/* Copyright (c) 2007 Scott Lembcke * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include "chipmunk_private.h" #include "constraints/util.h" static void preStep(cpRatchetJoint *joint, cpFloat dt, cpFloat dt_inv) { CONSTRAINT_BEGIN(joint, a, b); cpFloat angle = joint->angle; cpFloat phase = joint->phase; cpFloat ratchet = joint->ratchet; cpFloat delta = b->a - a->a; cpFloat diff = angle - delta; cpFloat pdist = 0.0f; if(diff*ratchet > 0.0f){ pdist = diff; } else { joint->angle = cpffloor((delta - phase)/ratchet)*ratchet + phase; } // calculate moment of inertia coefficient. joint->iSum = 1.0f/(a->i_inv + b->i_inv); // calculate bias velocity cpFloat maxBias = joint->constraint.maxBias; joint->bias = cpfclamp(-joint->constraint.biasCoef*dt_inv*pdist, -maxBias, maxBias); // compute max impulse joint->jMax = J_MAX(joint, dt); // If the bias is 0, the joint is not at a limit. Reset the impulse. if(!joint->bias) joint->jAcc = 0.0f; // apply joint torque a->w -= joint->jAcc*a->i_inv; b->w += joint->jAcc*b->i_inv; } static void applyImpulse(cpRatchetJoint *joint) { if(!joint->bias) return; // early exit CONSTRAINT_BEGIN(joint, a, b); // compute relative rotational velocity cpFloat wr = b->w - a->w; cpFloat ratchet = joint->ratchet; // compute normal impulse cpFloat j = -(joint->bias + wr)*joint->iSum; cpFloat jOld = joint->jAcc; joint->jAcc = cpfclamp((jOld + j)*ratchet, 0.0f, joint->jMax*cpfabs(ratchet))/ratchet; j = joint->jAcc - jOld; // apply impulse a->w -= j*a->i_inv; b->w += j*b->i_inv; } static cpFloat getImpulse(cpRatchetJoint *joint) { return cpfabs(joint->jAcc); } static const cpConstraintClass klass = { (cpConstraintPreStepFunction)preStep, (cpConstraintApplyImpulseFunction)applyImpulse, (cpConstraintGetImpulseFunction)getImpulse, }; CP_DefineClassGetter(cpRatchetJoint) cpRatchetJoint * cpRatchetJointAlloc(void) { return (cpRatchetJoint *)cpcalloc(1, sizeof(cpRatchetJoint)); } cpRatchetJoint * cpRatchetJointInit(cpRatchetJoint *joint, cpBody *a, cpBody *b, cpFloat phase, cpFloat ratchet) { cpConstraintInit((cpConstraint *)joint, &klass, a, b); joint->angle = 0.0f; joint->phase = phase; joint->ratchet = ratchet; // STATIC_BODY_CHECK joint->angle = (b ? b->a : 0.0f) - (a ? a->a : 0.0f); return joint; } cpConstraint * cpRatchetJointNew(cpBody *a, cpBody *b, cpFloat phase, cpFloat ratchet) { return (cpConstraint *)cpRatchetJointInit(cpRatchetJointAlloc(), a, b, phase, ratchet); }