep :: Text -> DerivationStep dsChild :: DerivationStep -> Text dsParent :: DerivationStep -> Maybe Text dsParentSite :: DerivationStep -> Maybe Text ts_synIncomplete :: Text ts_semIncomplete :: [Literal GeniVal] -> Text ts_tbUnificationFailure :: Text -> Text ts_rootFeatureMismatch :: Flist GeniVal -> Text -- | addTags tags key elem adds elem to the the -- list of elements associated to the key addToTags :: Tags -> String -> TagElem -> Tags -- | Normally, extracting the sentences from a TAG tree would just consist -- of reading its leaves. But if you want the generator to return -- inflected forms instead of just lemmas, you also need to return the -- relevant features for each leaf. In TAG, or at least our use of it, -- the features come from the *pre-terminal* nodes, that is, not the -- leaves themselves but their parents. Another bit of trickiness: -- because of atomic disjunction, leaves might have more than one value, -- so we can't just return a String lemma but a list of String, one for -- each possibility. tagLeaves :: TagElem -> [(NodeName, UninflectedDisjunction)] -- | Try in order: lexeme, lexeme attributes, node name getLexeme :: GNode GeniVal -> [Text] toTagSite :: GNode GeniVal -> TagSite -- | Assigns a unique id to each element of this list, that is, an integer -- between 1 and the size of the list. setTidnums :: [TagElem] -> [TagElem] -- | Plug the first tree into the second tree at the specified node. -- Anything below the second node is silently discarded. We assume the -- trees are pluggable; it is treated as a bug if they are not! plugTree :: Tree NodeName -> NodeName -> Tree NodeName -> Tree NodeName -- | Given two trees auxt and t, splice the tree -- auxt into t via the TAG adjunction rule. spliceTree :: NodeName -> Tree NodeName -> NodeName -> Tree NodeName -> Tree NodeName -- | Sorts trees into a Map.Map organised by the first literal of their -- semantics. This is useful in at least three places: the polarity -- optimisation, the gui display code, and code for measuring the -- efficiency of GenI. Note: trees with a null semantics are filed under -- an empty predicate, if any. mapBySem :: (TagItem t) => [t] -> Map (Literal GeniVal) [t] -- | collect x m increments our count for any variables in -- x (adds not-yet-seen variables as needed) collect :: Collectable a => a -> Map CollectedVar Int -> Map CollectedVar Int -- | Given a tree(GNode) returns a list of substitution or adjunction -- nodes, as well as remaining nodes with a null adjunction constraint. detectSites :: Tree (GNode GeniVal) -> ([NodeName], [NodeName], [NodeName]) instance GHC.Classes.Eq NLP.GenI.Tag.DerivationStep instance GHC.Classes.Ord NLP.GenI.Tag.DerivationStep instance GHC.Show.Show NLP.GenI.Tag.DerivationStep instance Data.Data.Data NLP.GenI.Tag.TagElem instance GHC.Classes.Eq NLP.GenI.Tag.TagElem instance Data.Data.Data NLP.GenI.Tag.TagSite instance GHC.Classes.Ord NLP.GenI.Tag.TagSite instance GHC.Classes.Eq NLP.GenI.Tag.TagSite instance Text.JSON.JSON NLP.GenI.Tag.DerivationStep instance GHC.Classes.Ord NLP.GenI.Tag.TagElem instance NLP.GenI.GeniVal.Internal.DescendGeniVal NLP.GenI.Tag.TagElem instance NLP.GenI.GeniVal.Internal.DescendGeniVal NLP.GenI.Tag.TagSite instance NLP.GenI.GeniVal.Internal.Collectable NLP.GenI.Tag.TagElem instance NLP.GenI.GeniVal.Internal.Idable NLP.GenI.Tag.TagElem instance NLP.GenI.Tag.TagItem NLP.GenI.Tag.TagElem instance NLP.GenI.GeniShow.GeniShow NLP.GenI.Tag.TagElem instance NLP.GenI.GeniShow.GeniShow [NLP.GenI.Tag.TagElem] instance NLP.GenI.Pretty.Pretty [NLP.GenI.Tag.TagSite] instance Control.DeepSeq.NFData NLP.GenI.Tag.TagElem instance Control.DeepSeq.NFData NLP.GenI.Tag.DerivationStep module NLP.GenI.Polarity.Internal data PolarityDetectionResult PD_UserError :: String -> PolarityDetectionResult PD_Nothing :: PolarityDetectionResult PD_Just :: [(PolarityKey, Interval)] -> PolarityDetectionResult PD_Unconstrained :: (Text, Interval) -> PolarityDetectionResult -- | Given a description of what the root feature should unify with return -- a -1 polarity for all relevant polarity keys. This allows us to -- compensate for the root node of any derived tree. detectRootCompensation :: Set PolarityAttr -> FeatStruct GeniVal -> PolMap detectPolsH :: Set PolarityAttr -> TagElem -> [(PolarityKey, Interval)] detectPolarity :: Int -> PolarityAttr -> FeatStruct GeniVal -> FeatStruct GeniVal -> PolarityDetectionResult toZero :: Int -> Interval substNodes :: TagElem -> [GNode GeniVal] substTops :: TagElem -> [Flist GeniVal] type SemMap = Map (Literal GeniVal) [TagElem] type PolMap = Map PolarityKey Interval polarityKeys :: [TagElem] -> PolMap -> [PolarityKey] -- | Convert any unconstrained polarities in a PolMap to constrained -- ones, assuming a global list of known constrained keys. convertUnconstrainedPolarities :: [PolarityKey] -> PolMap -> PolMap addPols :: [(PolarityKey, Interval)] -> PolMap -> PolMap -- | Ensures that all states and transitions in the polarity automaton are -- unique. This is a slight optimisation so that we don't have to -- repeatedly check the automaton for state uniqueness during its -- construction, but it is essential that this check be done after -- construction nubAut :: (Ord ab) => NFA st ab -> NFA st ab __cat__ :: Text __idx__ :: Text -- | Note that this will crash if any of the entries are errors pdResults :: [PolarityDetectionResult] -> [(PolarityKey, Interval)] -- | Note that this will crash if any of the entries are errors pdToList :: (String -> String) -> PolarityDetectionResult -> [(PolarityKey, Interval)] module NLP.GenI.Polarity type PolAut = NFA PolState PolTrans data PolState -- | position in the input semantics, extra semantics, polarity interval PolSt :: Int -> [Literal GeniVal] -> [(Int, Int)] -> PolState type AutDebug = (PolarityKey, PolAut, PolAut) -- | intermediate auts, seed aut, final aut, potentially modified sem data PolResult PolResult :: [AutDebug] -> PolAut -> PolAut -> Sem -> PolResult [prIntermediate] :: PolResult -> [AutDebug] [prInitial] :: PolResult -> PolAut [prFinal] :: PolResult -> PolAut [prSem] :: PolResult -> Sem -- | Constructs a polarity automaton. For debugging purposes, it returns -- all the intermediate automata produced by the construction algorithm. buildAutomaton :: Set PolarityAttr -> FeatStruct GeniVal -> PolMap -> SemInput -> [TagElem] -> PolResult type PolPathSet = IntSet -- | Given a list of paths (i.e. a list of list of trees) return a list of -- trees such that each tree is annotated with the paths it belongs to. detectPolPaths :: [[TagElem]] -> [(TagElem, PolPathSet)] hasSharedPolPaths :: PolPathSet -> PolPathSet -> Bool polPathsToList :: PolPathSet -> [Int] -- | A (trivially) packed representation of the singleton set containing a -- single polarity path singletonPolPath :: Int -> PolPathSet emptyPolPaths :: PolPathSet polPathsNull :: PolPathSet -> Bool intersectPolPaths :: PolPathSet -> PolPathSet -> PolPathSet unionPolPaths :: PolPathSet -> PolPathSet -> PolPathSet makePolAut :: [TagElem] -> Sem -> PolMap -> [PolarityKey] -> PolResult -- | Returns a modified input semantics and lexical selection in which -- pronouns are properly accounted for. fixPronouns :: (Sem, [TagElem]) -> (Sem, [TagElem]) detectSansIdx :: [TagElem] -> [TagElem] suggestPolFeatures :: [TagElem] -> [Text] detectPols :: Set PolarityAttr -> TagElem -> TagElem declareIdxConstraints :: Flist GeniVal -> PolMap detectIdxConstraints :: Flist GeniVal -> Flist GeniVal -> PolMap -- | Render the list of polarity automaton paths as a string prettyPolPaths :: PolPathSet -> Text -- | Returns all possible paths through an automaton from the start state -- to any dead-end. -- -- Each path is represented as a list of labels. -- -- We assume that the automaton does not have any loops in it. automatonPaths :: (Ord st) => (NFA st ab) -> [[ab]] -- | finalSt returns all the final states of an automaton finalSt :: NFA st ab -> [st] -- | Note: you can define the final state either by setting -- isFinalSt to Just f where f is some function -- or by putting them in finalStList data NFA st ab instance GHC.Classes.Eq NLP.GenI.Polarity.PolState instance GHC.Show.Show NLP.GenI.Polarity.PolState instance GHC.Classes.Ord NLP.GenI.Polarity.PolState -- | The heavy lifting of GenI, the whole chart/agenda mechanism, can be -- implemented in many ways. To make it easier to write different -- algorithms for GenI and compare them, we provide a single interface -- for what we call Builders. -- -- This interface is then used called by the Geni module and by the -- graphical interface. Note that each builder has its own graphical -- interface and that we do a similar thing in the graphical interface -- code to make it possible to use these GUIs. module NLP.GenI.Builder type TagDerivation = [DerivationStep] data Builder st it Builder :: (Input -> [Flag] -> (st, Statistics)) -> BuilderState st () -> BuilderState st () -> (st -> GenStatus) -> (st -> [Output]) -> (st -> [Output]) -> Builder st it -- | initialise the machine from the semantics and lexical selection [init] :: Builder st it -> Input -> [Flag] -> (st, Statistics) -- | run a realisation step [step] :: Builder st it -> BuilderState st () -- | run all realisations steps until completion [stepAll] :: Builder st it -> BuilderState st () -- | determine if realisation is finished [finished] :: Builder st it -> st -> GenStatus -- | unpack chart results into a list of sentences [unpack] :: Builder st it -> st -> [Output] [partial] :: Builder st it -> st -> [Output] data GenStatus Finished :: GenStatus Active :: GenStatus Error :: Text -> GenStatus -- | The names of lexically selected chart items used in a derivation lexicalSelection :: TagDerivation -> [Text] data FilterStatus a Filtered :: FilterStatus a NotFiltered :: a -> FilterStatus a incrCounter :: String -> Int -> BuilderState st () num_iterations :: String -- | Sequence two dispatch filters. (>-->) :: (Monad s) => DispatchFilter s a -> DispatchFilter s a -> DispatchFilter s a num_comparisons :: String chart_size :: String type SemBitMap = Map (Literal GeniVal) BitVector -- | assign a bit vector value to each literal in the semantics the -- resulting map can then be used to construct a bit vector -- representation of the semantics defineSemanticBits :: Sem -> SemBitMap semToBitVector :: SemBitMap -> Sem -> BitVector bitVectorToSem :: SemBitMap -> BitVector -> Sem -- | Dispatching consists of assigning a chart item to the right part of -- the chart (agenda, trash, results list, etc). This is implemented as a -- series of filters which can either fail or succeed. If a filter fails, -- it may modify the item before passing it on to future filters. type DispatchFilter s a = a -> s (FilterStatus a) -- | If the item meets some condition, use the first filter, otherwise use -- the second one. condFilter :: (a -> Bool) -> DispatchFilter s a -> DispatchFilter s a -> DispatchFilter s a -- | Default implementation for the stepAll function in -- Builder defaultStepAll :: Builder st it -> BuilderState st () type BuilderState s a = StateT s (State Statistics) a data UninflectedDisjunction UninflectedDisjunction :: [Text] -> (Flist GeniVal) -> UninflectedDisjunction -- | Input represents the set of inputs a backend could take data Input Input :: SemInput -> [LexEntry] -> [(TagElem, PolPathSet)] -> Input [inSemInput] :: Input -> SemInput -- | for the debugger [inLex] :: Input -> [LexEntry] -- | tag tree [inCands] :: Input -> [(TagElem, PolPathSet)] -- | Equivalent to id unless the input contains an empty or -- uninstatiated semantics unlessEmptySem :: Input -> [Flag] -> a -> a initStats :: [Flag] -> Statistics type Output = (Integer, LemmaPlusSentence, TagDerivation) -- | A SentenceAut represents a set of sentences in the form of an -- automaton. The labels of the automaton are the words of the sentence. -- But note! “word“ in the sentence is in fact a tuple (lemma, -- inflectional feature structures). Normally, the states are defined as -- integers, with the only requirement being that each one, naturally -- enough, is unique. type SentenceAut = NFA Int LemmaPlus -- | Performs surface realisation from an input semantics and a lexical -- selection. -- -- Statistics tracked -- -- run :: Builder st it -> Input -> [Flag] -> (st, Statistics) queryCounter :: String -> Statistics -> Maybe Int defaultMetricNames :: [String] preInit :: Input -> [Flag] -> (Input, PolResult) instance Data.Data.Data NLP.GenI.Builder.UninflectedDisjunction instance NLP.GenI.GeniVal.Internal.DescendGeniVal NLP.GenI.Builder.UninflectedDisjunction instance NLP.GenI.GeniVal.Internal.Collectable NLP.GenI.Builder.UninflectedDisjunction instance NLP.GenI.Pretty.Pretty NLP.GenI.Builder.GenStatus instance Control.DeepSeq.NFData NLP.GenI.Builder.Input module NLP.GenI.OptimalityTheory data OtConstraint -- | the trace must appear PositiveC :: Text -> OtConstraint -- | the trace must NOT appear NegativeC :: Text -> OtConstraint -- | these traces must not appear AT THE SAME TIME NegativeConjC :: [Text] -> OtConstraint type OtRanking = [[OtConstraint]] type GetTraces = Text -> [Text] type OtResult x = (Int, x, [OtViolation]) data OtViolation data RankedOtConstraint RankedOtConstraint :: Int -> OtConstraint -> RankedOtConstraint rankResults :: GetTraces -> (a -> TagDerivation) -> OtRanking -> [a] -> [OtResult a] otWarnings :: Macros -> OtRanking -> [OtViolation] -> [Text] prettyViolations :: GetTraces -> Bool -> [OtViolation] -> Text prettyRank :: Int -> Text instance GHC.Show.Show NLP.GenI.OptimalityTheory.LexItem instance GHC.Classes.Eq NLP.GenI.OptimalityTheory.LexItem instance GHC.Classes.Ord NLP.GenI.OptimalityTheory.LexItem instance GHC.Classes.Ord NLP.GenI.OptimalityTheory.OtViolation instance GHC.Classes.Eq NLP.GenI.OptimalityTheory.OtViolation instance GHC.Show.Show NLP.GenI.OptimalityTheory.OtViolation instance GHC.Classes.Eq NLP.GenI.OptimalityTheory.RankedOtConstraint2 instance GHC.Classes.Eq NLP.GenI.OptimalityTheory.RankedOtConstraint instance GHC.Show.Show NLP.GenI.OptimalityTheory.RankedOtConstraint instance GHC.Classes.Eq NLP.GenI.OptimalityTheory.OtConstraint instance GHC.Show.Show NLP.GenI.OptimalityTheory.OtConstraint instance GHC.Classes.Ord NLP.GenI.OptimalityTheory.RankedOtConstraint instance GHC.Classes.Ord NLP.GenI.OptimalityTheory.RankedOtConstraint2 instance Text.JSON.JSON NLP.GenI.OptimalityTheory.OtConstraint instance Text.JSON.JSON NLP.GenI.OptimalityTheory.RankedOtConstraint instance Text.JSON.JSON NLP.GenI.OptimalityTheory.OtViolation instance NLP.GenI.Pretty.Pretty NLP.GenI.OptimalityTheory.RankedOtConstraint instance NLP.GenI.Pretty.Pretty NLP.GenI.OptimalityTheory.OtConstraint instance Control.DeepSeq.NFData NLP.GenI.OptimalityTheory.OtViolation instance Control.DeepSeq.NFData NLP.GenI.OptimalityTheory.RankedOtConstraint instance Control.DeepSeq.NFData NLP.GenI.OptimalityTheory.OtConstraint module NLP.GenI.Control -- | Inputs that go around a single testcase/input data Params Params :: Maybe BuilderType -> [Flag] -> [Flag] -> Maybe OtRanking -> Params [builderType] :: Params -> Maybe BuilderType -- | Custom morph realiser may define a custom set of flags that it accepts [morphFlags] :: Params -> [Flag] [geniFlags] :: Params -> [Flag] -- | OT constraints (optional, uses global if unset) [ranking] :: Params -> Maybe OtRanking -- | Note that this affects the geniFlags; we assume the morph flags are -- not our business updateParams :: Params -> Params -> Params instance NLP.GenI.Flag.HasFlags NLP.GenI.Control.Params module NLP.GenI.TestSuite data TestCase sem TestCase :: Text -> Text -> sem -> [Text] -> Maybe Params -> TestCase sem [tcName] :: TestCase sem -> Text -- | for gui [tcSemString] :: TestCase sem -> Text [tcSem] :: TestCase sem -> sem -- | expected results (for testing) [tcExpected] :: TestCase sem -> [Text] [tcParams] :: TestCase sem -> Maybe Params instance NLP.GenI.GeniShow.GeniShow sem => NLP.GenI.GeniShow.GeniShow (NLP.GenI.TestSuite.TestCase sem) instance NLP.GenI.GeniShow.GeniShow sem => NLP.GenI.Pretty.Pretty (NLP.GenI.TestSuite.TestCase sem) module NLP.GenI.Parser geniTestSuite :: Parser [TestCase SemInput] geniSemanticInput :: Parser (Sem, Flist GeniVal, [LitConstr]) -- | Just the String representations of the semantics in the test suite geniTestSuiteString :: Parser [Text] -- | This is only used by the script genimakesuite geniDerivations :: Parser [TestCaseOutput] geniMacros :: Parser [SchemaTree] -- | This makes it possible to read anchored trees, which may be useful for -- debugging purposes. -- -- FIXME: note that this is very rudimentary; we do not set id numbers, -- parse polarities. You'll have to call some of our helper functions if -- you want that functionality. geniTagElems :: Parser [TagElem] geniLexicon :: Parser [LexEntry] geniMorphInfo :: Parser [(Text, Flist GeniVal)] geniFeats :: GeniValLike v => Parser (Flist v) geniSemantics :: Parser Sem geniValue :: Parser GeniVal geniWords :: Parser Text geniWord :: Parser Text geniLanguageDef :: GenLanguageDef Text () Identity tillEof :: Parser a -> Parser a parseFromFile :: Parser a -> SourceName -> IO (Either ParseError a) instance GHC.Classes.Eq NLP.GenI.Parser.Annotation instance NLP.GenI.Parser.GeniValLike NLP.GenI.GeniVal.Internal.GeniVal instance NLP.GenI.Parser.GeniValLike NLP.GenI.GeniVal.Internal.SchemaVal module NLP.GenI.Configuration getBuilderType :: Params -> BuilderType getRanking :: Params -> OtRanking mainBuilderTypes :: [BuilderType] -- | The default parameters configuration emptyParams :: Params defineParams :: [Flag] -> Params -> Params treatArgs :: [OptDescr Flag] -> [String] -> IO Params treatArgsWithParams :: [OptDescr Flag] -> [String] -> Params -> IO Params -- | Print out a GenI-style usage message with options divided into -- sections usage :: [OptSection] -> String -> String basicSections :: [OptSection] optionsSections :: [OptSection] -- | Update the internal instructions list, test suite and case according -- to the contents of an instructions file. -- -- Basic approach -- -- processInstructions :: Params -> IO Params -- | Uses the GetOpt library to process the command line arguments. Note -- that we divide them into basic and advanced usage. optionsForStandardGenI :: [OptDescr Flag] optionsForBasicStuff :: [OptDescr Flag] optionsForOptimisation :: [OptDescr Flag] optionsForMorphology :: [OptDescr Flag] optionsForInputFiles :: [OptDescr Flag] optionsForBuilder :: [OptDescr Flag] optionsForTesting :: [OptDescr Flag] helpOption :: OptDescr Flag verboseOption :: OptDescr Flag macrosOption :: OptDescr Flag lexiconOption :: OptDescr Flag nubBySwitches :: [OptDescr a] -> [OptDescr a] noArg :: forall f. (Eq f, Typeable f) => (() -> f) -> ArgDescr Flag reqArg :: forall f x. (Eq f, Typeable f, Typeable x) => (x -> f) -> (String -> x) -> String -> ArgDescr Flag optArg :: forall f x. (Eq f, Typeable f, Typeable x) => (x -> f) -> x -> (String -> x) -> String -> ArgDescr Flag -- | TODO: This is a horrible and abusive use of error parseFlagWithParsec :: String -> Parser b -> Text -> b readGlobalConfig :: IO (Maybe YamlLight) setLoggers :: YamlLight -> IO () -- | The class Typeable allows a concrete representation of a type -- to be calculated. class Typeable k (a :: k) instance GHC.Show.Show NLP.GenI.Configuration.LoggerConfig instance GHC.Show.Show NLP.GenI.Configuration.LogFmt instance GHC.Show.Show NLP.GenI.Configuration.LogTo instance GHC.Read.Read NLP.GenI.Configuration.LogTo instance GHC.Read.Read NLP.GenI.Configuration.LogFmt instance Data.String.IsString Data.Yaml.YamlLight.YamlLight -- | This module handles mostly everything to do with morphology in Geni. -- There are two basic tasks: morphological input and output. GenI farms -- out morphology to whatever third party program you specify on the -- command line. Note that a simple and stupid `sillymorph' -- realiser is provided either in the GenI repository or on hackage. module NLP.GenI.Morphology -- | Converts information from a morphological information file into GenI's -- internal format. readMorph :: [(Text, [AvPair GeniVal])] -> MorphInputFn -- | Filters away from an input semantics any literals whose realisation is -- strictly morphological. The first argument tells us helps identify the -- morphological literals -- it associates literals with morphological -- stuff; if it returns Nothing, then it is non-morphological stripMorphSem :: MorphInputFn -> Sem -> Sem -- | attachMorph morphfn sem cands does the bulk of the -- morphological input processing. We use morphfn to determine -- which literals in sem contain morphological information and -- what information they contain. Then we attach this morphological -- information to the relevant trees in cand. A tree is -- considered relevant w.r.t to a morphological literal if its semantics -- contains at least one literal whose first index is the same as the -- first index of the morphological literal. attachMorph :: MorphInputFn -> Sem -> [TagElem] -> [TagElem] -- | setMorphAnchor n t replaces the anchor node of a tree with -- n -- -- We assume the tree has exactly one anchor node. If it has none, this -- explodes; if it has more than one, they all get replaced. setMorphAnchor :: GNode GeniVal -> Tree (GNode GeniVal) -> Tree (GNode GeniVal) -- | Converts a list of uninflected sentences into inflected ones by -- calling inflectSentencesUsingCmd :: String -> [LemmaPlusSentence] -> IO [(LemmaPlusSentence, MorphOutput)] -- | Extracts the lemmas from a list of uninflected sentences. This is used -- when the morphological generator is unavailable, doesn't work, etc. sansMorph :: LemmaPlusSentence -> MorphOutput instance Text.JSON.JSON NLP.GenI.Morphology.Types.MorphOutput instance Text.JSON.JSON NLP.GenI.Morphology.Types.LemmaPlus module NLP.GenI.Simple.SimpleBuilder type Agenda = [SimpleItem] type AuxAgenda = [SimpleItem] type Chart = [SimpleItem] data SimpleStatus type SimpleState a = BuilderState SimpleStatus a data SimpleItem SimpleItem :: ChartId -> [NodeName] -> [NodeName] -> BitVector -> PolPathSet -> [GNode GeniVal] -> Tree Text -> NodeName -> Maybe NodeName -> [NodeName] -> TagDerivation -> SimpleGuiItem -> SimpleItem [siId] :: SimpleItem -> ChartId [siSubstnodes] :: SimpleItem -> [NodeName] [siAdjnodes] :: SimpleItem -> [NodeName] [siSemantics] :: SimpleItem -> BitVector [siPolpaths] :: SimpleItem -> PolPathSet -- | actually a set [siNodes] :: SimpleItem -> [GNode GeniVal] [siDerived] :: SimpleItem -> Tree Text [siRoot_] :: SimpleItem -> NodeName [siFoot_] :: SimpleItem -> Maybe NodeName [siPendingTb] :: SimpleItem -> [NodeName] [siDerivation] :: SimpleItem -> TagDerivation [siGuiStuff] :: SimpleItem -> SimpleGuiItem simpleBuilder_1p :: SimpleBuilder simpleBuilder_2p :: SimpleBuilder simpleBuilder :: Bool -> SimpleBuilder theAgenda :: SimpleStatus -> Agenda theHoldingPen :: SimpleStatus -> AuxAgenda theChart :: SimpleStatus -> Chart theResults :: SimpleStatus -> [SimpleItem] -- | Creates an initial SimpleStatus. initSimpleBuilder :: Bool -> Input -> [Flag] -> (SimpleStatus, Statistics) addToAgenda :: SimpleItem -> SimpleState () addToChart :: SimpleItem -> SimpleState () genconfig :: SimpleStatus -> [Flag] -- | Things whose only use is within the graphical debugger data SimpleGuiItem SimpleGuiItem :: [Text] -> [Text] -> Sem -> Text -> SimpleGuiItem -- | nodes to highlight if there are things wrong with this item, what? [siHighlight] :: SimpleGuiItem -> [Text] [siDiagnostic] :: SimpleGuiItem -> [Text] [siFullSem] :: SimpleGuiItem -> Sem [siIdname] :: SimpleGuiItem -> Text theTrash :: SimpleStatus -> Trash step :: SimpleStatus -> GenerationPhase unpackResult :: SimpleItem -> [Output] testCanAdjoin :: SimpleItem -> TagSite -> Maybe (TagSite, TagSite, Subst) testIapplyAdjNode :: Bool -> SimpleItem -> SimpleItem -> Maybe SimpleItem testEmptySimpleGuiItem :: SimpleGuiItem instance Data.Data.Data NLP.GenI.Simple.SimpleBuilder.SimpleGuiItem instance GHC.Show.Show NLP.GenI.Simple.SimpleBuilder.GenerationPhase instance NLP.GenI.GeniVal.Internal.DescendGeniVal (Data.Text.Internal.Text, NLP.GenI.Builder.UninflectedDisjunction) instance NLP.GenI.GeniVal.Internal.DescendGeniVal NLP.GenI.Simple.SimpleBuilder.SimpleItem module NLP.GenI.Warning.Internal -- | This exists because we want the Monoid instance, providing a -- GenI-specific notion of appending which merges instances of the same -- error newtype GeniWarnings GeniWarnings :: [GeniWarning] -> GeniWarnings [fromGeniWarnings] :: GeniWarnings -> [GeniWarning] mkGeniWarnings :: [GeniWarning] -> GeniWarnings data GeniWarning -- | A warning that should be repeated for each lexical entry affected LexWarning :: [LexEntry] -> LexWarning -> GeniWarning -- | A single custom warning CustomLexWarning :: Text -> GeniWarning -- | Literals which did not receive any lexical selection NoLexSelection :: [Literal GeniVal] -> GeniWarning -- | Warnings from the morphological realiser MorphWarning :: [Text] -> GeniWarning data LexWarning LexCombineAllSchemataFailed :: LexWarning LexCombineOneSchemaFailed :: LexCombineError -> LexWarning MissingCoanchors :: Text -> Int -> LexWarning -- | Sort, treating non-comporable items as equal posort :: Poset a => [a] -> [a] sortWarnings :: GeniWarnings -> GeniWarnings appendWarning :: GeniWarning -> [GeniWarning] -> [GeniWarning] mergeWarning :: GeniWarning -> GeniWarning -> Maybe GeniWarning -- | A warning may be displayed over several lines showGeniWarning :: GeniWarning -> [Text] type WordFamilyCount = Map (FullList Text, Text) Int toWfCount :: [LexEntry] -> WordFamilyCount instance GHC.Classes.Eq NLP.GenI.Warning.Internal.GeniWarning instance GHC.Classes.Eq NLP.GenI.Warning.Internal.LexWarning instance GHC.Base.Monoid NLP.GenI.Warning.Internal.GeniWarnings instance Data.Poset.Internal.Poset NLP.GenI.Warning.Internal.GeniWarning instance Data.Poset.Internal.Poset NLP.GenI.Warning.Internal.LexWarning -- | Typed warnings as an easier alternative to strings. -- -- This makes it easier to recognise repeated warnings and print them out -- in a reasonable way module NLP.GenI.Warning -- | This exists because we want the Monoid instance, providing a -- GenI-specific notion of appending which merges instances of the same -- error data GeniWarnings fromGeniWarnings :: GeniWarnings -> [GeniWarning] mkGeniWarnings :: [GeniWarning] -> GeniWarnings sortWarnings :: GeniWarnings -> GeniWarnings data GeniWarning -- | A warning that should be repeated for each lexical entry affected LexWarning :: [LexEntry] -> LexWarning -> GeniWarning -- | A single custom warning CustomLexWarning :: Text -> GeniWarning -- | Literals which did not receive any lexical selection NoLexSelection :: [Literal GeniVal] -> GeniWarning -- | Warnings from the morphological realiser MorphWarning :: [Text] -> GeniWarning data LexWarning LexCombineAllSchemataFailed :: LexWarning LexCombineOneSchemaFailed :: LexCombineError -> LexWarning MissingCoanchors :: Text -> Int -> LexWarning -- | A warning may be displayed over several lines showGeniWarning :: GeniWarning -> [Text] -- | This module performs the core of lexical selection and anchoring. module NLP.GenI.LexicalSelection -- | This aims to support users who want to do lexical selection directly -- from an input other than GenI style flat semantics. -- -- The requirement here is for you to provide some means of converting -- the custom semantics to a GenI semantics data CustomSem sem CustomSem :: (sem -> Either Text SemInput) -> LexicalSelector sem -> (Text -> Either Text (TestCase sem)) -> (FilePath -> Text -> Either Text [TestCase sem]) -> (sem -> Text) -> CustomSem sem -- | Conversion from custom semantics to GenI semantic input [fromCustomSemInput] :: CustomSem sem -> sem -> Either Text SemInput -- | Lexical selection function [customSelector] :: CustomSem sem -> LexicalSelector sem [customSemParser] :: CustomSem sem -> Text -> Either Text (TestCase sem) -- | List of named inputs intended to act as a substitute for test suites -- (FilePath argument is for reporting error messages only) [customSuiteParser] :: CustomSem sem -> FilePath -> Text -> Either Text [TestCase sem] [customRenderSem] :: CustomSem sem -> sem -> Text -- | See Configuration if you want to use GenI with a custom lexical -- selection function. type LexicalSelector sem = Macros -> Lexicon -> sem -> IO LexicalSelection -- | The result of the lexical selection process data LexicalSelection LexicalSelection :: [TagElem] -> [LexEntry] -> GeniWarnings -> LexicalSelection -- | the main result: a set of elementary trees (ie. anchored trees) [lsAnchored] :: LexicalSelection -> [TagElem] -- | if available, lexical entries that were used to produce anchored trees -- (useful for identifying anchoring failure) [lsLexEntries] :: LexicalSelection -> [LexEntry] -- | HINT: use mempty to initialise to empty [lsWarnings] :: LexicalSelection -> GeniWarnings -- | Performs standard GenI lexical selection as described in -- http://projects.haskell.org/GenI/manual/lexical-selection.html -- -- This is just defaultLexicalSelection lifted into IO defaultLexicalSelector :: Macros -> Lexicon -> SemInput -> IO LexicalSelection -- | Helper for defaultLexicalSelector (Standard GenI lexical -- selection is actually pure) -- -- This is just -- -- defaultLexicalSelection :: Macros -> Lexicon -> SemInput -> LexicalSelection -- | missingLexEntries ts lexs returns any of the lexical -- candidates lexs that were apparently not anchored -- succesfully. -- -- TODO: it does this by (wrongly) checking for each lexical item to see -- if any of the anchored trees in ts have identical semantics -- to that lexical item. The better way to do this would be to throw a -- subsumption check on top of items reported missing, because it's -- possible for the trees to add semantics through unification. missingLexEntries :: [TagElem] -> [LexEntry] -> [LexEntry] -- | Select and returns the set of entries from the lexicon whose semantics -- subsumes the input semantics. defaultLexicalChoice :: Lexicon -> SemInput -> [LexEntry] -- | chooseCandI sem l attempts to unify the semantics of -- l with sem If this succeeds, we use return the -- result(s); if it fails, we reject l as a lexical selection -- candidate. chooseCandI :: Sem -> [LexEntry] -> [LexEntry] -- | mergeSynonyms is a factorisation technique that uses atomic -- disjunction to merge all synonyms into a single lexical entry. Two -- lexical entries are considered synonyms if their semantics match and -- they point to the same tree families. -- -- FIXME: 2006-10-11 - note that this is no longer being used, because it -- breaks the case where two lexical entries differ only by their use of -- path equations. Perhaps it's worthwhile just to add a check that the -- path equations match exactly. mergeSynonyms :: [LexEntry] -> [LexEntry] -- | The LexCombine monad supports warnings during lexical selection -- and also failure via Maybe type LexCombine a = MaybeT (Writer [LexCombineError]) a runLexCombine :: LexCombine a -> (Maybe a, [LexCombineError]) -- | Note an anchoring error lexTell :: LexCombineError -> LexCombine () -- | defaultAnchoring schemata lex sem implements the later half -- of lexical selection (tree anchoring and enrichement). It assumes that -- lex consists just of the lexical items that have been -- selected, and tries to combine them with the tree schemata. -- -- This function may be useful if you are implementing your own lexical -- selection functions, and you want GenI to take over after you've given -- it a [LexEntry] defaultAnchoring :: SemInput -> Macros -> [LexEntry] -> LexicalSelection -- | Given a lexical item, looks up the tree families for that item, and -- anchor the item to the trees. combineList :: Sem -> Macros -> LexEntry -> ([LexCombineError], [TagElem]) -- | Combine a single tree with its lexical item to form a bonafide -- TagElem. This process can fail, however, because of filtering or -- enrichement combineOne :: Sem -> LexEntry -> SchemaTree -> LexCombine [TagElem] -- | See http://kowey.github.io/GenI/manual/lexical-selection.html -- on enrichement enrich :: LexEntry -> SchemaTree -> LexCombine SchemaTree data EnrichmentResult EnrSuccess :: SchemaTree -> Subst -> EnrichmentResult EnrNotFound :: EnrichmentResult EnrFailed :: EnrichmentResult -- | Helper for enrich (enrich by single path equation) enrichBy :: SchemaTree -> PathEqPair -> LexCombine SchemaTree -- | Helper for enrichBy maybeEnrichBy :: SchemaTree -> PathEqPair -> EnrichmentResult -- | enrichFeat av fs attempts to unify av with -- fs -- -- Note here that fs is an Flist [GeniVal] rather than -- the usual Flist GeniVal you may expect. This is because it -- comes from SchemaTree which allows non-atomic disjunctions of -- GeniVal which have to be flatten down to at most atomic -- disjunctions once lexical selection is complete. enrichFeat :: MonadUnify m => AvPair GeniVal -> Flist SchemaVal -> m (Flist SchemaVal, Subst) -- | missingCoanchors l t returns the list of coanchor node names -- from l that were not found in t missingCoanchors :: LexEntry -> SchemaTree -> [Text] -- | Split a lex entry's path equations into interface enrichement -- equations or (co-)anchor modifiers lexEquations :: LexEntry -> Writer [LexCombineError] ([AvPair GeniVal], [PathEqPair]) -- | seekCoanchor lhs t returns Just node if t -- contains exactly one node that can be identified by lhs, -- Nothing if it contains none. -- -- It crashes if there is more than one such node, because this should -- have been caught earlier by GenI. seekCoanchor :: NodePathEqLhs -> SchemaTree -> Maybe (GNode SchemaVal) -- | matchNodeName lhs n is True if the lhs -- refers to the node n matchNodeName :: NodePathEqLhs -> GNode SchemaVal -> Bool -- | matchNodeNameHelper recognises “anchor“ by convention; -- otherwise, it does a name match matchNodeNameHelper :: Text -> GNode SchemaVal -> Bool -- | The lemanchor mechanism is described in -- http://projects.haskell.org/manual/lexical-selection setLemAnchors :: Tree (GNode GeniVal) -> Tree (GNode GeniVal) -- | The name of the lemanchor attribute (by convention; see source) _lemanchor :: Text -- | setOrigin n t marks the nodes in t as having come -- from a tree named n setOrigin :: Text -> Tree (GNode v) -> Tree (GNode v) -- | Standard post-processing/filtering steps that can take place after -- lexical selection. Right now, this only consists of paraphrase -- selection defaultPostProcessing :: SemInput -> LexicalSelection -> LexicalSelection -- | Rule out lexical selection results that violate trace constraints preselectParaphrases :: [LitConstr] -> [TagElem] -> [TagElem] -- | True if the tree fulfills the supplied trace constraints respectsConstraints :: [LitConstr] -> TagElem -> Bool -- | This is the interface between the front and backends of the generator. -- The GUI and the console interface both talk to this module, and in -- turn, this module talks to the input file parsers and the surface -- realisation engine. module NLP.GenI -- | The program state consists of its configuration options and abstract, -- cleaned up representations of all the data it's had to load into -- memory (tree schemata files, lexicon files, etc). The intention is for -- the state to stay static until the next time something triggers some -- file loading. data ProgState ProgState :: Params -> Macros -> Lexicon -> MorphInputFn -> [Text] -> Maybe MorphRealiser -> ProgState -- | the current configuration [pa] :: ProgState -> Params -- | tree schemata [gr] :: ProgState -> Macros -- | lexical entries [le] :: ProgState -> Lexicon -- | function to extract morphological information from the semantics (you -- may instead be looking for customMorph) [morphinf] :: ProgState -> MorphInputFn -- | simplified traces (optional) [traces] :: ProgState -> [Text] [customMorph] :: ProgState -> Maybe MorphRealiser type ProgStateRef = IORef ProgState -- | The program state when you start GenI for the very first time emptyProgState :: Params -> ProgState -- | See Configuration if you want to use GenI with a custom lexical -- selection function. type LexicalSelector sem = Macros -> Lexicon -> sem -> IO LexicalSelection -- | Entry point! (the most useful function to know here) -- -- -- -- In addition to the results, this returns a generator state. The latter -- is is mostly useful for debugging via the graphical interface. Note -- that we assumes that you have already loaded in your grammar and -- parsed your input semantics. runGeni :: ProgState -> CustomSem sem -> Builder st it -> TestCase sem -> ExceptT String IO (GeniResults, st) -- | simplifyResults $ runGenI...' for an easier time if -- you don't need the surface realiser state simplifyResults :: Either String (GeniResults, st) -> GeniResults -- | Standard GenI semantics and lexical selection algorithm (with optional -- "preanchored" mode) defaultCustomSem :: ProgState -> IO (CustomSem SemInput) -- | GeniResults is the outcome of running GenI on a single input -- semantics. Each distinct result is returned as a single -- GeniResult (NB: a single result may expand into multiple -- strings through morphological post-processing), data GeniResults GeniResults :: [GeniResult] -> [Text] -> Statistics -> GeniResults -- | one per chart item [grResults] :: GeniResults -> [GeniResult] -- | usually from lexical selection [grGlobalWarnings] :: GeniResults -> [Text] -- | things like number of chart items to help study efficiency [grStatistics] :: GeniResults -> Statistics data GeniResult GError :: GeniError -> GeniResult GSuccess :: GeniSuccess -> GeniResult isSuccess :: GeniResult -> Bool data GeniError GeniError :: [Text] -> GeniError data GeniSuccess GeniSuccess :: LemmaPlusSentence -> [Text] -> ResultType -> [Text] -> TagDerivation -> Integer -> [GeniLexSel] -> Int -> [OtViolation] -> GeniSuccess -- | “original” uninflected result [grLemmaSentence] :: GeniSuccess -> LemmaPlusSentence -- | results after morphology [grRealisations] :: GeniSuccess -> [Text] [grResultType] :: GeniSuccess -> ResultType -- | warnings “local” to this particular item, cf. grGlobalWarnings [grWarnings] :: GeniSuccess -> [Text] -- | derivation tree behind the result [grDerivation] :: GeniSuccess -> TagDerivation -- | normally a chart item id [grOrigin] :: GeniSuccess -> Integer -- | the lexical selection behind this result (info only) [grLexSelection] :: GeniSuccess -> [GeniLexSel] -- | see OptimalityTheory [grRanking] :: GeniSuccess -> Int -- | which OT constraints were violated [grViolations] :: GeniSuccess -> [OtViolation] data GeniLexSel GeniLexSel :: Text -> [Text] -> GeniLexSel [nlTree] :: GeniLexSel -> Text [nlTrace] :: GeniLexSel -> [Text] data ResultType CompleteResult :: ResultType PartialResult :: ResultType -- | initGeni performs lexical selection and strips the input -- semantics of any morpohological literals -- -- See defaultCustomSem initGeni :: ProgState -> CustomSem sem -> sem -> ExceptT String IO (Input, GeniWarnings) -- | This is a helper to runGenI. It's mainly useful if you are -- building interactive GenI debugging tools. -- -- Given a builder state, -- -- extractResults :: ProgState -> Maybe Params -> Builder st it -> st -> IO [GeniResult] -- | No morphology! Pretend the lemma string is a sentence lemmaSentenceString :: GeniSuccess -> Text prettyResult :: ProgState -> GeniSuccess -> Text -- | Show the sentences produced by the generator, in a relatively compact -- form showRealisations :: [String] -> String histogram :: Ord a => [a] -> Map a Int -- | getTraces is most likely useful for grammars produced by a -- metagrammar system. Given a tree name, we retrieve the -- `trace' information from the grammar for all trees that have -- this name. We assume the tree name was constructed by GenI; see the -- source code for details. getTraces :: ProgState -> Text -> [Text] -- | We have one master function that loads all the files GenI is expected -- to use. This just calls the sub-loaders below, some of which are -- exported for use by the graphical interface. The master function also -- makes sure to complain intelligently if some of the required files are -- missing. loadEverything :: ProgStateRef -> CustomSem sem -> IO () -- | The file loading functions all work the same way: we load the file, -- and try to parse it. If this doesn't work, we just fail in IO, and -- GenI dies. If we succeed, we update the program state passed in as an -- IORef. class Loadable x lParse :: Loadable x => FilePath -> Text -> Either Text x lSet :: Loadable x => x -> ProgState -> ProgState lSummarise :: Loadable x => x -> String loadLexicon :: ProgStateRef -> IO Lexicon -- | The macros are stored as a hashing function in the monad. loadGeniMacros :: ProgStateRef -> IO Macros loadTestSuite :: ProgState -> CustomSem sem -> IO [TestCase sem] parseSemInput :: Text -> Either ParseError SemInput loadRanking :: ProgStateRef -> IO () data BadInputException BadInputException :: String -> Text -> BadInputException -- | Load something from a string rather than a file loadFromString :: Loadable a => ProgStateRef -> String -> Text -> IO a instance GHC.Classes.Eq NLP.GenI.GeniResult instance GHC.Classes.Ord NLP.GenI.GeniResult instance GHC.Classes.Eq NLP.GenI.GeniSuccess instance GHC.Classes.Ord NLP.GenI.GeniSuccess instance GHC.Classes.Eq NLP.GenI.ResultType instance GHC.Classes.Ord NLP.GenI.ResultType instance GHC.Classes.Eq NLP.GenI.GeniLexSel instance GHC.Classes.Ord NLP.GenI.GeniLexSel instance GHC.Classes.Eq NLP.GenI.GeniError instance GHC.Classes.Ord NLP.GenI.GeniError instance GHC.Show.Show NLP.GenI.BadInputException instance NLP.GenI.Flag.HasFlags NLP.GenI.ProgState instance GHC.Exception.Exception NLP.GenI.BadInputException instance NLP.GenI.Loadable NLP.GenI.Lexicon.Internal.Lexicon instance NLP.GenI.Loadable NLP.GenI.TreeSchema.Macros instance NLP.GenI.Loadable NLP.GenI.MorphFnL instance NLP.GenI.Loadable NLP.GenI.TracesL instance NLP.GenI.Loadable NLP.GenI.OptimalityTheory.OtRanking instance NLP.GenI.Loadable NLP.GenI.TestSuiteL instance NLP.GenI.Pretty.Pretty NLP.GenI.GeniError instance NLP.GenI.Loadable NLP.GenI.PreAnchoredL instance Text.JSON.JSON NLP.GenI.GeniResults instance Text.JSON.JSON NLP.GenI.GeniResult instance Text.JSON.JSON NLP.GenI.GeniSuccess instance Text.JSON.JSON NLP.GenI.GeniError instance Text.JSON.JSON NLP.GenI.ResultType instance Text.JSON.JSON NLP.GenI.GeniLexSel instance Control.DeepSeq.NFData NLP.GenI.GeniResult instance Control.DeepSeq.NFData NLP.GenI.GeniSuccess instance Control.DeepSeq.NFData NLP.GenI.GeniError instance Control.DeepSeq.NFData NLP.GenI.ResultType instance Control.DeepSeq.NFData NLP.GenI.GeniLexSel -- | The console user interface including batch processing on entire test -- suites. module NLP.GenI.Console consoleGeni :: ProgStateRef -> CustomSem sem -> IO () -- | Used in processing instructions files. Each instruction consists of a -- suite file and a list of test case names from that file -- -- See http://projects.haskell.org/GenI/manual/command-line.html -- for how testsuite, testcase, and instructions are expected to interact -- -- (Exported for use by regression testing code) loadNextSuite :: ProgStateRef -> CustomSem sem -> (FilePath, Maybe [Text]) -> IO [TestCase sem] data RunAs Standalone :: FilePath -> FilePath -> RunAs PartOfSuite :: Text -> FilePath -> RunAs writeResults :: ProgState -> RunAs -> CustomSem sem -> Text -> sem -> GeniResults -> IO () -- | Return the batch directory or a temporary directory if unset getBatchDir :: HasFlags fs => fs -> IO FilePath module NLP.GenI.Main main :: IO () mainWithState :: ProgState -> CustomSem sem -> IO () forceGuiFlag :: Params -> Params module BoolExp data BoolExp a Cond :: a -> BoolExp a And :: (BoolExp a) -> (BoolExp a) -> BoolExp a Or :: (BoolExp a) -> (BoolExp a) -> BoolExp a Not :: (BoolExp a) -> BoolExp a check :: (a -> Bool) -> BoolExp a -> Bool