/* Copyright (c) 2007 Scott Lembcke * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include "chipmunk.h" int cp_contact_persistence = 1; #pragma mark Contact Set Helpers // Equal function for contactSet. static int contactSetEql(cpShape **shapes, cpArbiter *arb) { cpShape *a = shapes[0]; cpShape *b = shapes[1]; return ((a == arb->private_a && b == arb->private_b) || (b == arb->private_a && a == arb->private_b)); } // Transformation function for contactSet. static void * contactSetTrans(cpShape **shapes, cpSpace *space) { if(space->pooledArbiters->num == 0){ // arbiter pool is exhausted, make more int count = CP_BUFFER_BYTES/sizeof(cpArbiter); cpAssert(count, "Buffer size too small."); cpArbiter *buffer = (cpArbiter *)cpmalloc(CP_BUFFER_BYTES); cpArrayPush(space->allocatedBuffers, buffer); for(int i=0; ipooledArbiters, buffer + i); } return cpArbiterInit(cpArrayPop(space->pooledArbiters), shapes[0], shapes[1]); } #pragma mark Collision Pair Function Helpers // Equals function for collFuncSet. static int collFuncSetEql(cpCollisionHandler *check, cpCollisionHandler *pair) { return ((check->a == pair->a && check->b == pair->b) || (check->b == pair->a && check->a == pair->b)); } // Transformation function for collFuncSet. static void * collFuncSetTrans(cpCollisionHandler *handler, void *unused) { cpCollisionHandler *copy = (cpCollisionHandler *)cpmalloc(sizeof(cpCollisionHandler)); (*copy) = (*handler); return copy; } #pragma mark Post Step Function Helpers typedef struct postStepCallback { cpPostStepFunc func; void *obj; void *data; } postStepCallback; static int postStepFuncSetEql(postStepCallback *a, postStepCallback *b){ return a->obj == b->obj; } static void * postStepFuncSetTrans(postStepCallback *callback, void *ignored) { postStepCallback *value = (postStepCallback *)cpmalloc(sizeof(postStepCallback)); (*value) = (*callback); return value; } #pragma mark Misc Helper Funcs // Default collision functions. static int alwaysCollide(cpArbiter *arb, cpSpace *space, void *data){return 1;} static void nothing(cpArbiter *arb, cpSpace *space, void *data){} // BBfunc callback for the spatial hash. static cpBB shapeBBFunc(cpShape *shape){return shape->bb;} // Iterator functions for destructors. static void freeWrap(void *ptr, void *unused){ cpfree(ptr);} static void shapeFreeWrap(cpShape *ptr, void *unused){ cpShapeFree(ptr);} static void bodyFreeWrap(cpBody *ptr, void *unused){ cpBodyFree(ptr);} static void constraintFreeWrap(cpConstraint *ptr, void *unused){cpConstraintFree(ptr);} #pragma mark Memory Management Functions static cpContactBuffer * cpSpaceAllocContactBuffer(cpSpace *space) { cpContactBuffer *buffer = (cpContactBuffer *)malloc(sizeof(cpContactBuffer)); cpArrayPush(space->allocatedBuffers, buffer); return buffer; } static cpContactBuffer * cpContactBufferInit(cpContactBuffer *buffer, cpSpace *space) { buffer->stamp = space->stamp; buffer->next = space->contactBuffersTail; buffer->numContacts = 0; return buffer; } cpSpace * cpSpaceAlloc(void) { return (cpSpace *)cpcalloc(1, sizeof(cpSpace)); } #define DEFAULT_DIM_SIZE 100.0f #define DEFAULT_COUNT 1000 #define DEFAULT_ITERATIONS 10 #define DEFAULT_ELASTIC_ITERATIONS 0 #define MAX_CONTACTS 10000 cpCollisionHandler defaultHandler = {0, 0, alwaysCollide, alwaysCollide, nothing, nothing, NULL}; cpSpace* cpSpaceInit(cpSpace *space) { space->iterations = DEFAULT_ITERATIONS; space->elasticIterations = DEFAULT_ELASTIC_ITERATIONS; // space->sleepTicks = 300; space->gravity = cpvzero; space->damping = 1.0f; space->locked = 0; space->stamp = 0; space->staticShapes = cpSpaceHashNew(DEFAULT_DIM_SIZE, DEFAULT_COUNT, (cpSpaceHashBBFunc)shapeBBFunc); space->activeShapes = cpSpaceHashNew(DEFAULT_DIM_SIZE, DEFAULT_COUNT, (cpSpaceHashBBFunc)shapeBBFunc); space->allocatedBuffers = cpArrayNew(0); space->bodies = cpArrayNew(0); space->arbiters = cpArrayNew(0); space->pooledArbiters = cpArrayNew(0); cpContactBuffer *buffer = cpContactBufferInit(cpSpaceAllocContactBuffer(space), space); space->contactBuffersHead = buffer; space->contactBuffersTail = buffer; buffer->next = buffer; // Buffers will form a ring, start the ring explicitly space->contactSet = cpHashSetNew(0, (cpHashSetEqlFunc)contactSetEql, (cpHashSetTransFunc)contactSetTrans); space->constraints = cpArrayNew(0); space->defaultHandler = defaultHandler; space->collFuncSet = cpHashSetNew(0, (cpHashSetEqlFunc)collFuncSetEql, (cpHashSetTransFunc)collFuncSetTrans); space->collFuncSet->default_value = &space->defaultHandler; space->postStepCallbacks = cpHashSetNew(0, (cpHashSetEqlFunc)postStepFuncSetEql, (cpHashSetTransFunc)postStepFuncSetTrans); return space; } cpSpace* cpSpaceNew(void) { return cpSpaceInit(cpSpaceAlloc()); } void cpSpaceDestroy(cpSpace *space) { cpSpaceHashFree(space->staticShapes); cpSpaceHashFree(space->activeShapes); cpArrayFree(space->bodies); cpArrayFree(space->constraints); cpHashSetFree(space->contactSet); cpArrayFree(space->arbiters); cpArrayFree(space->pooledArbiters); if(space->allocatedBuffers){ cpArrayEach(space->allocatedBuffers, freeWrap, NULL); cpArrayFree(space->allocatedBuffers); } if(space->postStepCallbacks){ cpHashSetEach(space->postStepCallbacks, freeWrap, NULL); cpHashSetFree(space->postStepCallbacks); } if(space->collFuncSet){ cpHashSetEach(space->collFuncSet, freeWrap, NULL); cpHashSetFree(space->collFuncSet); } } void cpSpaceFree(cpSpace *space) { if(space){ cpSpaceDestroy(space); cpfree(space); } } void cpSpaceFreeChildren(cpSpace *space) { cpSpaceHashEach(space->staticShapes, (cpSpaceHashIterator)&shapeFreeWrap, NULL); cpSpaceHashEach(space->activeShapes, (cpSpaceHashIterator)&shapeFreeWrap, NULL); cpArrayEach(space->bodies, (cpArrayIter)&bodyFreeWrap, NULL); cpArrayEach(space->constraints, (cpArrayIter)&constraintFreeWrap, NULL); } #pragma mark Collision Handler Function Management void cpSpaceAddCollisionHandler( cpSpace *space, cpCollisionType a, cpCollisionType b, cpCollisionBeginFunc begin, cpCollisionPreSolveFunc preSolve, cpCollisionPostSolveFunc postSolve, cpCollisionSeparateFunc separate, void *data ){ // Remove any old function so the new one will get added. cpSpaceRemoveCollisionHandler(space, a, b); cpCollisionHandler handler = { a, b, begin ? begin : alwaysCollide, preSolve ? preSolve : alwaysCollide, postSolve ? postSolve : nothing, separate ? separate : nothing, data }; cpHashSetInsert(space->collFuncSet, CP_HASH_PAIR(a, b), &handler, NULL); } void cpSpaceRemoveCollisionHandler(cpSpace *space, cpCollisionType a, cpCollisionType b) { struct{cpCollisionType a, b;} ids = {a, b}; cpCollisionHandler *old_handler = cpHashSetRemove(space->collFuncSet, CP_HASH_PAIR(a, b), &ids); cpfree(old_handler); } void cpSpaceSetDefaultCollisionHandler( cpSpace *space, cpCollisionBeginFunc begin, cpCollisionPreSolveFunc preSolve, cpCollisionPostSolveFunc postSolve, cpCollisionSeparateFunc separate, void *data ){ cpCollisionHandler handler = { 0, 0, begin ? begin : alwaysCollide, preSolve ? preSolve : alwaysCollide, postSolve ? postSolve : nothing, separate ? separate : nothing, data }; space->defaultHandler = handler; } #pragma mark Body, Shape, and Joint Management #define cpAssertSpaceUnlocked(space) \ cpAssert(!space->locked, \ "Cannot safely add or remove objects from a space during a call to cpSpaceStep(). " \ "Put these calls into a Post Step Callback." \ ); cpShape * cpSpaceAddShape(cpSpace *space, cpShape *shape) { cpAssert(shape->body, "Cannot add a shape with a NULL body."); cpAssert(!cpHashSetFind(space->activeShapes->handleSet, shape->hashid, shape), "Cannot add the same shape more than once."); cpAssertSpaceUnlocked(space); cpSpaceHashInsert(space->activeShapes, shape, shape->hashid, shape->bb); return shape; } cpShape * cpSpaceAddStaticShape(cpSpace *space, cpShape *shape) { cpAssert(shape->body, "Cannot add a static shape with a NULL body."); cpAssert(!cpHashSetFind(space->staticShapes->handleSet, shape->hashid, shape), "Cannot add the same static shape more than once."); cpAssertSpaceUnlocked(space); cpShapeCacheBB(shape); cpSpaceHashInsert(space->staticShapes, shape, shape->hashid, shape->bb); return shape; } cpBody * cpSpaceAddBody(cpSpace *space, cpBody *body) { cpAssert(!cpArrayContains(space->bodies, body), "Cannot add the same body more than once."); cpAssertSpaceUnlocked(space); cpArrayPush(space->bodies, body); return body; } cpConstraint * cpSpaceAddConstraint(cpSpace *space, cpConstraint *constraint) { cpAssert(!cpArrayContains(space->constraints, constraint), "Cannot add the same constraint more than once."); cpAssertSpaceUnlocked(space); cpArrayPush(space->constraints, constraint); return constraint; } typedef struct removalContext { cpSpace *space; cpShape *shape; } removalContext; // Hashset filter func to throw away old arbiters. static int contactSetFilterRemovedShape(cpArbiter *arb, removalContext *context) { if(context->shape == arb->private_a || context->shape == arb->private_b){ arb->handler->separate(arb, context->space, arb->handler->data); cpArrayPush(context->space->pooledArbiters, arb); return 0; } return 1; } void cpSpaceRemoveShape(cpSpace *space, cpShape *shape) { cpAssert(cpHashSetFind(space->activeShapes->handleSet, shape->hashid, shape), "Cannot remove a shape that was never added to the space."); cpAssertSpaceUnlocked(space); removalContext context = {space, shape}; cpHashSetFilter(space->contactSet, (cpHashSetFilterFunc)contactSetFilterRemovedShape, &context); cpSpaceHashRemove(space->activeShapes, shape, shape->hashid); } void cpSpaceRemoveStaticShape(cpSpace *space, cpShape *shape) { cpAssert(cpHashSetFind(space->staticShapes->handleSet, shape->hashid, shape), "Cannot remove a static shape that was never added to the space."); cpAssertSpaceUnlocked(space); removalContext context = {space, shape}; cpHashSetFilter(space->contactSet, (cpHashSetFilterFunc)contactSetFilterRemovedShape, &context); cpSpaceHashRemove(space->staticShapes, shape, shape->hashid); } void cpSpaceRemoveBody(cpSpace *space, cpBody *body) { cpAssert(cpArrayContains(space->bodies, body), "Cannot remove a body that was never added to the space."); cpAssertSpaceUnlocked(space); cpArrayDeleteObj(space->bodies, body); } void cpSpaceRemoveConstraint(cpSpace *space, cpConstraint *constraint) { cpAssert(cpArrayContains(space->constraints, constraint), "Cannot remove a constraint that was never added to the space."); cpAssertSpaceUnlocked(space); cpArrayDeleteObj(space->constraints, constraint); } #pragma mark Post Step Functions void cpSpaceAddPostStepCallback(cpSpace *space, cpPostStepFunc func, void *obj, void *data) { postStepCallback callback = {func, obj, data}; cpHashSetInsert(space->postStepCallbacks, (cpHashValue)(size_t)obj, &callback, NULL); } static void removeAndFreeShapeAndBody(cpShape *shape, cpSpace *space) { cpSpaceRemoveShape(space, shape); cpShapeFree(shape); } void cpSpacePostStepRemoveAndFreeShapeAndBody(cpSpace *space, cpShape *shape) { cpSpaceAddPostStepCallback(space, (cpPostStepFunc)removeAndFreeShapeAndBody, shape, space); } #pragma mark Point Query Functions typedef struct pointQueryContext { cpLayers layers; cpGroup group; cpSpacePointQueryFunc func; void *data; } pointQueryContext; static void pointQueryHelper(cpVect *point, cpShape *shape, pointQueryContext *context) { if( !(shape->group && context->group == shape->group) && (context->layers&shape->layers) && cpShapePointQuery(shape, *point) ){ context->func(shape, context->data); } } void cpSpacePointQuery(cpSpace *space, cpVect point, cpLayers layers, cpGroup group, cpSpacePointQueryFunc func, void *data) { pointQueryContext context = {layers, group, func, data}; cpSpaceHashPointQuery(space->activeShapes, point, (cpSpaceHashQueryFunc)pointQueryHelper, &context); cpSpaceHashPointQuery(space->staticShapes, point, (cpSpaceHashQueryFunc)pointQueryHelper, &context); } static void rememberLastPointQuery(cpShape *shape, cpShape **outShape) { (*outShape) = shape; } cpShape * cpSpacePointQueryFirst(cpSpace *space, cpVect point, cpLayers layers, cpGroup group) { cpShape *shape = NULL; cpSpacePointQuery(space, point, layers, group, (cpSpacePointQueryFunc)rememberLastPointQuery, &shape); return shape; } void cpSpaceEachBody(cpSpace *space, cpSpaceBodyIterator func, void *data) { cpArray *bodies = space->bodies; for(int i=0; inum; i++) func((cpBody *)bodies->arr[i], data); } #pragma mark Segment Query Functions typedef struct segQueryContext { cpVect start, end; cpLayers layers; cpGroup group; cpSpaceSegmentQueryFunc func; int anyCollision; } segQueryContext; static cpFloat segQueryFunc(segQueryContext *context, cpShape *shape, void *data) { cpSegmentQueryInfo info; if( !(shape->group && context->group == shape->group) && (context->layers&shape->layers) && cpShapeSegmentQuery(shape, context->start, context->end, &info) ){ if(context->func){ context->func(shape, info.t, info.n, data); } context->anyCollision = 1; } return 1.0f; } int cpSpaceSegmentQuery(cpSpace *space, cpVect start, cpVect end, cpLayers layers, cpGroup group, cpSpaceSegmentQueryFunc func, void *data) { segQueryContext context = { start, end, layers, group, func, 0, }; cpSpaceHashSegmentQuery(space->staticShapes, &context, start, end, 1.0f, (cpSpaceHashSegmentQueryFunc)segQueryFunc, data); cpSpaceHashSegmentQuery(space->activeShapes, &context, start, end, 1.0f, (cpSpaceHashSegmentQueryFunc)segQueryFunc, data); return context.anyCollision; } typedef struct segQueryFirstContext { cpVect start, end; cpLayers layers; cpGroup group; } segQueryFirstContext; static cpFloat segQueryFirst(segQueryFirstContext *context, cpShape *shape, cpSegmentQueryInfo *out) { cpSegmentQueryInfo info;// = {NULL, 1.0f, cpvzero}; if( !(shape->group && context->group == shape->group) && (context->layers&shape->layers) && cpShapeSegmentQuery(shape, context->start, context->end, &info) ){ if(info.t < out->t){ out->shape = info.shape; out->t = info.t; out->n = info.n; } return info.t; } return 1.0f; } cpShape * cpSpaceSegmentQueryFirst(cpSpace *space, cpVect start, cpVect end, cpLayers layers, cpGroup group, cpSegmentQueryInfo *out) { cpSegmentQueryInfo info = {NULL, 1.0f, cpvzero}; if(out){ (*out) = info; } else { out = &info; } out->t = 1.0f; segQueryFirstContext context = { start, end, layers, group }; cpSpaceHashSegmentQuery(space->staticShapes, &context, start, end, 1.0f, (cpSpaceHashSegmentQueryFunc)segQueryFirst, out); cpSpaceHashSegmentQuery(space->activeShapes, &context, start, end, out->t, (cpSpaceHashSegmentQueryFunc)segQueryFirst, out); return out->shape; } #pragma mark BB Query functions typedef struct bbQueryContext { cpLayers layers; cpGroup group; cpSpaceBBQueryFunc func; void *data; } bbQueryContext; static void bbQueryHelper(cpBB *bb, cpShape *shape, bbQueryContext *context) { if( !(shape->group && context->group == shape->group) && (context->layers&shape->layers) && cpBBintersects(*bb, shape->bb) ){ context->func(shape, context->data); } } void cpSpaceBBQuery(cpSpace *space, cpBB bb, cpLayers layers, cpGroup group, cpSpaceBBQueryFunc func, void *data) { bbQueryContext context = {layers, group, func, data}; cpSpaceHashQuery(space->activeShapes, &bb, bb, (cpSpaceHashQueryFunc)bbQueryHelper, &context); cpSpaceHashQuery(space->staticShapes, &bb, bb, (cpSpaceHashQueryFunc)bbQueryHelper, &context); } #pragma mark Spatial Hash Management // Iterator function used for updating shape BBoxes. static void updateBBCache(cpShape *shape, void *unused) { cpShapeCacheBB(shape); } void cpSpaceResizeStaticHash(cpSpace *space, cpFloat dim, int count) { cpSpaceHashResize(space->staticShapes, dim, count); cpSpaceHashRehash(space->staticShapes); } void cpSpaceResizeActiveHash(cpSpace *space, cpFloat dim, int count) { cpSpaceHashResize(space->activeShapes, dim, count); } void cpSpaceRehashStatic(cpSpace *space) { cpSpaceHashEach(space->staticShapes, (cpSpaceHashIterator)&updateBBCache, NULL); cpSpaceHashRehash(space->staticShapes); } #pragma mark Collision Detection Functions static cpContactBuffer * cpSpaceGetFreeContactBuffer(cpSpace *space) { if(space->stamp - space->contactBuffersTail->stamp > cp_contact_persistence){ cpContactBuffer *buffer = space->contactBuffersTail; space->contactBuffersTail = buffer->next; return cpContactBufferInit(buffer, space); } else { cpContactBuffer *buffer = cpSpaceAllocContactBuffer(space); return cpContactBufferInit(buffer, space); } } static void cpSpacePushNewContactBuffer(cpSpace *space) { // for(cpContactBuffer *buffer = space->contactBuffersTail; buffer != space->contactBuffersHead; buffer = buffer->next){ // printf("%p -> ", buffer); // } // printf("%p (head)\n", space->contactBuffersHead); cpContactBuffer *buffer = cpSpaceGetFreeContactBuffer(space); space->contactBuffersHead->next = buffer; space->contactBuffersHead = buffer; } static inline int queryReject(cpShape *a, cpShape *b) { return // BBoxes must overlap !cpBBintersects(a->bb, b->bb) // Don't collide shapes attached to the same body. || a->body == b->body // Don't collide objects in the same non-zero group || (a->group && b->group && a->group == b->group) // Don't collide objects that don't share at least on layer. || !(a->layers & b->layers); } // Callback from the spatial hash. static void queryFunc(cpShape *a, cpShape *b, cpSpace *space) { // Reject any of the simple cases if(queryReject(a,b)) return; // Find the collision pair function for the shapes. struct{cpCollisionType a, b;} ids = {a->collision_type, b->collision_type}; cpHashValue collHashID = CP_HASH_PAIR(a->collision_type, b->collision_type); cpCollisionHandler *handler = (cpCollisionHandler *)cpHashSetFind(space->collFuncSet, collHashID, &ids); int sensor = a->sensor || b->sensor; if(sensor && handler == &space->defaultHandler) return; // Shape 'a' should have the lower shape type. (required by cpCollideShapes() ) if(a->klass->type > b->klass->type){ cpShape *temp = a; a = b; b = temp; } if(space->contactBuffersHead->numContacts + CP_MAX_CONTACTS_PER_ARBITER > CP_CONTACTS_BUFFER_SIZE){ // contact buffer could overflow on the next collision, push a fresh one. cpSpacePushNewContactBuffer(space); } // Narrow-phase collision detection. cpContact *contacts = space->contactBuffersHead->contacts + space->contactBuffersHead->numContacts; int numContacts = cpCollideShapes(a, b, contacts); if(!numContacts) return; // Shapes are not colliding. space->contactBuffersHead->numContacts += numContacts; // Get an arbiter from space->contactSet for the two shapes. // This is where the persistant contact magic comes from. cpShape *shape_pair[] = {a, b}; cpHashValue arbHashID = CP_HASH_PAIR((size_t)a, (size_t)b); cpArbiter *arb = (cpArbiter *)cpHashSetInsert(space->contactSet, arbHashID, shape_pair, space); cpArbiterUpdate(arb, contacts, numContacts, handler, a, b); // retains the contacts array // Call the begin function first if it's the first step if(arb->stamp == -1 && !handler->begin(arb, space, handler->data)){ cpArbiterIgnore(arb); // permanently ignore the collision until separation } if( // Ignore the arbiter if it has been flagged (arb->state != cpArbiterStateIgnore) && // Call preSolve handler->preSolve(arb, space, handler->data) && // Process, but don't add collisions for sensors. !sensor ){ cpArrayPush(space->arbiters, arb); } else { // cpfree(arb->contacts); space->contactBuffersHead->numContacts -= numContacts; arb->contacts = NULL; arb->numContacts = 0; } // Time stamp the arbiter so we know it was used recently. arb->stamp = space->stamp; } // Iterator for active/static hash collisions. static void active2staticIter(cpShape *shape, cpSpace *space) { cpSpaceHashQuery(space->staticShapes, shape, shape->bb, (cpSpaceHashQueryFunc)queryFunc, space); } // Hashset filter func to throw away old arbiters. static int contactSetFilter(cpArbiter *arb, cpSpace *space) { int ticks = space->stamp - arb->stamp; // was used last frame, but not this one if(ticks == 1){ arb->handler->separate(arb, space, arb->handler->data); arb->stamp = -1; // mark it as a new pair again. } if(ticks >= cp_contact_persistence){ cpArrayPush(space->pooledArbiters, arb); return 0; } return 1; } // Hashset filter func to call and throw away post step callbacks. static int postStepCallbackSetFilter(postStepCallback *callback, cpSpace *space) { callback->func(space, callback->obj, callback->data); cpfree(callback); return 0; } #pragma mark All Important cpSpaceStep() Function void cpSpaceStep(cpSpace *space, cpFloat dt) { if(!dt) return; // don't step if the timestep is 0! cpFloat dt_inv = 1.0f/dt; cpArray *bodies = space->bodies; cpArray *constraints = space->constraints; space->locked = 1; // Empty the arbiter list. space->arbiters->num = 0; // Integrate positions. for(int i=0; inum; i++){ cpBody *body = (cpBody *)bodies->arr[i]; body->position_func(body, dt); } // Pre-cache BBoxes and shape data. cpSpaceHashEach(space->activeShapes, (cpSpaceHashIterator)updateBBCache, NULL); // Collide! cpSpacePushNewContactBuffer(space); cpSpaceHashEach(space->activeShapes, (cpSpaceHashIterator)active2staticIter, space); cpSpaceHashQueryRehash(space->activeShapes, (cpSpaceHashQueryFunc)queryFunc, space); // Clear out old cached arbiters and dispatch untouch functions cpHashSetFilter(space->contactSet, (cpHashSetFilterFunc)contactSetFilter, space); // Prestep the arbiters. cpArray *arbiters = space->arbiters; for(int i=0; inum; i++) cpArbiterPreStep((cpArbiter *)arbiters->arr[i], dt_inv); // Prestep the constraints. for(int i=0; inum; i++){ cpConstraint *constraint = (cpConstraint *)constraints->arr[i]; constraint->klass->preStep(constraint, dt, dt_inv); } for(int i=0; ielasticIterations; i++){ for(int j=0; jnum; j++) cpArbiterApplyImpulse((cpArbiter *)arbiters->arr[j], 1.0f); for(int j=0; jnum; j++){ cpConstraint *constraint = (cpConstraint *)constraints->arr[j]; constraint->klass->applyImpulse(constraint); } } // Integrate velocities. cpFloat damping = cpfpow(1.0f/space->damping, -dt); for(int i=0; inum; i++){ cpBody *body = (cpBody *)bodies->arr[i]; body->velocity_func(body, space->gravity, damping, dt); } for(int i=0; inum; i++) cpArbiterApplyCachedImpulse((cpArbiter *)arbiters->arr[i]); // run the old-style elastic solver if elastic iterations are disabled cpFloat elasticCoef = (space->elasticIterations ? 0.0f : 1.0f); // Run the impulse solver. for(int i=0; iiterations; i++){ for(int j=0; jnum; j++) cpArbiterApplyImpulse((cpArbiter *)arbiters->arr[j], elasticCoef); for(int j=0; jnum; j++){ cpConstraint *constraint = (cpConstraint *)constraints->arr[j]; constraint->klass->applyImpulse(constraint); } } space->locked = 0; // run the post solve callbacks for(int i=0; inum; i++){ cpArbiter *arb = arbiters->arr[i]; cpCollisionHandler *handler = arb->handler; handler->postSolve(arb, space, handler->data); arb->state = cpArbiterStateNormal; } // Run the post step callbacks // Use filter as an easy way to clear out the queue as it runs cpHashSetFilter(space->postStepCallbacks, (cpHashSetFilterFunc)postStepCallbackSetFilter, space); // cpFloat dvsq = cpvdot(space->gravity, space->gravity); // dvsq *= dt*dt * space->damping*space->damping; // for(int i=0; inum; i++) // cpBodyMarkLowEnergy(bodies->arr[i], dvsq, space->sleepTicks); // Increment the stamp. space->stamp++; }