{-# LANGUAGE ImpredicativeTypes #-} -- | This module handles the mutation of different patterns. module Test.MuCheck.Mutation where import Language.Haskell.Exts(Literal(Int, Char, Frac, String, PrimInt, PrimChar, PrimFloat, PrimDouble, PrimWord, PrimString), Exp(App, Var, If), QName(UnQual), Stmt(Qualifier), Module(Module), Name(Ident, Symbol), Decl(FunBind, PatBind), Pat(PVar), Match(Match), GuardedRhs(GuardedRhs), prettyPrint, fromParseResult, parseFileContents) import Data.Generics (Typeable, mkMp, listify) import Data.List(nub, (\\), permutations) import System.Random (RandomGen) import Test.MuCheck.MuOp import Test.MuCheck.Utils.Syb import Test.MuCheck.Utils.Common import Test.MuCheck.Config import Test.MuCheck.TestAdapter -- | The `genMutants` function is a wrapper to genMutantsWith with standard -- configuraton genMutants :: String -- ^ The mutating function under test -> FilePath -- ^ The module where the mutating function is declared -> IO [Mutant] -- ^ Returns the mutants produced. genMutants = genMutantsWith defaultConfig -- | The `genMutantsWith` function takes configuration function to mutate, -- function to mutate, filename the function is defined in, and produces -- mutants in the same directory as the filename, and returns the number -- of mutants produced. genMutantsWith :: Config -- ^ The configuration to be used -> String -- ^ The mutating function -> FilePath -- ^ The module file where mutating function was declared -> IO [Mutant] -- ^ Returns the mutants produced genMutantsWith args func filename = do g <- genRandomSeed f <- readFile filename return $ genMutantsForSrc defaultConfig func f (sampler args g) -- | Wrapper around sampleF that returns correct sampling ratios according to -- configuration passed. sampler :: RandomGen g => Config -- ^ Configuration -> g -- ^ The random seed -> MuVars -- ^ What kind of a mutation are we interested in? -> [t] -- ^ The original list of mutation operators -> [t] -- ^ Returns the sampled mutation operators sampler args g m = sampleF g (getSample m args) -- | The `genMutantsForSrc` takes the function name to mutate, source where it -- is defined, and a sampling function, and returns the mutated sources selected -- using sampling function. genMutantsForSrc :: Config -- ^ Configuration -> String -- ^ The mutating function -> String -- ^ The module where mutating function was declared -> (MuVars -> [MuOp] -> [MuOp]) -- ^ The sampling function -> [Mutant] -- ^ Returns the sampled mutants genMutantsForSrc args funcname src sampleFn = map prettyPrint programMutants where astMod = getASTFromStr src f = getFunc funcname astMod ops, swapOps, valOps, ifElseNegOps, guardedBoolNegOps :: [MuOp] ops = relevantOps f (muOps args ++ valOps ++ ifElseNegOps ++ guardedBoolNegOps) swapOps = sampleFn MutatePatternMatch $ permMatches f ++ removeOnePMatch f valOps = sampleFn MutateValues $ selectLitOps f ++ selectBLitOps f ifElseNegOps = sampleFn MutateNegateIfElse $ selectIfElseBoolNegOps f guardedBoolNegOps = sampleFn MutateNegateGuards $ selectGuardedBoolNegOps f patternMatchMutants, ifElseNegMutants, guardedNegMutants, operatorMutants, allMutants :: [Decl] allMutants = nub $ patternMatchMutants ++ operatorMutants ++ ifElseNegMutants ++ guardedNegMutants patternMatchMutants = mutatesN swapOps f fstOrder ifElseNegMutants = mutatesN ifElseNegOps f fstOrder guardedNegMutants = mutatesN guardedBoolNegOps f fstOrder operatorMutants = case genMode args of FirstOrderOnly -> mutatesN ops f fstOrder _ -> mutates ops f programMutants :: [Module] programMutants = map (putDecls astMod) [replaceDef f fn astMod | fn <- allMutants] fstOrder = 1 -- first order -- | Replace old function definition with a new one in the AST replaceDef :: Decl -> Decl -> Module -> [Decl] replaceDef oldf newf (Module _ _ _ _ _ _ decls) = replaceFst (oldf, newf) decls -- | Fetch the function definition from module getFunc :: String -> Module -> Decl getFunc fname ast = head $ listify (isFunctionD fname) ast -- | Higher order mutation of a function's code using a bunch of mutation -- operators (In all the three mutate functions, we assume working -- with functions declaration.) mutates :: [MuOp] -> Decl -> [Decl] mutates ops m = filter (/= m) $ concat [mutatesN ops m x | x <- enumFrom 1] -- | First and higher order mutation. -- The third argument specifies whether it's first order or higher order mutatesN :: [MuOp] -> Decl -> Int -> [Decl] mutatesN ops ms 1 = concat [mutate op ms | op <- ops ] mutatesN ops ms c = concat [mutatesN ops m 1 | m <- mutatesN ops ms $ pred c] -- | Given a function, generate all mutants after applying applying -- op once (op might be applied at different places). -- E.g.: if the operator is (op = "<" ==> ">") and there are two instances of -- "<" in the AST, then it will return two AST with each replaced. mutate :: MuOp -> Decl -> [Decl] mutate op m = once (mkMpMuOp op) m \\ [m] -- | is the parsed expression the function we are looking for? isFunctionD :: String -> Decl -> Bool isFunctionD n (FunBind (Match _ (Ident n') _ _ _ _ : _)) = n == n' isFunctionD n (FunBind (Match _ (Symbol n') _ _ _ _ : _)) = n == n' -- we also consider where clauses isFunctionD n (PatBind _ (PVar (Ident n')) _ _) = n == n' isFunctionD _ _ = False -- but not let, because it has a different type, and for our purposes -- this is sufficient. -- (Let Binds Exp) :: Exp -- | Generate all operators for permutating pattern matches in -- a function. We don't deal with permutating guards and case for now. permMatches :: Decl -> [MuOp] permMatches d@(FunBind ms) = d ==>* map FunBind (permutations ms \\ [ms]) permMatches _ = [] -- | Generates transformations that removes one pattern match from a function -- definition. removeOnePMatch :: Decl -> [MuOp] removeOnePMatch (FunBind [_]) = [] removeOnePMatch d@(FunBind ms) = d ==>* map FunBind (removeOneElem ms \\ [ms]) removeOnePMatch _ = [] -- | Generate sub-arrays with one less element removeOneElem :: Eq t => [t] -> [[t]] removeOneElem l = choose l (length l - 1) -- AST/module-related operations -- | Returns the AST from the file getASTFromStr :: String -> Module getASTFromStr fname = fromParseResult $ parseFileContents fname -- | Set the declaration in a module putDecls :: Module -> [Decl] -> Module putDecls (Module a b c d e f _) decls = Module a b c d e f decls -- | For valops, unlike functions, we specify how any given literal value might -- change. So we take a predicate specifying how to recognize the literal -- value, a list of mappings specifying how the literal can change, and the -- AST, and recurse over the AST looking for literals that match our predicate. -- When we find any, we apply the given list of mappings to them, and produce -- a MuOp mapping between the original value and transformed value. This list -- of MuOp mappings are then returned. selectValOps :: (Typeable b, Mutable b) => (b -> Bool) -> (b -> [b]) -> Decl -> [MuOp] selectValOps predicate f m = concat [ x ==>* f x | x <- vals ] where vals = listify predicate m -- | Look for literal values in AST, and return applicable MuOp transforms. -- Unfortunately booleans are not handled here. selectLitOps :: Decl -> [MuOp] selectLitOps m = selectValOps isLit convert m where isLit (Int _) = True isLit (PrimInt _) = True isLit (Char _) = True isLit (PrimChar _) = True isLit (Frac _) = True isLit (PrimFloat _) = True isLit (PrimDouble _) = True isLit (String _) = True isLit (PrimString _) = True isLit (PrimWord _) = True convert (Int i) = map Int $ nub [i + 1, i - 1, 0, 1] convert (PrimInt i) = map PrimInt $ nub [i + 1, i - 1, 0, 1] convert (Char c) = map Char [pred c, succ c] convert (PrimChar c) = map Char [pred c, succ c] convert (Frac f) = map Frac $ nub [f + 1.0, f - 1.0, 0.0, 1.1] convert (PrimFloat f) = map PrimFloat $ nub [f + 1.0, f - 1.0, 0.0, 1.0] convert (PrimDouble f) = map PrimDouble $ nub [f + 1.0, f - 1.0, 0.0, 1.0] convert (String _) = map String $ nub [""] convert (PrimString _) = map PrimString $ nub [""] convert (PrimWord i) = map PrimWord $ nub [i + 1, i - 1, 0, 1] -- | Convert Boolean Literals -- -- > (True, False) -- -- becomes -- -- > (False, True) selectBLitOps :: Decl -> [MuOp] selectBLitOps m = selectValOps isLit convert m where isLit (Ident "True") = True isLit (Ident "False") = True isLit _ = False convert (Ident "True") = [Ident "False"] convert (Ident "False") = [Ident "True"] convert _ = [] -- | Negating boolean in if/else statements -- -- > if True then 1 else 0 -- -- becomes -- -- > if True then 0 else 1 selectIfElseBoolNegOps :: Decl -> [MuOp] selectIfElseBoolNegOps m = selectValOps isIf convert m where isIf If{} = True isIf _ = False convert (If e1 e2 e3) = [If e1 e3 e2] convert _ = [] -- | Negating boolean in Guards -- | negate guarded booleans in guarded definitions -- -- > myFn x | x == 1 = True -- > myFn | otherwise = False -- -- becomes -- -- > myFn x | not (x == 1) = True -- > myFn | otherwise = False selectGuardedBoolNegOps :: Decl -> [MuOp] selectGuardedBoolNegOps m = selectValOps isGuardedRhs convert m where isGuardedRhs GuardedRhs{} = True convert (GuardedRhs srcLoc stmts expr) = [GuardedRhs srcLoc s expr | s <- once (mkMp boolNegate) stmts] boolNegate e@(Qualifier (Var (UnQual (Ident "otherwise")))) = [e] boolNegate (Qualifier expr) = [Qualifier (App (Var (UnQual (Ident "not"))) expr)] boolNegate x = [x]