D%h      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefgNone hCEnumeration used to search in the tables for different components. i4Represent a compact array of 8 * 8 values. The size < is not guarenteed by type system, but if makeMacroBlock is + used, everything should be fine size-wise j1Tree storing the code used for huffman encoding. kno value present lWe should output the value m5If bit is 0 take the first subtree, if 1, the right. n=Helper function to create pure macro block of the good size. o8Transform parsed coefficients from the jpeg header to a ( tree which can be used to decode data. p$From the Table K.3 of ITU-81 (p153) q$From the Table K.4 of ITU-81 (p153) r$From the Table K.5 of ITU-81 (p154) shtuviwjklmxnoyz{|p}q~rshtuviwjklmxnoyz{|p}q~rshutviwjmlkxnoyz{|p}q~r None$Macroblock that can be transformed. 1Create a new macroblock with the good array size Return the transformed block The updating function  None6Algorithm to call to perform an IDCT, return the same $ block that the one given as input. 1Perform a Jpeg level shift in a mutable fashion.  NoneGReference implementation of the DCT, directly implementing the formula  of ITU-81. It'<s slow as hell, perform to many operations, but is accurate  and a good reference point.  Fast DCT extracted from libjpeg  None +Current serializer, bit buffer, bit count Type used to read bits )Current bit index, current value, string #Bitify a list of things to decode. ADrop all bit until the bit of indice 0, usefull to parse restart : marker, as they are byte aligned, but Huffman might not. 6Bitify a list of things to decode. Handle Jpeg escape > code (0xFF 0x00), thus should be only used in JPEG decoding. ,Run the writer and get the serialized data. +If some bits are not serialized yet, write  them in the MSB of a word. &Append some data bits to a Put monad. =The real data to be stored. Actual data should be in the LSB $Number of bit to write from 1 to 32  None@Gif image constraint from spec-gif89a, code size max : 12 bits. None:.Helper class to help extract a luma plane out  of an image or a pixel &Compute the luminance part of a pixel +Extract a luma plane out of an image. This / method is in the typeclass to help performant  implementation. 0This class abstract colorspace conversion. This 8 conversion can be lossy, which ColorConvertible cannot ;Pass a pixel from a colorspace (say RGB) to the second one  (say YCbCr) 5Helper function to convert a whole image by taking a  copy it. $Implement upcasting for pixel types ! Minimal declaration declaration  = It is strongly recommanded to overload promoteImage to keep  performance acceptable 1Convert a pixel type to another pixel type. This ' operation should never loss any data. GChange the underlying pixel type of an image by performing a full copy  of it. 'Typeclass used to query a type about it' s properties ( regarding casting to other pixel types 3Tell if a pixel can be converted to another pixel, ) the first value should not be used, and  can  be used as a valid value. ,Return the number of component of the pixel 2Calculate the index for the begining of the pixel ACalculate theindex for the begining of the pixel at position x y 5Return the constructor associated to the type, again H the value in the first parameter is not used, so you can use undefined 8Extract a pixel at a given position, (x, y), the origin < is assumed to be at the corner top left, positive y to the  bottom of the image (Same as pixelAt but for mutable images. 1Write a pixel in a mutable image at position x y Describe pixel kind at runtime For 2 bits pixels =Pixel type storing a classic pixel, with an alpha component. * Values are stored in the following order  Red  Green  Blue  Alpha ,Pixel storing data in the YCbCr colorspace, + value are stored in the following order :  Y (luminance)  Cr  Cb +Pixel type storing classic pixel on 8 bits + Value are stored in the following order :  Red  Green  Blue 7Pixel type storing Luminance (Y) and alpha information  on 8 bits. + Value are stored in the following order :  Luminance  Alpha !,Simple alias for greyscale value in 8 bits. ";Type allowing the loading of an image with different pixel  structures #0An image in the colorspace used by Jpeg images. $-An image in true color and an alpha channel. %An image in true color. &-An image in greyscale with an alpha channel. 'A greyscale image. (<Image or pixel buffer, the coordinates are assumed to start > from the upper-left corner of the image, with the horizontal O position first, then the vertical one. The image can be transformed in place. *Width of the image in pixels +Height of the image in pixels. ,3The real image, to extract pixels at some position ' you should use the helpers functions. -:Class modeling transparent pixel, should provide a method  to combine transparent pixels .#Just return the opaque pixel value /&Define the plane for the Cb component 1&Define the plane for the Cr component 3(Define the plane for the luma component 58Define the plane for the alpha (transparency) component 7.Define the plane for the blue color component 9/Define the plane for the green color component ;-Define the plane for the red color component =3Class used to describle plane present in the pixel 6 type. If a pixel has a plane description associated, = you can use the plane name to extract planes independently. +Retrieve the index of the component in the  given pixel type. ><Image or pixel buffer, the coordinates are assumed to start > from the upper-left corner of the image, with the horizontal ( position first, then the vertical one. @Width of the image in pixels AHeight of the image in pixels. B3The real image, to extract pixels at some position ' you should use the helpers functions. CGExtract a color plane from an image given a present plane in the image  examples :  4 extractRedPlane :: Image PixelRGB8-> Image Pixel8 . extractRedPlane = extractComponent PlaneRed D=Extract an image plane of an image, returning an image which + can be represented by a gray scale image. * If you ask a component out of bound, the  function will  be called E6For any image with an alpha component (transparency), ) drop it, returning a pure opaque image. F@Tell if you can convert between two pixel types, both arguments  are unused. G5Create an image given a function to generate pixels. G The function will receive value from 0 to width-1 for the x parameter H and 0 to height-1 for the y parameter. The coordinate 0,0 is the upper K left corner of the image, and (width-1, height-1) the lower right corner. 0for example, to create a small gradient image : + imageCreator :: String -> Image PixelRGB8 I imageCreator path = writePng path $ generateImage pixelRenderer 250 300 0 where pixelRenderer x y = PixelRGB8 x y 128 H.This function implement the same algorithm as G, # and let use an user-defined state I6 equivalent for an image, working at the pixel level. 9 Little example : a brightness function for an rgb image = brightnessRGB8 :: Int -> Image PixelRGB8 -> Image PixelRGB8 . brightnessRGB8 add = pixelMap brightFunction 7 where up v = fromIntegral (fromIntegral v + add) / brightFunction (PixelRGB8 r g b) = 3 PixelRGB8 (up r) (up g) (up b) 'Free promotion for identic pixel types |  !"#$%&'()*+,-./0123456789:;<=>?@ABCDCThe component index, beginning at 0 ending at (componentCount - 1)  Source image EFGGenerating function, with x and y params. Width in pixels Height in pixels H#Function taking the state, x and y Initial state Width in pixels Height in pixels IJ  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJ>?@AB()*+,"'&%$#!  -.FIEGH=;<9:78563412/0CDN   !"'&%$#()*+,-./0123456789:;<=>?@ABCDEFGHINone' 0Different known interlace methods for PNG image  Use the Adam7 ordering, see adam7Reordering  2No interlacing, basic data ordering, line by line  from left to right.  The pixels value should be :  +---+---+  | c | b |  +---+---+  | a | x |  +---+---+ $ x being the current filtered pixel  ?Filt(x) = Orig(x) - PaethPredictor(Orig(a), Orig(b), Orig(c)), C Recon(x) = Filt(x) + PaethPredictor(Recon(a), Recon(b), Recon(c)) .Filt(x) = Orig(x) - floor((Orig(a) + Orig(b)) / 2), 2 Recon(x) = Filt(x) + floor((Recon(a) + Recon(b)) / 2) <Filt(x) = Orig(x) - Orig(b), Recon(x) = Filt(x) + Recon(b) <Filt(x) = Orig(x) - Orig(a), Recon(x) = Filt(x) + Recon(a) &Filt(x) = Orig(x), Recon(x) = Filt(x) $Low level access to PNG information The real uncompressed image 9List of raw chunk where some user data might be present. HPNG chunk representing some extra information found in the parsed file. The raw data inside the chunk The name of the chunk. &Data structure during real png loading/parsing 5Palette with indices beginning at 0 to elemcount - 1 +Raw parsed image which need to be decoded. 8What kind of information is encoded in the IDAT section  of the PngFile #Generic header used in PNG images. Image width in number of pixel  Image height in number of pixel Number of bit per sample  6Kind of png image (greyscale, true color, indexed...) !Compression method used " Must be 0 #7If the image is interlaced (for progressive rendering) $:Value used to identify a png chunk, must be 4 bytes long. %"Parse a palette from a png chunk. &5Parse method for a png chunk, without decompression. '6Implementation of the get method for the PngRawImage, , unpack raw data, without decompressing it. (ASignature signalling that the following data will be a png image  in the png bit stream ))Helper function to help pack signatures. *:Signature for the header chunk of png (must be the first) +4Signature for a palette chunk in the pgn file. Must  occure before iDAT. ,4Signature for a data chuck (with image parts in it) -5Signature for the last chunk of a png image, telling  the end. .+From the Annex D of the png specification. /DCompute the CRC of a raw buffer, as described in annex D of the PNG  specification. >     0123456789:;<=>? !"#$%&'()*+,-@./ABCDEF1     0123456789:;<=>? !"#$%+,-/     0123456789>=<;:? !"#$%&'()*+,-@./ABCDEFNoneJ(Encode an image into a png if possible. K8Transform an image into a png encoded bytestring, ready  to be writte as a file. L=Helper function to directly write an image as a png on disk. M8Write a dynamic image in a .png image file if possible. 1 The same restriction as encodeDynamicPng apply. NFEncode a dynamic image in bmp if possible, supported pixel type are :  Y8  YA8  RGB8  RGBA8 JKGLHIJMNKLMNJKLMN JKGLHIJMNKLMNNone OSection 20 of spec-gif89a PSection 18 of spec-gif89a QStored on 16 bits RStored on 16 bits SStored on 8 bits TStored on 1 bit UStored on 3 bits VStored on 1 bit WStored on 3 bits O.Transform a raw gif image to an image, witout  modifying the pixels. 6 This function can output the following pixel types :  PixelRGB8 P6Transform a raw gif to a list of images, representing ! all the images of an animation. :XYZ[\]^_`abcdefgOhijklmnopPqQRSTUVWrstuvwxyz{|}~OPOPOPXYZ[\]^_`abcdefgO hijklmnopPqQRSTUVWrtsuvwxyz{|}~OPNone ESimple structure used to hold information about Adam7 deinterlacing. A A structure is used to avoid pollution of the module namespace.  The real info about the matrix. >Apply a filtering method on a reduced image. Apply the filter E on each line, using the previous line (the one above it) to perform  some prediction on the value. CDirectly stolen from the definition in the standard (on W3C page),  pixel predictor. "Unpack lines where bit depth is 8 "Unpack lines where bit depth is 1 !Unpack lines when bit depth is 2 @Transform a scanline to a bunch of bytes. Bytes are then packed  into pixels at a further step. ?Given data and image size, recreate an image with deinterlaced  data for PNG's adam 7 method. 8deinterlace picture in function of the method indicated  in the iHDR Q=Transform a raw png image to an image, without modifying the 6 underlying pixel type. If the image is greyscale and < 8 bits, < a transformation to RGBA8 is performed. This should change  in the future. 5 The resulting image let you manage the pixel types. 5This function can output the following pixel types :  PixelY8  PixelYA8  PixelRGB8  PixelRGBA8 ( Image size QJKLMNQJKQLNM!QNone0Type of a data unit (as in the ITU 81) standard <Same as for DcCoefficient, to provide nicer type signatures BType only used to make clear what kind of integer we are carrying 1 Might be transformed into newtype in the future !0 : DC, 1 : AC, stored on 4 bits Stored on 4 bits 9Type introduced only to avoid some typeclass overlapping  problem Stored on 4 bits Stored on 4 bits  (begin, end) Encoded as 4 bits Encoded as 4 bits Encoded as 4 bits Encoded as 4 bits Stored with 4 bits Stored with 4 bits ADecode a list of huffman values, not optimized for speed, but it  should work. ,Apply a quantization matrix to a macroblock <This is one of the most important function of the decoding, : it form the barebone decoding pipeline for macroblock. It's all 1 there is to know for macro block transformation 9Unpack an int of the given size encoded from MSB to LSB. 2Assume the macro block is initialized with zeroes IDecompress a macroblock from a bitstream given the current configuration  from the frame. =Given a size coefficient (how much a pixel span horizontally @ and vertically), the position of the macroblock, return a list ? of indices and value to be stored in an array (like the final  image) BAn MCU (Minimal coded unit) is an unit of data for all components  (Y, Cb &( Cr), taking into account downsampling. RFTry to decompress a jpeg file and decompress. The colorspace is still D YCbCr if you want to perform computation on the luma part. You can  convert it to RGB using colorSpaceConversion 5This function can output the following pixel types :  PixelY8  PixelYCbCr8 S8Encode an image in jpeg at a reasonnable quality level. = If you want better quality or reduced file size, you should  use T T-Function to call to encode an image to jpeg. ; The quality factor should be between 0 and 100 (100 being  the best quality).      Tree used for DC coefficient Tree used for Ac coefficient Current quantization table Previous dc value  !"Component count Component index Width coefficient Height coefficient x y #$Component count "Function to call to decode an MCU Result image to write into %R& Source image +Mutable block where to put extracted block Plane X sampling factor Y sampling factor Sample per pixel Block x Block y '()*STQuality factor Image to encode  Encoded JPEG +,-./0123456789:RSTRTSL      !"#$%R&'()*ST+,-./0123456789:None U?All the instance of this class can be written as a bitmap file  using this library. ;Pixels per meter <Pixels per meter = in bytes VTry to decode a bitmap image. @ Right now this function can output the following pixel types :  PixelRGB8 W0Write an image in a file use the bitmap format. XEEncode an image into a bytestring in .bmp format ready to be written  on disk. Y8Write a dynamic image in a .bmp image file if possible. 4 The same restriction as encodeDynamicBitmap apply. ZFEncode a dynamic image in bmp if possible, supported pixel type are :  RGB8  RGBA8  Y8 >9Convert an image to a bytestring ready to be serialized. .U?@ABCDEFGHIJKL;<MNOPQ=RSTUVWXYZ[\VW]XYZ>^_`abUVWXYZWXVZYUU?@ABCD EFGHIJKL;<MNOPQ=RSTUVWXYZ[\VW]XYZ>^_`abNone[9This function will try to do anything to encode an image 9 as JPEG, make all color conversion and such. Equivalent  of  decodeImage for jpeg encoding \9This function will try to do anything to encode an image 8 as PNG, make all color conversion and such. Equivalent  of  decodeImage for PNG encoding ]9This function will try to do anything to encode an image ; as bitmap, make all color conversion and such. Equivalent  of  decodeImage for Bitmap encoding [\][\][\][\]None c1Return the first Right thing, accumulating error ^FLoad an image file without even thinking about it, it does everything  as _ _EIf you want to decode an image in a bytestring without even thinking I in term of format or whatever, this is the function to use. It will try H to decode in each known format and if one decoding succeed will return  the decoded image in it's own colorspace `?Helper function trying to load a png file from a file on disk. a?Helper function trying to load a gif file from a file on disk. b=Helper function trying to load all the images of an animated  gif file. c@Try to load a jpeg file and decompress. The colorspace is still D YCbCr if you want to perform computation on the luma part. You can  convert it to RGB using colorSpaceConversion d=Try to load a .bmp file. The colorspace would be RGB or RGBA eSave an image to a '.jpg'3 file, will do everything it can to save an image. fSave an image to a '.png'3 file, will do everything it can to save an image. ) For example, a simple transcoder to png 1 transcodeToPng :: FilePath -> FilePath -> IO () $ transcodeToPng pathIn pathOut = do $ eitherImg <- decodeImage pathIn  case eitherImg of  Left _ -> return () & Right img -> savePngImage img gSave an image to a '.bmp'3 file, will do everything it can to save an image. cd^_`abcdefg;  !"#$%&'>?@ABGHIJKLMNOPQRSTUVWXYZ^_`abcdefg;^_IGHgefUWXdVZYabOPcRSTJK`QLNM>?@AB"'&%$# !  cd^_`abcdefge !"#$%&'())**++,,-./01234456789::;;<<==>>??@@ABBCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~                   !"#$%&'() *+,-./0123456789:;<=>?@ABCDEFGHIJKLMMNOPPQRSTUUVWXYDZ[\]^_`aEbcdefghijklmbnopqrstuvwxyz{|}~vb      !""##$%&'()*++,-./0123456789:;<=>JuicyPixels-2.0Codec.Picture.TypesCodec.Picture.PngCodec.Picture.GifCodec.Picture.JpgCodec.Picture.BitmapCodec.Picture.Saving Codec.PictureCodec.Picture.Jpg.DefaultTableCodec.Picture.Jpg.TypesCodec.Picture.Jpg.FastIdctCodec.Picture.Jpg.FastDctCodec.Picture.BitWriterCodec.Picture.Gif.LZWCodec.Picture.Png.TypeCodec.Picture.Png.ExportLumaPlaneExtractable computeLumaextractLumaPlaneColorSpaceConvertible convertPixel convertImageColorConvertible promotePixel promoteImagePixel canPromoteTocomponentCountpixelBaseIndexmutablePixelBaseIndex promotionTypepixelAt readPixel writePixel PixelTypePixelYChromaRChromaB8PixelRedGreenBlueAlpha8PixelRedGreenBlue8PixelGreyscaleAlphaPixelGreyscalePixelMonochromatic PixelRGBA8 PixelYCbCr8 PixelRGB8PixelYA8Pixel8 DynamicImage ImageYCbCr8 ImageRGBA8 ImageRGB8ImageYA8ImageY8 MutableImagemutableImageWidthmutableImageHeightmutableImageDataTransparentPixeldropTransparencyPlaneCbPlaneCr PlaneLuma PlaneAlpha PlaneBlue PlaneGreenPlaneRed ColorPlaneImage imageWidth imageHeight imageDataextractComponentunsafeExtractComponentdropAlphaLayer canConvertTo generateImagegenerateFoldImagepixelMap PngSavable encodePngwritePngwriteDynamicPngencodeDynamicPng decodeGifdecodeGifImages decodePng decodeJpeg encodeJpegencodeJpegAtQuality BmpEncodable decodeBitmap writeBitmap encodeBitmapwriteDynamicBitmapencodeDynamicBitmap imageToJpg imageToPng imageToBitmap readImage decodeImagereadPngreadGif readGifImagesreadJpeg readBitmap saveJpgImage savePngImage saveBmpImage DctComponent MacroBlock HuffmanTreeEmptyLeafBranchmakeMacroBlockbuildHuffmanTreedefaultDcLumaHuffmanTabledefaultDcChromaHuffmanTabledefaultAcLumaHuffmanTable HuffmanTable AcComponent DcComponentQuantificationTableHuffmanWriterCodemakeInverseTablescaleQuantisationMatrixdefaultLumaQuantizationTabledefaultChromaQuantizationTabledefaultDcLumaHuffmanTreedefaultDcChromaHuffmanTreedefaultAcLumaHuffmanTreedefaultAcChromaHuffmanTreedefaultAcChromaHuffmanTableMutableMacroBlockcreateEmptyMutableMacroBlockmutate!!!.!!!..<-.printMacroBlockfastIdctmutableLevelShift IDctStagex0x1x2x3x4x5x6x7x8iclipclip.<<..>>.w1w2w3w5w6w7idctRowidctCol referenceDctfastDctLibJpeg cONST_BITS pASS1_BITSfIX_0_298631336fIX_0_390180644fIX_0_541196100fIX_0_765366865fIX_0_899976223fIX_1_175875602fIX_1_501321110fIX_1_847759065fIX_1_961570560fIX_2_053119869fIX_2_562915447fIX_3_072711026 cENTERJSAMPLEBoolWriteState BoolReader BoolStatesetDecodedString byteAlignJpgsetDecodedStringJpg runBoolWriter flushWriter writeBitsPairS BoolWriter BoolWriterTBitPutrun runBoolReader getNextBitJpg getNextBits getNextBit$fMonadBoolWriterT$fMonadTransBoolWriterTlzw..!!!....<-.. duplicateData rangeSetter decodeLzwbaseGHC.Err undefinedtoComponentIndexerrorGHC.Basemap$fColorConvertibleaastride+$fColorSpaceConvertiblePixelYCbCr8PixelRGB8+$fColorSpaceConvertiblePixelRGB8PixelYCbCr8$fColorSpaceConvertibleaa$fPixelPixelYCbCr8$fPixelPixelRGBA8%$fColorConvertiblePixelRGB8PixelRGBA8$fPixelPixelRGB8$$fColorConvertiblePixelYA8PixelRGBA8#$fColorConvertiblePixelYA8PixelRGB8$fPixelPixelYA8!$fColorConvertibleWord8PixelRGBA8 $fColorConvertibleWord8PixelRGB8$fColorConvertibleWord8PixelYA8 $fPixelWord8!$fLumaPlaneExtractablePixelYCbCr8$fLumaPlaneExtractablePixelYA8 $fLumaPlaneExtractablePixelRGBA8$fLumaPlaneExtractablePixelRGB8$fLumaPlaneExtractableWord8$fStorablePixelRGBA8$fSerializePixelRGBA8$fStorablePixelYCbCr8$fSerializePixelYCbCr8$fStorablePixelRGB8$fSerializePixelRGB8$fStorablePixelYA8$fSerializePixelYA8$fNFDataDynamicImage$fNFDataMutableImage $fNFDataImage%$fTransparentPixelPixelRGBA8PixelRGB8$fTransparentPixelPixelYA8Word8 $fColorPlanePixelRGBA8PlaneAlpha$fColorPlanePixelRGBA8PlaneBlue $fColorPlanePixelRGBA8PlaneGreen$fColorPlanePixelRGBA8PlaneRed$fColorPlanePixelRGB8PlaneBlue$fColorPlanePixelRGB8PlaneGreen$fColorPlanePixelRGB8PlaneRed$fColorPlanePixelYA8PlaneAlpha$fColorPlanePixelYA8PlaneLuma$fColorPlanePixelYCbCr8PlaneCr$fColorPlanePixelYCbCr8PlaneCb $fColorPlanePixelYCbCr8PlaneLumaPngInterlaceMethodPngInterlaceAdam7PngNoInterlace PngFilter FilterPaeth FilterAverageFilterUp FilterSub FilterNone PngLowLevelpngImage pngChunksPngChunk pngChunkDatapngChunkSignature PngRawChunk PngPalette PngRawImage PngImageTypePngIHdrwidthheightbitDepth colourTypecompressionMethod filterMethodinterlaceMethodChunkSignature parsePalette parseChunksparseRawPngImage pngSignature signature iHDRSignature pLTESignature iDATSignature iENDSignature pngCrcTable pngComputeCrc chunkLength chunkTypechunkCRC chunkDataheaderchunksPngTrueColourWithAlphaPngGreyscaleWithAlphaPngIndexedColor PngTrueColour PngGreyscaleimageTypeOfCode$fSerializePngImageType$fSerializePngInterlaceMethod$fSerializePngIHdr$fSerializePngRawChunk$fSerializePngRawImage$fSerializePngFilterpreparePngHeaderendChunkprepareIDatChunkgenericEncodePng$fPngSavablePixelYA8$fPngSavableWord8$fPngSavablePixelRGB8$fPngSavablePixelRGBA8ImageDescriptorLogicalScreenDescriptor screenWidth screenHeightbackgroundIndex hasGlobalMapcolorResolutionisColorTableSortedcolorTableSizeGifFile gifHeader gifImages GifHeader gifVersiongifScreenDescriptor gifGlobalMapPaletteGifImage imgDescriptorimgLocalPaletteimgLzwRootSizeimgDatagDescPixelsFromLeftgDescPixelsFromTopgDescImageWidthgDescImageHeightgDescHasLocalMapgDescIsInterlacedgDescIsImgDescriptorSortedgDescLocalColorTableSize GifVersionGIF89aGIF87agif87aSignaturegif89aSignatureimageSeparatorextensionIntroducer gifTrailerparseDataBlocksparseGifBlocks getPalettesubstituteColorsdecodeAllGifImagesdecodeFirstGifImage$fSerializeGifFile$fSerializeGifHeader$fSerializeImageDescriptor$fSerializeGifImage"$fSerializeLogicalScreenDescriptor$fSerializeGifVersionAdam7MatrixInfoadam7MatrixInfo pngFilteringpaeth byteUnpacker bitUnpackertwoBitsUnpackerscanlineUnpacker adam7Unpack deinterlacer BeginOffset StrideInfo LineUnpackerPngLine ByteReaderadam7StartingRowadam7StartingColadam7RowIncrementadam7ColIncrementadam7BlockHeightadam7BlockWidthunparsePngFilter getNextByte getBoundshalfByteUnpacker shortUnpackerbyteSizeOfBitLengthscanLineInterleavinggenerateGreyscalePalettesampleCountOfImageType paletteRGBA1 paletteRGBA2 paletteRGBA4bounds applyPaletteDataUnitDecoderDctCoefficients DcCoefficienthuffmanTableClasshuffmanTableDest TableListquantPrecisionquantDestinationspectralSelectionsuccessiveApproxHighsuccessiveApproxLowdcEntropyCodingTableacEntropyCodingTablehorizontalSamplingFactorverticalSamplingFactor huffmanDecode deQuantizedecodeMacroBlock unpackIntacCoefficientsDecodedecompressMacroBlockunpackMacroBlockbuildJpegImageDecoder JpegDecoderrestartIntervalhorizontalMcuCountverticalMcuCount mcuDecoderRestartIntervalJpgHuffmanTableSpec huffSizes huffCodesSizeCalculable calculateSizeJpgQuantTableSpec quantTable JpgScanHeader scanLengthscanComponentCountscansJpgScanSpecificationcomponentSelectorJpgImagejpgFrame JpgComponentcomponentIdentifierquantizationTableDestJpgFrameHeaderjpgFrameHeaderLengthjpgSamplePrecision jpgHeightjpgWidthjpgImageComponentCount jpgComponentsJpgFrameJpgIntervalRestartJpgScans JpgScanBlobJpgHuffmanTable JpgQuantTable JpgExtension JpgAppFrame JpgFrameKindJpgRestartIntervalJpgExtensionSegment JpgAppSegmentJpgStartOfScanJpgHuffmanTableMarkerJpgQuantizationTable!JpgDifferentialLosslessArithmetic'JpgDifferentialProgressiveDCTArithmetic&JpgDifferentialSequentialDCTArithmeticJpgLosslessArithmeticJpgProgressiveDCTArithmeticJpgExtendedSequentialArithmeticJpgDifferentialLosslessHuffman$JpgDifferentialProgressiveDCTHuffman#JpgDifferentialSequentialDCTHuffmanJpgLosslessHuffmanJpgProgressiveDCTHuffmanJpgExtendedSequentialDCTHuffmanJpgBaselineDCTHuffmanbuildPackedHuffmanTreecommonMarkerFirstByte checkMarker eatUntilCodetakeCurrentFrameputFrame parseFramessecondStartOfFrameByteOfKindput4BitsOfEach get4BitOfEachquantizeinverseDirectCosineTransform zigZagOrderzigZagReorderForwardvzigZagReorderForward zigZagReorderpackIntpowerOf encodeInt decodeIntdcCoefficientDecodegatherQuantTablesgatherHuffmanTablesgatherScanInfo pixelClampdecodeRestartIntervalallElementsEqual extractBlockserializeMacroBlockencodeMacroBlock divUpwardprepareHuffmanTable$fSerializeJpgScanHeader$fSerializeJpgScanSpecification$fSerializeJpgFrameHeader$fSerializeJpgComponent$fSerializeRestartInterval$fSerializeJpgFrameKind$fSerializeJpgImage$fSerializeJpgHuffmanTableSpec#$fSizeCalculableJpgHuffmanTableSpec$fSerializeJpgQuantTableSpec!$fSizeCalculableJpgQuantTableSpec$fSerializeTableList$fSizeCalculableJpgScanHeader$$fSizeCalculableJpgScanSpecification$fSizeCalculableJpgComponent$fSizeCalculableJpgFrameHeader xResolution yResolutionfileSizeencodeBitmapWithPalette bitsPerPixel bmpEncodedefaultPalette BmpPalette BmpInfoHeadersizeplanes bitPerPixelbitmapCompression byteImageSize colorCountimportantColours BmpHeadermagicIdentifier reserved1 reserved2 dataOffsetbitmapMagicIdentifiersizeofBmpHeader sizeofBmpInfo putPalette stridePutdecodeImageRGB8 linePadding$fBmpEncodablePixelRGB8$fBmpEncodablePixelRGBA8$fBmpEncodableWord8$fSerializeBmpInfoHeader$fSerializeBmpHeader eitherLoadwithImageDecoder