-- Copyright (c) 2010, David Amos. All rights reserved. {-# LANGUAGE MultiParamTypeClasses, FlexibleInstances #-} -- |A module defining the algebra of commutative polynomials over a field k module Math.Algebras.Commutative where import Math.Algebra.Field.Base hiding (powers) import Math.Algebras.VectorSpace import Math.Algebras.TensorProduct import Math.Algebras.Structures -- GLEX MONOMIALS data GlexMonomial v = Glex Int [(v,Int)] deriving (Eq) -- The initial Int is the degree of the monomial. Storing it speeds up equality tests and comparisons -- type GlexMonomialS = GlexMonomial String instance Ord v => Ord (GlexMonomial v) where compare (Glex si xis) (Glex sj yjs) = compare (-si, [(x,-i) | (x,i) <- xis]) (-sj, [(y,-j) | (y,j) <- yjs]) instance Show v => Show (GlexMonomial v) where show (Glex _ []) = "1" show (Glex _ xis) = concatMap (\(x,i) -> if i==1 then showVar x else showVar x ++ "^" ++ show i) xis where showVar x = filter ( /= '"' ) (show x) -- in case v == String {- -- GlexMonomial is a functor and a monad -- However, this isn't all that much use, and to make proper use of it we'd need a "nf" function -- So leaving this commented out -- map one basis to another instance Functor GlexMonomial where fmap f (Glex si xis) = Glex si [(f x, i) | (x,i) <- xis] -- Note that as we can't assume the Ord instance, we would need to call "nf" afterwards -- GlexMonomial is the free commutative monoid, and hence a monad instance Monad GlexMonomial where return x = Glex 1 [(x,1)] (Glex _ xis) >>= f = let parts = [(i, sj, yjs) | (x,i) <- xis, let Glex sj yjs = f x] in Glex (sum [i*sj | (i,sj,_) <- parts]) (concatMap (\(i,_,yjs)->map (\(y,j)->(y,i*j)) yjs) parts) -- this isn't really much use - it's variable substitution, but we're only allowed to substitute monomials for each var -- Note that as we can't assume the Ord instance, we would need to call "nf" afterwards -} -- This is the monoid algebra for commutative monomials (which are the free commutative monoid) instance (Eq k, Num k, Ord v) => Algebra k (GlexMonomial v) where unit x = x *> return munit where munit = Glex 0 [] mult xy = nf $ fmap (\(a,b) -> a `mmult` b) xy where mmult (Glex si xis) (Glex sj yjs) = Glex (si+sj) $ addmerge xis yjs -- GlexPoly can be given the set coalgebra structure, which is compatible with the monoid algebra structure instance (Eq k, Num k) => Coalgebra k (GlexMonomial v) where counit = unwrap . nf . fmap (\m -> () ) -- trace -- counit (V ts) = sum [x | (m,x) <- ts] -- trace comult = fmap (\m -> (m,m) ) -- diagonal type GlexPoly k v = Vect k (GlexMonomial v) -- |glexVar creates a variable in the algebra of commutative polynomials with Glex term ordering. -- For example, the following code creates variables called x, y and z: -- -- > [x,y,z] = map glexVar ["x","y","z"] :: GlexPoly Q String glexVar :: (Num k) => v -> GlexPoly k v glexVar v = V [(Glex 1 [(v,1)], 1)] class Monomial m where var :: v -> Vect Q (m v) powers :: m v -> [(v,Int)] -- |In effect, we have (Num k, Monomial m) => Monad (\v -> Vect k (m v)), with return = var, and (>>=) = bind. -- However, we can't express this directly in Haskell, firstly because of the Ord b constraint, -- secondly because Haskell doesn't support type functions. bind :: (Monomial m, Eq k, Num k, Ord b, Show b, Algebra k b) => Vect k (m v) -> (v -> Vect k b) -> Vect k b V ts `bind` f = sum [c *> product [f x ^ i | (x,i) <- powers m] | (m, c) <- ts] -- flipbind f = linear (\m -> product [f x ^ i | (x,i) <- powers m]) instance Monomial GlexMonomial where var = glexVar powers (Glex _ xis) = xis -- DIVISION lt (V (t:ts)) = t class DivisionBasis b where dividesB :: b -> b -> Bool divB :: b -> b -> b dividesT (b1,x1) (b2,x2) = dividesB b1 b2 divT (b1,x1) (b2,x2) = (divB b1 b2, x1/x2) -- given f, gs, find as, r such that f = sum (zipWith (*) as gs) + r, with r not divisible by any g quotRemMP f gs = quotRemMP' f (replicate n 0, 0) where n = length gs quotRemMP' 0 (us,r) = (us,r) quotRemMP' h (us,r) = divisionStep h (gs,[],us,r) divisionStep h (g:gs,us',u:us,r) = if lt g `dividesT` lt h then let t = V [lt h `divT` lt g] h' = h - t*g u' = u+t in quotRemMP' h' (reverse us' ++ u':us, r) else divisionStep h (gs,u:us',us,r) divisionStep h ([],us',[],r) = let (lth,h') = splitlt h in quotRemMP' h' (reverse us', r+lth) splitlt (V (t:ts)) = (V [t], V ts) infixl 7 %% -- |(%%) reduces a polynomial with respect to a list of polynomials. (%%) :: (Eq k, Fractional k, Ord b, Show b, Algebra k b, DivisionBasis b) => Vect k b -> [Vect k b] -> Vect k b f %% gs = r where (_,r) = quotRemMP f gs instance Ord v => DivisionBasis (GlexMonomial v) where dividesB (Glex si xis) (Glex sj yjs) = si <= sj && dividesB' xis yjs where dividesB' ((x,i):xis) ((y,j):yjs) = case compare x y of LT -> False GT -> dividesB' ((x,i):xis) yjs EQ -> if i<=j then dividesB' xis yjs else False dividesB' [] _ = True dividesB' _ [] = False divB (Glex si xis) (Glex sj yjs) = Glex (si-sj) $ divB' xis yjs where divB' ((x,i):xis) ((y,j):yjs) = case compare x y of LT -> (x,i) : divB' xis ((y,j):yjs) EQ -> if i == j then divB' xis yjs else (x,i-j) : divB' xis yjs -- we don't bother to check i > j GT -> error "divB'" -- (y,-j) : divB' ((x,i):xis) yjs divB' xis [] = xis divB' [] yjs = error "divB'" {- -- Need to thread this through Maybe properly, so perhaps use do notation divB2 (Glex si xis) (Glex sj yjs) | si < sj = Nothing | otherwise = case divB' xis yjs of Nothing -> Nothing Just zks -> Glex (si-sj) zks where divB' ((x,i):xis) ((y,j):yjs) = case compare x y of LT -> (x,i) : divB' xis ((y,j):yjs) EQ -> case compare i j of LT -> Nothing EQ -> divB' xis yjs GT -> (x,i-j) : divB' xis yjs GT -> Nothing -} -- !! could change divB to return Maybe, and avoid need for dividesB