-- Hoogle documentation, generated by Haddock
-- See Hoogle, http://www.haskell.org/hoogle/
-- | Haskell Bindings for libsvm
--
-- Haskell Bindings for libsvm
@package HSvm
@version 0.1.0.2.89
module Data.SVM.Raw
data CSvmNode
CSvmNode :: CInt -> CDouble -> CSvmNode
index :: CSvmNode -> CInt
value :: CSvmNode -> CDouble
data CSvmProblem
CSvmProblem :: CInt -> Ptr CDouble -> Ptr (Ptr CSvmNode) -> CSvmProblem
l :: CSvmProblem -> CInt
y :: CSvmProblem -> Ptr CDouble
x :: CSvmProblem -> Ptr (Ptr CSvmNode)
newtype CSvmType
CSvmType :: CInt -> CSvmType
unCSvmType :: CSvmType -> CInt
cSvc :: CSvmType
nuSvc :: CSvmType
newtype CKernelType
CKernelType :: CInt -> CKernelType
unCKernelType :: CKernelType -> CInt
oneClass :: CSvmType
linear :: CKernelType
poly :: CKernelType
epsilonSvr :: CSvmType
data CSvmParameter
CSvmParameter :: CSvmType -> CKernelType -> CInt -> CDouble -> CDouble -> CDouble -> CDouble -> CDouble -> CInt -> Ptr CInt -> Ptr CDouble -> CDouble -> CDouble -> CInt -> CInt -> CSvmParameter
svm_type :: CSvmParameter -> CSvmType
kernel_type :: CSvmParameter -> CKernelType
degree :: CSvmParameter -> CInt
gamma :: CSvmParameter -> CDouble
coef0 :: CSvmParameter -> CDouble
cache_size :: CSvmParameter -> CDouble
eps :: CSvmParameter -> CDouble
c :: CSvmParameter -> CDouble
nr_weight :: CSvmParameter -> CInt
weight_label :: CSvmParameter -> Ptr CInt
weight :: CSvmParameter -> Ptr CDouble
nu :: CSvmParameter -> CDouble
p :: CSvmParameter -> CDouble
shrinking :: CSvmParameter -> CInt
probability :: CSvmParameter -> CInt
nuSvr :: CSvmType
rbf :: CKernelType
sigmoid :: CKernelType
precomputed :: CKernelType
data CSvmModel
c_svm_train :: Ptr CSvmProblem -> Ptr CSvmParameter -> IO (Ptr CSvmModel)
c_svm_cross_validation :: Ptr CSvmProblem -> Ptr CSvmParameter -> CInt -> Ptr CDouble -> IO ()
c_svm_predict :: Ptr CSvmModel -> Ptr CSvmNode -> CDouble
c_svm_save_model :: CString -> Ptr CSvmModel -> IO CInt
c_svm_load_model :: CString -> IO (Ptr CSvmModel)
c_svm_check_parameter :: Ptr CSvmProblem -> Ptr CSvmParameter -> CString
c_svm_destroy_model :: FinalizerPtr CSvmModel
c_clone_model_support_vectors :: Ptr CSvmModel -> IO ()
instance Show CSvmParameter
instance Storable CKernelType
instance Show CKernelType
instance Storable CSvmType
instance Show CSvmType
instance Storable CSvmParameter
instance Storable CSvmProblem
instance Storable CSvmNode
module Data.SVM
type Vector = IntMap Double
type Problem = [(Double, Vector)]
newtype Model
Model :: (ForeignPtr CSvmModel) -> Model
data KernelType
Linear :: KernelType
RBF :: Double -> KernelType
gamma :: KernelType -> Double
Sigmoid :: Double -> Double -> KernelType
gamma :: KernelType -> Double
coef0 :: KernelType -> Double
Poly :: Double -> Double -> Int -> KernelType
gamma :: KernelType -> Double
coef0 :: KernelType -> Double
degree :: KernelType -> Int
data Algorithm
CSvc :: Double -> Algorithm
c :: Algorithm -> Double
NuSvc :: Double -> Algorithm
nu :: Algorithm -> Double
NuSvr :: Double -> Double -> Algorithm
nu :: Algorithm -> Double
c :: Algorithm -> Double
EpsilonSvr :: Double -> Double -> Algorithm
epsilon :: Algorithm -> Double
c :: Algorithm -> Double
OneClassSvm :: Double -> Algorithm
nu :: Algorithm -> Double
data ExtraParam
ExtraParam :: Double -> Int -> Int -> ExtraParam
cacheSize :: ExtraParam -> Double
shrinking :: ExtraParam -> Int
probability :: ExtraParam -> Int
mergeKernel :: KernelType -> CSvmParameter -> CSvmParameter
mergeAlgo :: Algorithm -> CSvmParameter -> CSvmParameter
newCSvmNodeArray :: Vector -> IO (Ptr CSvmNode)
newCSvmProblem :: Problem -> IO (Ptr CSvmProblem)
freeCSVmProblem :: Ptr CSvmProblem -> IO ()
withProblem :: Problem -> (Ptr CSvmProblem -> IO a) -> IO a
withParam :: ExtraParam -> Algorithm -> KernelType -> (Ptr CSvmParameter -> IO a) -> IO a
checkParam :: Ptr CSvmProblem -> Ptr CSvmParameter -> IO ()
train' :: ExtraParam -> Algorithm -> KernelType -> Problem -> IO (Model)
-- | The train function allows training a Model starting from
-- a Problem by specifying an Algorithm and a
-- KernelType
train :: Algorithm -> KernelType -> Problem -> IO (Model)
crossValidate' :: ExtraParam -> Algorithm -> KernelType -> Problem -> Int -> IO [Double]
saveModel :: Model -> FilePath -> IO ()
loadModel :: FilePath -> IO (Model)
predict :: Model -> Vector -> Double