{-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE TypeSynonymInstances #-} {-# LANGUAGE IncoherentInstances #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FunctionalDependencies #-} {-# LANGUAGE EmptyDataDecls #-} {-# LANGUAGE ScopedTypeVariables #-} ----------------------------------------------------------------------------- -- | -- Module : Windll -- Copyright : (c) Tamar Christina 2009 - 2010 -- License : BSD3 -- -- Maintainer : tamar@zhox.com -- Stability : experimental -- Portability : portable -- -- Contains the list of native types and their mapping to their equivalent FFI types -- ----------------------------------------------------------------------------- module WinDll.Lib.NativeMapping where import FastString import FastTypes import Foreign import Foreign.C import Foreign.C.String import Foreign.Marshal.Alloc import Foreign.Marshal.Array import Foreign.Marshal.Utils import Foreign.Ptr import Foreign.StablePtr import Unsafe.Coerce import Control.Exception (bracket) import Control.Monad import Control.Monad.Instances import Data.Char import Data.List import Data.Word import Data.Generics import Data.Generics.Basics import Data.Typeable import WinDll.Structs.Types import WinDll.Lib.Native import qualified Language.Haskell.Exts as Exts -- | Typeclase to allow Left LoaD transform. It is basically to allow a transformation to take place -- at the last argument/return type of the function. This is because most of the functions are in IO. class LLD m a b c | b -> c where lld :: m a b-> m a c instance LLD (->) a b (IO b) where lld = (return .) -- | A class that manages the conversion between the \normal\ and type supported by \ffi\. -- Minimal implementation requires atleast one of the pair toNative/toFFI and fromNative/fromFFI. -- The implementation will almost always call fromNative and toNative because all exported functions -- are in IO since they all might have side-effects. The only exception to this is for the defaults provided -- in this module. class FFIType phi ix where toFFI :: phi -> ix toFFI = error "toFFI is undefined for the specified type, try toNative instead." fromFFI :: ix -> phi fromFFI = error "fromFFI is undefined for the specified type, try fromNative instead." fromList :: CInt -> ix -> IO phi fromList ic = error "fromList is undefined for this type. Please add a definition or consider using one of the default ones" fromNative :: ix -> IO phi fromNative = return.fromFFI toNative :: phi -> IO ix toNative = return.toFFI freeFFI :: phi -> ix -> IO () freeFFI = \_ _ -> return (); -- | Default values needed to satisfy .NET marshaller when having unused structures. -- class FFIType phi ix => FFIDefaults phi ix where -- class Default phi where -- nDefault :: phi -- instance Data a => Default a where -- nDefault = empty -- where empty :: Data a => a -- empty = value -- where -- value = fromConstrB empty con -- con = case dataTypeRep dat of -- (AlgRep cons) -> head cons -- IntRep -> mkIntegralConstr dat 0 -- FloatRep -> mkRealConstr dat 0 -- CharRep -> mkCharConstr dat 'a' -- dat = dataTypeOf value -- | Wrapper functions for dealing with FunPtrs -- wrapFn :: (FFIType (IO a) ca, FFIType b (IO cb)) => (a -> IO b) -> (ca -> IO cb) -- wrapFn fn = fromFFI >=> fn >=> toFFI -- unwrapFn :: (FFIType a (IO ca), FFIType (IO b) cb) => (ca -> IO cb) -> (a -> IO b) -- unwrapFn fn a = bracket (toFFI a) (freeFFI undefined) (fn >=> fromFFI) -- | Dedicated instance for () instance FFIType () () where toFFI = id fromFFI = id -- | Numeral values are all also already FFI values, If I've read the documentation correctly -- Due to GHC matching only the instance heads this instance can't unfortunately be used. (Booo bad GHC) -- instance Num a => FFIType a a where -- toFFI = id -- fromFFI = id -- | Booleans are by default already an FFI value instance FFIType Bool Bool where toFFI = id fromFFI = id -- | Convert booleans to Cints for use when using the ccall or stdcall conventions instance FFIType Bool CInt where toFFI False = 0 toFFI True = 1 fromFFI 0 = False fromFFI 1 = True -- | Convert booleans to Word8 to save space for use when using the ccall or stdcall conventions instance FFIType Bool Word8 where toFFI False = 0 toFFI True = 1 fromFFI 0 = False fromFFI 1 = True -- | Convert booleans to Int8 to save space for use when using the ccall or stdcall conventions instance FFIType Bool Int8 where toFFI False = 0 toFFI True = 1 fromFFI 0 = False fromFFI 1 = True -- | A StorablePtr instance instance FFIType (StablePtr a) (StablePtr a) where fromFFI = id toFFI = id freeFFI _ = freeStablePtr -- | A FunPtr instance instance FFIType (FunPtr a) (FunPtr a) where fromFFI = id toFFI = id freeFFI _ = freeHaskellFunPtr -- | Tranform functions to and from the correct types instance (FFIType a b, FFIType c d) => FFIType (a -> c) (b -> d) where toFFI f x = toFFI (f (fromFFI x)) fromFFI f x = fromFFI (f (toFFI x)) -- | I decided to use a CAString because on windows this gives me a constant 16 value instance FFIType String CWString where toNative = newCWString fromNative = peekCWString -- | Intermediate conversion instance for storing values of arrays instance (Storable a, FFIType b a) => FFIType [b] (Ptr a) where toNative = newArray . map toFFI fromList x = fmap (map fromFFI) . peekArray (fromFFI x) -- | Another simple identityy instance, I really need to get that overlapping instances -- looked at. instance FFIType CWchar CWchar where toFFI = id fromFFI = id -- | Another simple identityy instance, I really need to get that overlapping instances -- looked at. instance FFIType CWString CWString where toFFI = id fromFFI = id -- | Another simple identityy instance, I really need to get that overlapping instances -- looked at. instance FFIType CInt CInt where toFFI = id fromFFI = id -- | Another simple identityy instance, I really need to get that overlapping instances -- looked at. instance FFIType CDouble CDouble where toFFI = id fromFFI = id -- | Another simple identityy instance, I really need to get that overlapping instances -- looked at. instance FFIType CLLong CLLong where toFFI = id fromFFI = id -- | Convert between FastString and CWString instance FFIType FastString CWString where toFFI = toFFI.unpackFS fromFFI = mkFastString.fromFFI -- | Fix integers from the machine dependend values to fixed 32bit values instance FFIType Int CInt where toFFI = fromIntegral fromFFI = fromIntegral -- | Instance for unboxed integers, which are first boxed then returned -- instance FFIType FastInt CInt where -- toFFI = toFFI . iBox -- fromFFI = iUnbox . fromFFI -- | Fix float instances instance FFIType Float CFloat where toFFI = realToFrac fromFFI = realToFrac -- | Any class implementing Storable has implemented enough to be considered a FFIType instance Storable a => FFIType a (Ptr a) where toNative = new fromNative = peek -- | Cover lists to array convertion IF the type is also an FFI type instance Storable a => FFIType [a] (Ptr a) where toNative = newArray --fmap castPtr . new -- newArray fromList = peekArray . fromFFI --const (peek . castPtr) --peekArray -- | Intermediate conversion instance for storing values of arrays -- | One way instance for returning lists as the result of a function call. -- We assume to have an int* as an argument and then fill that in with the -- length instance (FFIType a b, Storable b) => FFIType [a] (Ptr CInt -> IO (Ptr b)) where toNative lst = let ln = length lst in return $ \t -> do poke t (toFFI ln) toNative lst fromNative fn = do ptr <- malloc lst <- fn ptr ln <- peek ptr val <- fromList ln lst free ptr free lst return $ val -- | Simplistic instance of Storable for list. -- untested but (new [(1::Int)..10] >>=return.castPtr >>= peekArray 10 :: IO [Int]) works instance Storable a => Storable [a] where sizeOf _ = 4 alignment _ = 4 poke ptr value = do newptr <- newArray value copyArray (castPtr ptr) newptr (length value) peekElemOff ptr c = do val <- peekArray c (castPtr ptr) free ptr return val -- | Convertion instance for Integer types to CLLongs (long long) instance (Num a,Integral a) => FFIType Integer a where toFFI = fromInteger fromFFI = toInteger -- | Instance for Functor classes instance (Functor f, FFIType a b) => FFIType (f a) (f b) where toFFI = fmap toFFI fromFFI = fmap fromFFI -- -- | Instance for Functor classes directly to pointers {- instance (Functor f, FFIType a b,Storable (f b)) => FFIType (f a) (Ptr (f b)) where toNative x = new (toFFI x) fromNative _ x = fmap fromFFI (peek x) -} instance FFIType Char CChar where toFFI = castCharToCChar fromFFI = castCCharToChar instance FFIType Rational CDouble where toFFI = fromRational fromFFI = toRational instance FFIType Char CWchar where toFFI = head.charsToCWchars.(:[]) where charsToCWchars = foldr utf16Char [] . map ord where utf16Char c wcs | c < 0x10000 = fromIntegral c : wcs | otherwise = let c' = c - 0x10000 in fromIntegral (c' `div` 0x400 + 0xd800) : fromIntegral (c' `mod` 0x400 + 0xdc00) : wcs fromFFI = head.cWcharsToChars.(:[]) where cWcharsToChars = map chr . fromUTF16 . map fromIntegral where fromUTF16 (c1:c2:wcs) | 0xd800 <= c1 && c1 <= 0xdbff && 0xdc00 <= c2 && c2 <= 0xdfff = ((c1 - 0xd800)*0x400 + (c2 - 0xdc00) + 0x10000) : fromUTF16 wcs fromUTF16 (c:wcs) = c : fromUTF16 wcs fromUTF16 [] = [] -- | Tuples are not FFI compatible, As such i'll translate them to a build in tuple datatype -- . -- This function translates the embedded types of a Ty to the correct forms using the -- function translate' (see below) translate :: Defs -> Type -> Type translate defs = everywhere (mkT inner) where inner :: Exts.Name -> Exts.Name inner (Exts.Ident s) = Exts.Ident (translate' defs s) inner (Exts.Symbol s) = Exts.Symbol (translate' defs s) -- | Translate everything but applied types. e.g. Foo Token -> FooPtr Token -- And lists, since lists are implicitly an applied type: -- e.g [Token] -->> [] Token -->> Ptr Token translatePartial :: Defs -> Type -> Type translatePartial defs (Exts.TyForall a b c) = Exts.TyForall a b (translatePartial defs c) translatePartial defs (Exts.TyFun a b) = Exts.TyFun (translatePartial defs a) (translatePartial defs b) translatePartial defs (Exts.TyTuple a b) = Exts.TyTuple a (map (translatePartial defs) b) translatePartial defs (Exts.TyList a) = Exts.TyList $ case isSimpleType a of True -> translatePrimitive defs a False -> a translatePartial defs (Exts.TyApp a b) = case findStrings' a of ("IO":_) -> Exts.TyApp (translatePartial defs a) (translatePartial defs b) _ -> Exts.TyApp (translatePartial defs a) b translatePartial defs (Exts.TyParen a) = Exts.TyParen (translatePartial defs a) translatePartial defs (Exts.TyInfix a b c) = Exts.TyInfix (translatePartial defs a) b (translatePartial defs c) translatePartial defs (Exts.TyKind a b) = Exts.TyKind (translatePartial defs a) b translatePartial defs x = translate defs x -- | Check to see if the next type is a Simple type. e.g. A TyVar or TyCon isSimpleType :: Type -> Bool isSimpleType (Exts.TyApp _ _ ) = False isSimpleType (Exts.TyParen a ) = isSimpleType a -- isSimpleType (Exts.TyList _ ) = False isSimpleType _ = True -- | Contrary to translate translatePrimitive will only transform the defined -- primitive types in the \convList\ below. This is because while a transformed -- signature should only be partially transformed till the first application (Since that'll be -- the main pointer) we should pre-transform the primitive types into their well known static forms. translatePrimitive :: Defs -> Type -> Type translatePrimitive defs = everywhere (mkT inner) where inner :: Exts.Name -> Exts.Name inner (Exts.Ident s) = Exts.Ident (translateP defs s) inner (Exts.Symbol s) = Exts.Symbol (translateP defs s) -- | Helper function to define translatePrimitive. It attemps to lookup the type in \convList\ but -- in the case where it's not found the search query is returned. translateP :: Defs -> String -> String translateP convList x = let sType = all isLower x in if sType then x else maybe x id (lookup x convList) -- | Translate Partial Form, This is basically translatePrimitive . translatePartial translatePForm :: Defs -> Type -> Type translatePForm df = translatePrimitive df . translatePartial df -- | Look up the FFI type representation of the given type. Moreover when the type is not found -- it is assumed to be a new structure and it is assumed to be a pointer value. translate' :: Defs -> String -> String translate' convList x = let sType = all isLower x in if sType then x else ((flip maybe id . (++ "Ptr")) `ap` (flip lookup convList)) x -- | Remove all spaces from a sentence trim :: String -> String trim = filter (/=' ') -- | A function to split a list of elements by the given seperator split :: Eq a => [a] -> a -> [[a]] split [] _ = [[]] split (x:xs) t | t==x = [] : (split xs t) | otherwise = let (f:fs) = split xs t in (x:f):fs