-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Most frequently used machine learning tools -- -- Please see the README on Github at -- https://github.com/masterdezign/Learning#readme @package Learning @version 0.0.0 -- |

Machine learning utilities

-- -- A micro library containing the most common machine learning tools. -- Check also the mltool package -- https://hackage.haskell.org/package/mltool. module Learning data Dataset a b Dataset :: [a] -> [b] -> Dataset a b [_samples] :: Dataset a b -> [a] [_labels] :: Dataset a b -> [b] data PCA PCA :: Matrix Double -> (Vector Double -> Matrix Double) -> (Matrix Double -> Vector Double) -> PCA [_u] :: PCA -> Matrix Double [_compress] :: PCA -> Vector Double -> Matrix Double [_decompress] :: PCA -> Matrix Double -> Vector Double -- | Principal component analysis (PCA) pca :: Int -> [Vector Double] -> PCA type Classifier a = (Matrix Double -> a) -- | Perform supervised learning to create a linear classifier. The ridge -- regression is run with regularization parameter mu=1e-4. learn :: Storable a => Vector a -> Matrix Double -> Matrix Double -> Either String (Classifier a) -- | Create a linear readout using the ridge regression learn' :: Matrix Double -> Matrix Double -> Maybe (Matrix Double) -- | Teacher matrix teacher :: Int -> Int -> Int -> Matrix Double -- | Evaluate the network state (nonlinear response) according to some -- readout matrix trW. scores :: Matrix Double -> Matrix Double -> Vector Double -- | Winner-takes-all classification method winnerTakesAll :: Storable a => Matrix Double -> Vector a -> Classifier a -- | Returns the misclassified cases errors :: Eq a => [(a, a)] -> [(a, a)] -- | Calculates the error rate in % errorRate :: (Eq a, Fractional err) => [a] -> [a] -> err