/* Copyright (c) 2007 Scott Lembcke * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include //#include #include "chipmunk_private.h" typedef int (*collisionFunc)(const cpShape *, const cpShape *, cpContact *); // Add contact points for circle to circle collisions. // Used by several collision tests. static int circle2circleQuery(const cpVect p1, const cpVect p2, const cpFloat r1, const cpFloat r2, cpContact *con) { cpFloat mindist = r1 + r2; cpVect delta = cpvsub(p2, p1); cpFloat distsq = cpvlengthsq(delta); if(distsq >= mindist*mindist) return 0; cpFloat dist = cpfsqrt(distsq); // Allocate and initialize the contact. cpContactInit( con, cpvadd(p1, cpvmult(delta, 0.5f + (r1 - 0.5f*mindist)/(dist ? dist : INFINITY))), (dist ? cpvmult(delta, 1.0f/dist) : cpv(1.0f, 0.0f)), dist - mindist, 0 ); return 1; } // Collide circle shapes. static int circle2circle(const cpShape *shape1, const cpShape *shape2, cpContact *arr) { cpCircleShape *circ1 = (cpCircleShape *)shape1; cpCircleShape *circ2 = (cpCircleShape *)shape2; return circle2circleQuery(circ1->tc, circ2->tc, circ1->r, circ2->r, arr); } // Collide circles to segment shapes. static int circle2segment(const cpShape *circleShape, const cpShape *segmentShape, cpContact *con) { cpCircleShape *circ = (cpCircleShape *)circleShape; cpSegmentShape *seg = (cpSegmentShape *)segmentShape; // Radius sum cpFloat rsum = circ->r + seg->r; // Calculate normal distance from segment. cpFloat dn = cpvdot(seg->tn, circ->tc) - cpvdot(seg->ta, seg->tn); cpFloat dist = cpfabs(dn) - rsum; if(dist > 0.0f) return 0; // Calculate tangential distance along segment. cpFloat dt = -cpvcross(seg->tn, circ->tc); cpFloat dtMin = -cpvcross(seg->tn, seg->ta); cpFloat dtMax = -cpvcross(seg->tn, seg->tb); // Decision tree to decide which feature of the segment to collide with. if(dt < dtMin){ if(dt < (dtMin - rsum)){ return 0; } else { return circle2circleQuery(circ->tc, seg->ta, circ->r, seg->r, con); } } else { if(dt < dtMax){ cpVect n = (dn < 0.0f) ? seg->tn : cpvneg(seg->tn); cpContactInit( con, cpvadd(circ->tc, cpvmult(n, circ->r + dist*0.5f)), n, dist, 0 ); return 1; } else { if(dt < (dtMax + rsum)) { return circle2circleQuery(circ->tc, seg->tb, circ->r, seg->r, con); } else { return 0; } } } return 1; } // Helper function for working with contact buffers // This used to malloc/realloc memory on the fly but was repurposed. static cpContact * nextContactPoint(cpContact *arr, int *numPtr) { int index = *numPtr; if(index < CP_MAX_CONTACTS_PER_ARBITER){ (*numPtr) = index + 1; return &arr[index]; } else { return &arr[CP_MAX_CONTACTS_PER_ARBITER - 1]; } } // Find the minimum separating axis for the give poly and axis list. static inline int findMSA(const cpPolyShape *poly, const cpPolyShapeAxis *axes, const int num, cpFloat *min_out) { int min_index = 0; cpFloat min = cpPolyShapeValueOnAxis(poly, axes->n, axes->d); if(min > 0.0f) return -1; for(int i=1; i 0.0f) { return -1; } else if(dist > min){ min = dist; min_index = i; } } (*min_out) = min; return min_index; } // Add contacts for probably penetrating vertexes. // This handles the degenerate case where an overlap was detected, but no vertexes fall inside // the opposing polygon. (like a star of david) static inline int findVertsFallback(cpContact *arr, const cpPolyShape *poly1, const cpPolyShape *poly2, const cpVect n, const cpFloat dist) { int num = 0; for(int i=0; inumVerts; i++){ cpVect v = poly1->tVerts[i]; if(cpPolyShapeContainsVertPartial(poly2, v, cpvneg(n))) cpContactInit(nextContactPoint(arr, &num), v, n, dist, CP_HASH_PAIR(poly1->shape.hashid, i)); } for(int i=0; inumVerts; i++){ cpVect v = poly2->tVerts[i]; if(cpPolyShapeContainsVertPartial(poly1, v, n)) cpContactInit(nextContactPoint(arr, &num), v, n, dist, CP_HASH_PAIR(poly2->shape.hashid, i)); } return num; } // Add contacts for penetrating vertexes. static inline int findVerts(cpContact *arr, const cpPolyShape *poly1, const cpPolyShape *poly2, const cpVect n, const cpFloat dist) { int num = 0; for(int i=0; inumVerts; i++){ cpVect v = poly1->tVerts[i]; if(cpPolyShapeContainsVert(poly2, v)) cpContactInit(nextContactPoint(arr, &num), v, n, dist, CP_HASH_PAIR(poly1->shape.hashid, i)); } for(int i=0; inumVerts; i++){ cpVect v = poly2->tVerts[i]; if(cpPolyShapeContainsVert(poly1, v)) cpContactInit(nextContactPoint(arr, &num), v, n, dist, CP_HASH_PAIR(poly2->shape.hashid, i)); } return (num ? num : findVertsFallback(arr, poly1, poly2, n, dist)); } // Collide poly shapes together. static int poly2poly(const cpShape *shape1, const cpShape *shape2, cpContact *arr) { cpPolyShape *poly1 = (cpPolyShape *)shape1; cpPolyShape *poly2 = (cpPolyShape *)shape2; cpFloat min1; int mini1 = findMSA(poly2, poly1->tAxes, poly1->numVerts, &min1); if(mini1 == -1) return 0; cpFloat min2; int mini2 = findMSA(poly1, poly2->tAxes, poly2->numVerts, &min2); if(mini2 == -1) return 0; // There is overlap, find the penetrating verts if(min1 > min2) return findVerts(arr, poly1, poly2, poly1->tAxes[mini1].n, min1); else return findVerts(arr, poly1, poly2, cpvneg(poly2->tAxes[mini2].n), min2); } // Like cpPolyValueOnAxis(), but for segments. static inline cpFloat segValueOnAxis(const cpSegmentShape *seg, const cpVect n, const cpFloat d) { cpFloat a = cpvdot(n, seg->ta) - seg->r; cpFloat b = cpvdot(n, seg->tb) - seg->r; return cpfmin(a, b) - d; } // Identify vertexes that have penetrated the segment. static inline void findPointsBehindSeg(cpContact *arr, int *num, const cpSegmentShape *seg, const cpPolyShape *poly, const cpFloat pDist, const cpFloat coef) { cpFloat dta = cpvcross(seg->tn, seg->ta); cpFloat dtb = cpvcross(seg->tn, seg->tb); cpVect n = cpvmult(seg->tn, coef); for(int i=0; inumVerts; i++){ cpVect v = poly->tVerts[i]; if(cpvdot(v, n) < cpvdot(seg->tn, seg->ta)*coef + seg->r){ cpFloat dt = cpvcross(seg->tn, v); if(dta >= dt && dt >= dtb){ cpContactInit(nextContactPoint(arr, num), v, n, pDist, CP_HASH_PAIR(poly->shape.hashid, i)); } } } } // This one is complicated and gross. Just don't go there... // TODO: Comment me! static int seg2poly(const cpShape *shape1, const cpShape *shape2, cpContact *arr) { cpSegmentShape *seg = (cpSegmentShape *)shape1; cpPolyShape *poly = (cpPolyShape *)shape2; cpPolyShapeAxis *axes = poly->tAxes; cpFloat segD = cpvdot(seg->tn, seg->ta); cpFloat minNorm = cpPolyShapeValueOnAxis(poly, seg->tn, segD) - seg->r; cpFloat minNeg = cpPolyShapeValueOnAxis(poly, cpvneg(seg->tn), -segD) - seg->r; if(minNeg > 0.0f || minNorm > 0.0f) return 0; int mini = 0; cpFloat poly_min = segValueOnAxis(seg, axes->n, axes->d); if(poly_min > 0.0f) return 0; for(int i=0; inumVerts; i++){ cpFloat dist = segValueOnAxis(seg, axes[i].n, axes[i].d); if(dist > 0.0f){ return 0; } else if(dist > poly_min){ poly_min = dist; mini = i; } } int num = 0; cpVect poly_n = cpvneg(axes[mini].n); cpVect va = cpvadd(seg->ta, cpvmult(poly_n, seg->r)); cpVect vb = cpvadd(seg->tb, cpvmult(poly_n, seg->r)); if(cpPolyShapeContainsVert(poly, va)) cpContactInit(nextContactPoint(arr, &num), va, poly_n, poly_min, CP_HASH_PAIR(seg->shape.hashid, 0)); if(cpPolyShapeContainsVert(poly, vb)) cpContactInit(nextContactPoint(arr, &num), vb, poly_n, poly_min, CP_HASH_PAIR(seg->shape.hashid, 1)); // Floating point precision problems here. // This will have to do for now. poly_min -= cp_collision_slop; if(minNorm >= poly_min || minNeg >= poly_min) { if(minNorm > minNeg) findPointsBehindSeg(arr, &num, seg, poly, minNorm, 1.0f); else findPointsBehindSeg(arr, &num, seg, poly, minNeg, -1.0f); } // If no other collision points are found, try colliding endpoints. if(num == 0){ cpVect poly_a = poly->tVerts[mini]; cpVect poly_b = poly->tVerts[(mini + 1)%poly->numVerts]; if(circle2circleQuery(seg->ta, poly_a, seg->r, 0.0f, arr)) return 1; if(circle2circleQuery(seg->tb, poly_a, seg->r, 0.0f, arr)) return 1; if(circle2circleQuery(seg->ta, poly_b, seg->r, 0.0f, arr)) return 1; if(circle2circleQuery(seg->tb, poly_b, seg->r, 0.0f, arr)) return 1; } return num; } // This one is less gross, but still gross. // TODO: Comment me! static int circle2poly(const cpShape *shape1, const cpShape *shape2, cpContact *con) { cpCircleShape *circ = (cpCircleShape *)shape1; cpPolyShape *poly = (cpPolyShape *)shape2; cpPolyShapeAxis *axes = poly->tAxes; int mini = 0; cpFloat min = cpvdot(axes->n, circ->tc) - axes->d - circ->r; for(int i=0; inumVerts; i++){ cpFloat dist = cpvdot(axes[i].n, circ->tc) - axes[i].d - circ->r; if(dist > 0.0f){ return 0; } else if(dist > min) { min = dist; mini = i; } } cpVect n = axes[mini].n; cpVect a = poly->tVerts[mini]; cpVect b = poly->tVerts[(mini + 1)%poly->numVerts]; cpFloat dta = cpvcross(n, a); cpFloat dtb = cpvcross(n, b); cpFloat dt = cpvcross(n, circ->tc); if(dt < dtb){ return circle2circleQuery(circ->tc, b, circ->r, 0.0f, con); } else if(dt < dta) { cpContactInit( con, cpvsub(circ->tc, cpvmult(n, circ->r + min/2.0f)), cpvneg(n), min, 0 ); return 1; } else { return circle2circleQuery(circ->tc, a, circ->r, 0.0f, con); } } //static const collisionFunc builtinCollisionFuncs[9] = { // circle2circle, // NULL, // NULL, // circle2segment, // NULL, // NULL, // circle2poly, // seg2poly, // poly2poly, //}; //static const collisionFunc *colfuncs = builtinCollisionFuncs; static collisionFunc *colfuncs = NULL; static void addColFunc(const cpShapeType a, const cpShapeType b, const collisionFunc func) { colfuncs[a + b*CP_NUM_SHAPES] = func; } #ifdef __cplusplus extern "C" { #endif void cpInitCollisionFuncs(void); // Initializes the array of collision functions. // Called by cpInitChipmunk(). void cpInitCollisionFuncs(void) { if(!colfuncs) colfuncs = (collisionFunc *)cpcalloc(CP_NUM_SHAPES*CP_NUM_SHAPES, sizeof(collisionFunc)); addColFunc(CP_CIRCLE_SHAPE, CP_CIRCLE_SHAPE, circle2circle); addColFunc(CP_CIRCLE_SHAPE, CP_SEGMENT_SHAPE, circle2segment); addColFunc(CP_SEGMENT_SHAPE, CP_POLY_SHAPE, seg2poly); addColFunc(CP_CIRCLE_SHAPE, CP_POLY_SHAPE, circle2poly); addColFunc(CP_POLY_SHAPE, CP_POLY_SHAPE, poly2poly); } #ifdef __cplusplus } #endif int cpCollideShapes(const cpShape *a, const cpShape *b, cpContact *arr) { // Their shape types must be in order. cpAssert(a->klass->type <= b->klass->type, "Collision shapes passed to cpCollideShapes() are not sorted."); collisionFunc cfunc = colfuncs[a->klass->type + b->klass->type*CP_NUM_SHAPES]; return (cfunc) ? cfunc(a, b, arr) : 0; }