-- | Assorted conditions used later on in AI logic. module Game.LambdaHack.Client.AI.ConditionM ( condAimEnemyPresentM , condAimEnemyRememberedM , condTgtNonmovingM , condAnyFoeAdjM , condAdjTriggerableM , meleeThreatDistList , condBlocksFriendsM , condFloorWeaponM , condNoEqpWeaponM , condCanProjectM , condProjectListM , benAvailableItems , hinders , condDesirableFloorItemM , benGroundItems , desirableItem , condSupport , condSoloM , condShineWouldBetrayM , fleeList ) where import Prelude () import Game.LambdaHack.Common.Prelude import qualified Data.EnumMap.Strict as EM import Data.Ord import Game.LambdaHack.Client.Bfs import Game.LambdaHack.Client.CommonM import Game.LambdaHack.Client.MonadClient import Game.LambdaHack.Client.State import qualified Game.LambdaHack.Common.Ability as Ability import Game.LambdaHack.Common.Actor import Game.LambdaHack.Common.ActorState import Game.LambdaHack.Common.Faction import Game.LambdaHack.Common.Item import qualified Game.LambdaHack.Common.ItemAspect as IA import Game.LambdaHack.Common.Kind import Game.LambdaHack.Common.Level import Game.LambdaHack.Common.Misc import Game.LambdaHack.Common.MonadStateRead import Game.LambdaHack.Common.Point import Game.LambdaHack.Common.ReqFailure import Game.LambdaHack.Common.State import qualified Game.LambdaHack.Common.Tile as Tile import Game.LambdaHack.Common.Time import Game.LambdaHack.Common.Vector import qualified Game.LambdaHack.Content.ItemKind as IK import Game.LambdaHack.Content.ModeKind -- All conditions are (partially) lazy, because they are not always -- used in the strict monadic computations they are in. -- | Require that the target enemy is visible by the party. condAimEnemyPresentM :: MonadClient m => ActorId -> m Bool condAimEnemyPresentM aid = do btarget <- getsClient $ getTarget aid return $ case btarget of Just (TEnemy _ permit) -> not permit _ -> False -- | Require that the target enemy is remembered on the actor's level. condAimEnemyRememberedM :: MonadClient m => ActorId -> m Bool condAimEnemyRememberedM aid = do b <- getsState $ getActorBody aid btarget <- getsClient $ getTarget aid return $ case btarget of Just (TPoint (TEnemyPos _ permit) lid _) -> lid == blid b && not permit _ -> False -- | Check if the target is nonmoving. condTgtNonmovingM :: MonadClient m => ActorId -> m Bool condTgtNonmovingM aid = do btarget <- getsClient $ getTarget aid case btarget of Just (TEnemy enemy _) -> do actorMaxSk <- maxActorSkillsClient enemy return $ EM.findWithDefault 0 Ability.AbMove actorMaxSk <= 0 _ -> return False -- | Require that any non-dying foe is adjacent, except projectiles -- that (possibly) explode upon contact. condAnyFoeAdjM :: MonadStateRead m => ActorId -> m Bool condAnyFoeAdjM aid = getsState $ anyFoeAdj aid -- | Require the actor stands adjacent to a triggerable tile (e.g., stairs). condAdjTriggerableM :: MonadStateRead m => ActorId -> m Bool condAdjTriggerableM aid = do b <- getsState $ getActorBody aid lvl <- getLevel $ blid b let hasTriggerable p = p `EM.member` lembed lvl return $ any hasTriggerable $ vicinityUnsafe $ bpos b -- | Produce the chess-distance-sorted list of non-low-HP, -- melee-cabable foes on the level. We don't consider path-distance, -- because we are interested in how soon the foe can close in to hit us, -- which can diverge greately from path distance for short distances, -- e.g., when terrain gets revealed. We don't consider non-moving actors, -- because they can't chase us and also because they can't be aggresive -- so to resolve the stalemate, the opposing AI has to be aggresive -- by ignoring them and closing in to melee distance. meleeThreatDistList :: ActorId -> State -> [(Int, (ActorId, Actor))] meleeThreatDistList aid s = let actorAspect = sactorAspect s b = getActorBody aid s allAtWar = foeRegularAssocs (bfid b) (blid b) s strongActor (aid2, b2) = let ar = actorAspect EM.! aid2 actorMaxSkE = IA.aSkills ar nonmoving = EM.findWithDefault 0 Ability.AbMove actorMaxSkE <= 0 in not (hpTooLow b2 ar || nonmoving) && actorCanMelee actorAspect aid2 b2 allThreats = filter strongActor allAtWar addDist (aid2, b2) = (chessDist (bpos b) (bpos b2), (aid2, b2)) in sortBy (comparing fst) $ map addDist allThreats -- | Require the actor blocks the paths of any of his party members. condBlocksFriendsM :: MonadClient m => ActorId -> m Bool condBlocksFriendsM aid = do b <- getsState $ getActorBody aid targetD <- getsClient stargetD let blocked aid2 = aid2 /= aid && case EM.lookup aid2 targetD of Just TgtAndPath{tapPath=AndPath{pathList=q : _}} | q == bpos b -> True _ -> False any blocked <$> getsState (fidActorRegularIds (bfid b) (blid b)) -- | Require the actor stands over a weapon that would be auto-equipped. condFloorWeaponM :: MonadStateRead m => ActorId -> m Bool condFloorWeaponM aid = any (IK.isMelee . itemKind . snd) <$> getsState (fullAssocs aid [CGround]) -- | Check whether the actor has no weapon in equipment. condNoEqpWeaponM :: MonadStateRead m => ActorId -> m Bool condNoEqpWeaponM aid = all (not . IK.isMelee . itemKind . snd) <$> getsState (fullAssocs aid [CEqp]) -- | Require that the actor can project any items. condCanProjectM :: MonadClient m => Int -> ActorId -> m Bool {-# INLINE condCanProjectM #-} condCanProjectM skill aid = -- Compared to conditions in @projectItem@, range and charge are ignored, -- because they may change by the time the position for the fling is reached. not . null <$> condProjectListM skill aid condProjectListM :: MonadClient m => Int -> ActorId -> m [(Benefit, CStore, ItemId, ItemFull, ItemQuant)] {-# INLINE condProjectListM #-} condProjectListM skill aid = do condShineWouldBetray <- condShineWouldBetrayM aid condAimEnemyPresent <- condAimEnemyPresentM aid discoBenefit <- getsClient sdiscoBenefit getsState $ projectList discoBenefit skill aid condShineWouldBetray condAimEnemyPresent projectList :: DiscoveryBenefit -> Int -> ActorId -> Bool -> Bool -> State -> [(Benefit, CStore, ItemId, ItemFull, ItemQuant)] projectList discoBenefit skill aid condShineWouldBetray condAimEnemyPresent s = let b = getActorBody aid s ar = getActorAspect aid s calmE = calmEnough b ar condNotCalmEnough = not calmE heavilyDistressed = -- Actor hit by a projectile or similarly distressed. deltaSerious (bcalmDelta b) -- This detects if the value of keeping the item in eqp is in fact < 0. hind = hinders condShineWouldBetray condAimEnemyPresent heavilyDistressed condNotCalmEnough ar q (Benefit{benInEqp, benFling}, _, _, itemFull, _) = benFling < 0 && (not benInEqp -- can't wear, so OK to risk losing or breaking || not (IK.isMelee $ itemKind itemFull) -- anything else expendable && hind itemFull) -- hinders now, so possibly often, so away! && permittedProjectAI skill calmE itemFull stores = [CEqp, CInv, CGround] ++ [CSha | calmE] in filter q $ benAvailableItems discoBenefit aid stores s -- | Produce the list of items with a given property available to the actor -- and the items' values. benAvailableItems :: DiscoveryBenefit -> ActorId -> [CStore] -> State -> [(Benefit, CStore, ItemId, ItemFull, ItemQuant)] benAvailableItems discoBenefit aid cstores s = let b = getActorBody aid s ben cstore bag = [ (discoBenefit EM.! iid, cstore, iid, itemToFull iid s, kit) | (iid, kit) <- EM.assocs bag] benCStore cs = ben cs $ getBodyStoreBag b cs s in concatMap benCStore cstores hinders :: Bool -> Bool -> Bool -> Bool -> IA.AspectRecord -> ItemFull -> Bool hinders condShineWouldBetray condAimEnemyPresent heavilyDistressed condNotCalmEnough -- guess that enemies have projectiles and used them now or recently ar itemFull = let itemShine = 0 < IA.aShine (aspectRecordFull itemFull) -- @condAnyFoeAdj@ is not checked, because it's transient and also item -- management is unlikely to happen during melee, anyway itemShineBad = condShineWouldBetray && itemShine in -- In the presence of enemies (seen, or unseen but distressing) -- actors want to hide in the dark. (condAimEnemyPresent || condNotCalmEnough || heavilyDistressed) && itemShineBad -- even if it's a weapon, take it off -- Fast actors want to hit hard, because they hit much more often -- than receive hits. || gearSpeed ar > speedWalk && not (IK.isMelee $ itemKind itemFull) -- in case it's the only weapon && 0 > IA.aHurtMelee (aspectRecordFull itemFull) -- | Require that the actor stands over a desirable item. condDesirableFloorItemM :: MonadClient m => ActorId -> m Bool condDesirableFloorItemM aid = not . null <$> benGroundItems aid -- | Produce the list of items on the ground beneath the actor -- that are worth picking up. benGroundItems :: MonadClient m => ActorId -> m [(Benefit, CStore, ItemId, ItemFull, ItemQuant)] benGroundItems aid = do b <- getsState $ getActorBody aid fact <- getsState $ (EM.! bfid b) . sfactionD discoBenefit <- getsClient sdiscoBenefit let canEsc = fcanEscape (gplayer fact) isDesirable (ben, _, _, ItemFull{itemKind}, _) = desirableItem canEsc (benPickup ben) itemKind filter isDesirable <$> getsState (benAvailableItems discoBenefit aid [CGround]) desirableItem :: Bool -> Double -> IK.ItemKind -> Bool desirableItem canEsc benPickup itemKind = if canEsc then benPickup > 0 || IK.Precious `elem` IK.ifeature itemKind else -- A hack to prevent monsters from picking up treasure meant for heroes. let preciousNotUseful = IK.isHumanTrinket itemKind in benPickup > 0 && not preciousNotUseful condSupport :: MonadClient m => Int -> ActorId -> m Bool {-# INLINE condSupport #-} condSupport param aid = do btarget <- getsClient $ getTarget aid condAimEnemyPresent <- condAimEnemyPresentM aid condAimEnemyRemembered <- condAimEnemyRememberedM aid getsState $ strongSupport param aid btarget condAimEnemyPresent condAimEnemyRemembered strongSupport :: Int -> ActorId -> Maybe Target -> Bool -> Bool -> State -> Bool strongSupport param aid btarget condAimEnemyPresent condAimEnemyRemembered s = -- The smaller the area scanned for friends, the lower number required. let n = min 2 param - IA.aAggression ar actorAspect = sactorAspect s ar = actorAspect EM.! aid b = getActorBody aid s mtgtPos = case btarget of Nothing -> Nothing Just target -> aidTgtToPos aid (blid b) target s approaching b2 = case mtgtPos of Just tgtPos | condAimEnemyPresent || condAimEnemyRemembered -> chessDist (bpos b2) tgtPos <= 1 + param _ -> False closeEnough b2 = let dist = chessDist (bpos b) (bpos b2) in dist > 0 && (dist <= param || approaching b2) closeAndStrong (aid2, b2) = closeEnough b2 && actorCanMelee actorAspect aid2 b2 friends = friendRegularAssocs (bfid b) (blid b) s closeAndStrongFriends = filter closeAndStrong friends in not $ n > 0 && null (drop (n - 1) closeAndStrongFriends) -- optimized: length closeAndStrongFriends >= n condSoloM :: MonadClient m => ActorId -> m Bool condSoloM aid = do b <- getsState $ getActorBody aid let isSingleton [_] = True isSingleton _ = False isSingleton <$> getsState (friendRegularList (bfid b) (blid b)) -- | Require that the actor stands in the dark and so would be betrayed -- by his own equipped light, condShineWouldBetrayM :: MonadStateRead m => ActorId -> m Bool condShineWouldBetrayM aid = do b <- getsState $ getActorBody aid aInAmbient <- getsState $ actorInAmbient b return $ not aInAmbient -- tile is dark, so actor could hide -- | Produce a list of acceptable adjacent points to flee to. fleeList :: MonadClient m => ActorId -> m ([(Int, Point)], [(Int, Point)]) fleeList aid = do COps{coTileSpeedup} <- getsState scops mtgtMPath <- getsClient $ EM.lookup aid . stargetD -- Prefer fleeing along the path to target, unless the target is a foe, -- in which case flee in the opposite direction. let etgtPath = case mtgtMPath of Just TgtAndPath{ tapPath=tapPath@AndPath{pathList} , tapTgt } -> case tapTgt of TEnemy{} -> Left tapPath TPoint TEnemyPos{} _ _ -> Left tapPath _ -> Right pathList _ -> Right [] b <- getsState $ getActorBody aid lvl@Level{lxsize, lysize} <- getLevel $ blid b s <- getState let posFoes = map bpos $ foeRegularList (bfid b) (blid b) s myVic = vicinity lxsize lysize $ bpos b dist p | null posFoes = 100 | otherwise = minimum $ map (chessDist p) posFoes dVic = map (dist &&& id) myVic -- Flee, if possible. Direct access required; not enough time to open. -- Can't be occupied. accUnocc p = Tile.isWalkable coTileSpeedup (lvl `at` p) && null (posToAssocs p (blid b) s) accVic = filter (accUnocc . snd) dVic gtVic = filter ((> dist (bpos b)) . fst) accVic eqVic = filter ((== dist (bpos b)) . fst) accVic ltVic = filter ((< dist (bpos b)) . fst) accVic rewardPath mult (d, p) = case etgtPath of Right tgtPath | p `elem` tgtPath -> (100 * mult * d, p) Right tgtPath | any (adjacent p) tgtPath -> (10 * mult * d, p) Left AndPath{pathGoal} | bpos b /= pathGoal -> let venemy = towards (bpos b) pathGoal vflee = towards (bpos b) p sq = euclidDistSqVector venemy vflee skew = case compare sq 2 of GT -> 100 * sq EQ -> 10 * sq LT -> sq -- going towards enemy (but may escape adjacent foes) in (mult * skew * d, p) _ -> (mult * d, p) -- far from target path or even on target goal goodVic = map (rewardPath 10000) gtVic ++ map (rewardPath 100) eqVic badVic = map (rewardPath 1) ltVic return (goodVic, badVic)