Safe Haskell | None |
---|---|
Language | Haskell98 |
- isLeft :: Either t t1 -> Bool
- isRight :: Either t t1 -> Bool
- unRight :: Ord a => Permutation (Either t a) -> Permutation a
- restrictLeft :: Ord a => Permutation (Either a t) -> Permutation a
- ptStab :: (Show a, Ord a) => [Permutation a] -> [a] -> [Permutation a]
- isTransitive :: Ord t => [Permutation t] -> Bool
- transitiveConstituentHomomorphism :: (Ord a, Show a) => [Permutation a] -> [a] -> ([Permutation a], [Permutation a])
- transitiveConstituentHomomorphism' :: (Show t, Ord t) => [Permutation t] -> [t] -> ([Permutation t], [Permutation t])
- minimalBlock :: Ord a => [Permutation a] -> [a] -> [[a]]
- blockSystems :: Ord t => [Permutation t] -> [[[t]]]
- blockSystemsSGS :: Ord a => [Permutation a] -> [[[a]]]
- isPrimitive :: Ord t => [Permutation t] -> Bool
- isPrimitiveSGS :: Ord a => [Permutation a] -> Bool
- blockHomomorphism :: (Ord t, Show t) => [Permutation t] -> [[t]] -> ([Permutation t], [Permutation [t]])
- blockHomomorphism' :: (Show t, Ord t) => [Permutation t] -> [[t]] -> ([Permutation t], [Permutation [t]])
- normalClosure :: (Show a, Ord a) => [Permutation a] -> [Permutation a] -> [Permutation a]
- intersectionNormalClosure :: (Show a, Ord a) => [Permutation a] -> [Permutation a] -> [Permutation a]
- centralizerSymTrans :: (Show a, Ord a) => [Permutation a] -> [Permutation a]
Documentation
unRight :: Ord a => Permutation (Either t a) -> Permutation a Source
restrictLeft :: Ord a => Permutation (Either a t) -> Permutation a Source
ptStab :: (Show a, Ord a) => [Permutation a] -> [a] -> [Permutation a] Source
isTransitive :: Ord t => [Permutation t] -> Bool Source
transitiveConstituentHomomorphism :: (Ord a, Show a) => [Permutation a] -> [a] -> ([Permutation a], [Permutation a]) Source
Given a group gs and a transitive constituent ys, return the kernel and image of the transitive constituent homomorphism. That is, suppose that gs acts on a set xs, and ys is a subset of xs on which gs acts transitively. Then the transitive constituent homomorphism is the restriction of the action of gs to an action on the ys.
transitiveConstituentHomomorphism' :: (Show t, Ord t) => [Permutation t] -> [t] -> ([Permutation t], [Permutation t]) Source
minimalBlock :: Ord a => [Permutation a] -> [a] -> [[a]] Source
blockSystems :: Ord t => [Permutation t] -> [[[t]]] Source
Given a transitive group gs, find all non-trivial block systems. That is, if gs act on xs, find all the ways that the xs can be divided into blocks, such that the gs also have a permutation action on the blocks
blockSystemsSGS :: Ord a => [Permutation a] -> [[[a]]] Source
A more efficient version of blockSystems, if we have an sgs
isPrimitive :: Ord t => [Permutation t] -> Bool Source
A permutation group is primitive if it has no non-trivial block systems
isPrimitiveSGS :: Ord a => [Permutation a] -> Bool Source
blockHomomorphism :: (Ord t, Show t) => [Permutation t] -> [[t]] -> ([Permutation t], [Permutation [t]]) Source
Given a transitive group gs, and a block system for gs, return the kernel and image of the block homomorphism (the homomorphism onto the action of gs on the blocks)
blockHomomorphism' :: (Show t, Ord t) => [Permutation t] -> [[t]] -> ([Permutation t], [Permutation [t]]) Source
normalClosure :: (Show a, Ord a) => [Permutation a] -> [Permutation a] -> [Permutation a] Source
intersectionNormalClosure :: (Show a, Ord a) => [Permutation a] -> [Permutation a] -> [Permutation a] Source
centralizerSymTrans :: (Show a, Ord a) => [Permutation a] -> [Permutation a] Source