{-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE UndecidableInstances #-} -- | These algebraic structures have sacrificed generality in favor of being easily used with the standard Haskell Prelude. The fact that monoids are not guaranteed to be semigroups makes this difficult. module HLearn.Algebra.Structures ( -- * Type classes RegularSemigroup (..) , Group(..) -- * Free Structures , RegSG2Group (..) , module Data.Semigroup ) where import Data.Semigroup ------------------------------------------------------------------------------- -- Inverses -- | Semigroups that also have an inverse. See <https://en.wikipedia.org/wiki/Regular_semigroup> class (Semigroup g) => RegularSemigroup g where inverse :: g -> g -- -- | Semigroups where a unique inverse exists for each element. See <https://en.wikipedia.org/wiki/Inverse_semigroup> -- class (RegularSemigroup g) => InverseSemigroup g -- | Regular semigroups that also have an identity; alternatively, monoids where every element has a unique inverse. See <https://en.wikipedia.org/wiki/Group_(mathematics)> class (RegularSemigroup g, Monoid g) => Group g ------------------------------------------------------------------------------- -- RegSG2Group -- | Convert any regular semigroup into a group (and thus also a monoid) by adding a unique identity element data (RegularSemigroup sg) => RegSG2Group sg = SGNothing | SGJust sg deriving (Show,Read,Ord,Eq) instance (RegularSemigroup sg) => Semigroup (RegSG2Group sg) where SGNothing <> m = m m <> SGNothing = m (SGJust sg1) <> (SGJust sg2) = SGJust $ sg1<>sg2 instance (RegularSemigroup sg) => RegularSemigroup (RegSG2Group sg) where inverse SGNothing = SGNothing inverse (SGJust x) = SGJust $ inverse x instance (RegularSemigroup sg) => Monoid (RegSG2Group sg) where mempty = SGNothing mappend = (<>) instance (RegularSemigroup sg) => Group (RegSG2Group sg) -- ------------------------------------------------------------------------------- -- -- SG2Monoid -- -- data (Semigroup sg) => SG2Monoid sg = SGNothing | SGJust sg -- deriving (Show,Read) -- -- instance (Semigroup sg) => Monoid (SG2Monoid sg) where -- mempty = SGNothing -- mappend SGNothing m = m -- mappend m SGNothing = m -- mappend (SGJust sg1) (SGJust sg2) = SGJust $ sg1<>sg2 -- -- instance (Semigroup sg) => Semigroup (SG2Monoid sg) where -- (<>) = mappend