/* vcfutils.c -- allele-related utility functions. Copyright (C) 2012-2015 Genome Research Ltd. Author: Petr Danecek Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include "htslib/vcfutils.h" #include "htslib/kbitset.h" int bcf_calc_ac(const bcf_hdr_t *header, bcf1_t *line, int *ac, int which) { int i; for (i=0; in_allele; i++) ac[i]=0; // Use INFO/AC,AN field only when asked if ( which&BCF_UN_INFO ) { bcf_unpack(line, BCF_UN_INFO); int an_id = bcf_hdr_id2int(header, BCF_DT_ID, "AN"); int ac_id = bcf_hdr_id2int(header, BCF_DT_ID, "AC"); int i, an=-1, ac_len=0, ac_type=0; uint8_t *ac_ptr=NULL; if ( an_id>=0 && ac_id>=0 ) { for (i=0; in_info; i++) { bcf_info_t *z = &line->d.info[i]; if ( z->key == an_id ) an = z->v1.i; else if ( z->key == ac_id ) { ac_ptr = z->vptr; ac_len = z->len; ac_type = z->type; } } } if ( an>=0 && ac_ptr ) { int nac = 0; #define BRANCH_INT(type_t) { \ type_t *p = (type_t *) ac_ptr; \ for (i=0; iid[BCF_DT_CTG][line->rid].key, line->pos+1); exit(1); break; } #undef BRANCH_INT if ( anid[BCF_DT_CTG][line->rid].key, line->pos+1); exit(1); } ac[0] = an - nac; return 1; } } // Split genotype fields only when asked if ( which&BCF_UN_FMT ) { int i, gt_id = bcf_hdr_id2int(header,BCF_DT_ID,"GT"); if ( gt_id<0 ) return 0; bcf_unpack(line, BCF_UN_FMT); bcf_fmt_t *fmt_gt = NULL; for (i=0; i<(int)line->n_fmt; i++) if ( line->d.fmt[i].id==gt_id ) { fmt_gt = &line->d.fmt[i]; break; } if ( !fmt_gt ) return 0; #define BRANCH_INT(type_t,vector_end) { \ for (i=0; in_sample; i++) \ { \ type_t *p = (type_t*) (fmt_gt->p + i*fmt_gt->size); \ int ial; \ for (ial=0; ialn; ial++) \ { \ if ( p[ial]==vector_end ) break; /* smaller ploidy */ \ if ( bcf_gt_is_missing(p[ial]) ) continue; /* missing allele */ \ if ( p[ial]>>1 > line->n_allele ) \ { \ fprintf(stderr,"[E::%s] Incorrect allele (\"%d\") in %s at %s:%d\n", __func__,(p[ial]>>1)-1, header->samples[i],header->id[BCF_DT_CTG][line->rid].key, line->pos+1); \ exit(1); \ } \ ac[(p[ial]>>1)-1]++; \ } \ } \ } switch (fmt_gt->type) { case BCF_BT_INT8: BRANCH_INT(int8_t, bcf_int8_vector_end); break; case BCF_BT_INT16: BRANCH_INT(int16_t, bcf_int16_vector_end); break; case BCF_BT_INT32: BRANCH_INT(int32_t, bcf_int32_vector_end); break; default: fprintf(stderr, "[E::%s] todo: %d at %s:%d\n", __func__, fmt_gt->type, header->id[BCF_DT_CTG][line->rid].key, line->pos+1); exit(1); break; } #undef BRANCH_INT return 1; } return 0; } int bcf_gt_type(bcf_fmt_t *fmt_ptr, int isample, int *_ial, int *_jal) { int i, nals = 0, has_ref = 0, has_alt = 0, ial = 0, jal = 0; #define BRANCH_INT(type_t,vector_end) { \ type_t *p = (type_t*) (fmt_ptr->p + isample*fmt_ptr->size); \ for (i=0; in; i++) \ { \ if ( p[i] == vector_end ) break; /* smaller ploidy */ \ if ( bcf_gt_is_missing(p[i]) ) return GT_UNKN; /* missing allele */ \ int tmp = p[i]>>1; \ if ( tmp>1 ) \ { \ if ( !ial ) { ial = tmp; has_alt = 1; } \ else if ( tmp!=ial ) \ { \ if ( tmptype) { case BCF_BT_INT8: BRANCH_INT(int8_t, bcf_int8_vector_end); break; case BCF_BT_INT16: BRANCH_INT(int16_t, bcf_int16_vector_end); break; case BCF_BT_INT32: BRANCH_INT(int32_t, bcf_int32_vector_end); break; default: fprintf(stderr, "[E::%s] todo: fmt_type %d\n", __func__, fmt_ptr->type); exit(1); break; } #undef BRANCH_INT if ( _ial ) *_ial = ial>0 ? ial-1 : ial; if ( _jal ) *_jal = jal>0 ? jal-1 : jal; if ( !nals ) return GT_UNKN; if ( nals==1 ) return has_ref ? GT_HAPL_R : GT_HAPL_A; if ( !has_ref ) return has_alt==1 ? GT_HOM_AA : GT_HET_AA; if ( !has_alt ) return GT_HOM_RR; return GT_HET_RA; } int bcf_trim_alleles(const bcf_hdr_t *header, bcf1_t *line) { int i; bcf_fmt_t *gt = bcf_get_fmt(header, line, "GT"); if ( !gt ) return 0; int *ac = (int*) calloc(line->n_allele,sizeof(int)); // check if all alleles are populated #define BRANCH(type_t,vector_end) { \ for (i=0; in_sample; i++) \ { \ type_t *p = (type_t*) (gt->p + i*gt->size); \ int ial; \ for (ial=0; ialn; ial++) \ { \ if ( p[ial]==vector_end ) break; /* smaller ploidy */ \ if ( bcf_gt_is_missing(p[ial]) ) continue; /* missing allele */ \ if ( (p[ial]>>1)-1 >= line->n_allele ) { free(ac); return -1; } \ ac[(p[ial]>>1)-1]++; \ } \ } \ } switch (gt->type) { case BCF_BT_INT8: BRANCH(int8_t, bcf_int8_vector_end); break; case BCF_BT_INT16: BRANCH(int16_t, bcf_int16_vector_end); break; case BCF_BT_INT32: BRANCH(int32_t, bcf_int32_vector_end); break; default: fprintf(stderr, "[E::%s] todo: %d at %s:%d\n", __func__, gt->type, header->id[BCF_DT_CTG][line->rid].key, line->pos+1); exit(1); break; } #undef BRANCH int nrm = 0; kbitset_t *rm_set = kbs_init(line->n_allele); for (i=1; in_allele; i++) { if ( !ac[i] ) { kbs_insert(rm_set, i); nrm++; } } free(ac); if ( nrm ) bcf_remove_allele_set(header, line, rm_set); kbs_destroy(rm_set); return nrm; } void bcf_remove_alleles(const bcf_hdr_t *header, bcf1_t *line, int rm_mask) { int i; kbitset_t *rm_set = kbs_init(line->n_allele); for (i=1; in_allele; i++) if ( rm_mask & 1<n_allele, sizeof(int)); // create map of indexes from old to new ALT numbering and modify ALT kstring_t str = {0,0,0}; kputs(line->d.allele[0], &str); int nrm = 0, i,j; // i: ori alleles, j: new alleles for (i=1, j=1; in_allele; i++) { if ( kbs_exists(rm_set, i) ) { // remove this allele line->d.allele[i] = NULL; nrm++; continue; } kputc(',', &str); kputs(line->d.allele[i], &str); map[i] = j; j++; } if ( !nrm ) { free(map); free(str.s); return; } int nR_ori = line->n_allele; int nR_new = line->n_allele-nrm; assert(nR_new > 0); // should not be able to remove reference allele int nA_ori = nR_ori-1; int nA_new = nR_new-1; int nG_ori = nR_ori*(nR_ori + 1)/2; int nG_new = nR_new*(nR_new + 1)/2; bcf_update_alleles_str(header, line, str.s); // remove from Number=G, Number=R and Number=A INFO fields. uint8_t *dat = NULL; int mdat = 0, ndat = 0, mdat_bytes = 0, nret; for (i=0; in_info; i++) { bcf_info_t *info = &line->d.info[i]; int vlen = bcf_hdr_id2length(header,BCF_HL_INFO,info->key); if ( vlen!=BCF_VL_A && vlen!=BCF_VL_G && vlen!=BCF_VL_R ) continue; // no need to change int type = bcf_hdr_id2type(header,BCF_HL_INFO,info->key); if ( type==BCF_HT_FLAG ) continue; int size = 1; if ( type==BCF_HT_REAL || type==BCF_HT_INT ) size = 4; mdat = mdat_bytes / size; nret = bcf_get_info_values(header, line, bcf_hdr_int2id(header,BCF_DT_ID,info->key), (void**)&dat, &mdat, type); mdat_bytes = mdat * size; if ( nret<0 ) { fprintf(stderr,"[%s:%d %s] Could not access INFO/%s at %s:%d [%d]\n", __FILE__,__LINE__,__FUNCTION__, bcf_hdr_int2id(header,BCF_DT_ID,info->key), bcf_seqname(header,line), line->pos+1, nret); exit(1); } if ( type==BCF_HT_STR ) { str.l = 0; char *ss = (char*) dat, *se = (char*) dat; if ( vlen==BCF_VL_A || vlen==BCF_VL_R ) { int nexp, inc = 0; if ( vlen==BCF_VL_A ) { nexp = nA_ori; inc = 1; } else nexp = nR_ori; for (j=0; jkey), (void*)str.s, str.l, type); if ( nret<0 ) { fprintf(stderr,"[%s:%d %s] Could not update INFO/%s at %s:%d [%d]\n", __FILE__,__LINE__,__FUNCTION__, bcf_hdr_int2id(header,BCF_DT_ID,info->key), bcf_seqname(header,line), line->pos+1, nret); exit(1); } continue; } if ( vlen==BCF_VL_A || vlen==BCF_VL_R ) { int inc = 0, ntop; if ( vlen==BCF_VL_A ) { assert( nret==nA_ori ); ntop = nA_ori; ndat = nA_new; inc = 1; } else { assert( nret==nR_ori ); ntop = nR_ori; ndat = nR_new; } int k = 0; #define BRANCH(type_t,is_vector_end) \ { \ type_t *ptr = (type_t*) dat; \ int size = sizeof(type_t); \ for (j=0; jkey), (void*)dat, ndat, type); if ( nret<0 ) { fprintf(stderr,"[%s:%d %s] Could not update INFO/%s at %s:%d [%d]\n", __FILE__,__LINE__,__FUNCTION__, bcf_hdr_int2id(header,BCF_DT_ID,info->key), bcf_seqname(header,line), line->pos+1, nret); exit(1); } } // Update GT fields, the allele indexes might have changed for (i=1; in_allele; i++) if ( map[i]!=i ) break; if ( in_allele ) { mdat = mdat_bytes / 4; // sizeof(int32_t) nret = bcf_get_genotypes(header,line,(void**)&dat,&mdat); mdat_bytes = mdat * 4; if ( nret>0 ) { nret /= line->n_sample; int32_t *ptr = (int32_t*) dat; for (i=0; in_sample; i++) { for (j=0; j=0 ); ptr[j] = (map[al]+1)<<1 | (ptr[j]&1); } ptr += nret; } bcf_update_genotypes(header, line, (void*)dat, nret*line->n_sample); } } // Remove from Number=G, Number=R and Number=A FORMAT fields. // Assuming haploid or diploid GTs for (i=0; in_fmt; i++) { bcf_fmt_t *fmt = &line->d.fmt[i]; int vlen = bcf_hdr_id2length(header,BCF_HL_FMT,fmt->id); if ( vlen!=BCF_VL_A && vlen!=BCF_VL_G && vlen!=BCF_VL_R ) continue; // no need to change int type = bcf_hdr_id2type(header,BCF_HL_FMT,fmt->id); if ( type==BCF_HT_FLAG ) continue; int size = 1; if ( type==BCF_HT_REAL || type==BCF_HT_INT ) size = 4; mdat = mdat_bytes / size; nret = bcf_get_format_values(header, line, bcf_hdr_int2id(header,BCF_DT_ID,fmt->id), (void**)&dat, &mdat, type); mdat_bytes = mdat * size; if ( nret<0 ) { fprintf(stderr,"[%s:%d %s] Could not access FORMAT/%s at %s:%d [%d]\n", __FILE__,__LINE__,__FUNCTION__, bcf_hdr_int2id(header,BCF_DT_ID,fmt->id), bcf_seqname(header,line), line->pos+1, nret); exit(1); } if ( type==BCF_HT_STR ) { int size = nret/line->n_sample; // number of bytes per sample str.l = 0; if ( vlen==BCF_VL_A || vlen==BCF_VL_R ) { int nexp, inc = 0; if ( vlen==BCF_VL_A ) { nexp = nA_ori; inc = 1; } else nexp = nR_ori; for (j=0; jn_sample; j++) { char *ss = ((char*)dat) + j*size, *se = ss + size, *ptr = ss; int k_src = 0, k_dst = 0, l = str.l; for (k_src=0; k_src=se || !*ptr) break; while ( ptrn_sample; j++) { char *ss = ((char*)dat) + j*size, *se = ss + size, *ptr = ss; int k_src = 0, k_dst = 0, l = str.l; int nexp = 0; // diploid or haploid? while ( ptr=se || !*ptr ) break; while ( ptr=se || !*ptr ) break; } } else // haploid { for (k_src=0; k_src=se || !*ptr ) break; while ( ptrid), (void*)str.s, str.l, type); if ( nret<0 ) { fprintf(stderr,"[%s:%d %s] Could not update FORMAT/%s at %s:%d [%d]\n", __FILE__,__LINE__,__FUNCTION__, bcf_hdr_int2id(header,BCF_DT_ID,fmt->id), bcf_seqname(header,line), line->pos+1, nret); exit(1); } continue; } int nori = nret / line->n_sample; if ( vlen==BCF_VL_A || vlen==BCF_VL_R || (vlen==BCF_VL_G && nori==nR_ori) ) // Number=A, R or haploid Number=G { int inc = 0, nnew; if ( vlen==BCF_VL_A ) { assert( nori==nA_ori ); // todo: will fail if all values are missing ndat = nA_new*line->n_sample; nnew = nA_new; inc = 1; } else { assert( nori==nR_ori ); // todo: will fail if all values are missing ndat = nR_new*line->n_sample; nnew = nR_new; } #define BRANCH(type_t,is_vector_end) \ { \ for (j=0; jn_sample; j++) \ { \ type_t *ptr_src = ((type_t*)dat) + j*nori; \ type_t *ptr_dst = ((type_t*)dat) + j*nnew; \ int size = sizeof(type_t); \ int k_src, k_dst = 0; \ for (k_src=0; k_srcn_sample; #define BRANCH(type_t,is_vector_end) \ { \ for (j=0; jn_sample; j++) \ { \ type_t *ptr_src = ((type_t*)dat) + j*nori; \ type_t *ptr_dst = ((type_t*)dat) + j*nG_new; \ int size = sizeof(type_t); \ int ia, ib, k_dst = 0, k_src; \ int nset = 0; /* haploid or diploid? */ \ for (k_src=0; k_srcid), (void*)dat, ndat, type); if ( nret<0 ) { fprintf(stderr,"[%s:%d %s] Could not update FORMAT/%s at %s:%d [%d]\n", __FILE__,__LINE__,__FUNCTION__, bcf_hdr_int2id(header,BCF_DT_ID,fmt->id), bcf_seqname(header,line), line->pos+1, nret); exit(1); } } free(dat); free(str.s); free(map); }