-- Hoogle documentation, generated by Haddock
-- See Hoogle, http://www.haskell.org/hoogle/
-- | Priority Search Queue
--
-- A priority search queue efficiently supports the opperations of
-- both a search tree and a priority queue. A Binding is a product
-- of a key and a priority. Bindings can be inserted, deleted, modified
-- and queried in logarithmic time, and the binding with the least
-- priority can be retrieved in constant time. A queue can be built from
-- a list of bindings, sorted by keys, in linear time.
@package PSQueue
@version 1.1.0.1
-- | A priority search queue (henceforth queue) efficiently
-- supports the opperations of both a search tree and a priority queue. A
-- Binding is a product of a key and a priority. Bindings can be
-- inserted, deleted, modified and queried in logarithmic time, and the
-- binding with the least priority can be retrieved in constant time. A
-- queue can be built from a list of bindings, sorted by keys, in linear
-- time.
--
-- This implementation is due to Ralf Hinze.
--
--
module Data.PSQueue
-- | k :-> p binds the key k with the priority
-- p.
data Binding k p
(:->) :: k -> p -> Binding k p
infix 0 :->
-- | The key of a binding
key :: Binding k p -> k
-- | The priority of a binding
prio :: Binding k p -> p
-- | A mapping from keys k to priorites p.
data PSQ k p
-- | O(1) The number of bindings in a queue.
size :: PSQ k p -> Int
-- | O(1) True if the queue is empty.
null :: PSQ k p -> Bool
-- | O(log n) The priority of a given key, or Nothing if the key is
-- not bound.
lookup :: (Ord k, Ord p) => k -> PSQ k p -> Maybe p
empty :: (Ord k, Ord p) => PSQ k p
-- | O(1) Build a queue with one binding.
singleton :: (Ord k, Ord p) => k -> p -> PSQ k p
-- | O(log n) Insert a binding into the queue.
insert :: (Ord k, Ord p) => k -> p -> PSQ k p -> PSQ k p
-- | O(log n) Insert a binding with a combining function.
insertWith :: (Ord k, Ord p) => (p -> p -> p) -> k -> p -> PSQ k p -> PSQ k p
-- | O(log n) Remove a binding from the queue.
delete :: (Ord k, Ord p) => k -> PSQ k p -> PSQ k p
-- | O(log n) Adjust the priority of a key.
adjust :: (Ord p, Ord k) => (p -> p) -> k -> PSQ k p -> PSQ k p
-- | O(log n) Adjust the priority of a key.
adjustWithKey :: (Ord k, Ord p) => (k -> p -> p) -> k -> PSQ k p -> PSQ k p
-- | O(log n) The expression (update f k q) updates the
-- priority p bound k (if it is in the queue). If
-- (f p) is Nothing, the binding is deleted. If it is
-- (Just z), the key k is bound to the new
-- priority z.
update :: (Ord k, Ord p) => (p -> Maybe p) -> k -> PSQ k p -> PSQ k p
-- | O(log n). The expression (updateWithKey f k q) updates
-- the priority p bound k (if it is in the queue). If
-- (f k p) is Nothing, the binding is deleted. If it is
-- (Just z), the key k is bound to the new
-- priority z.
updateWithKey :: (Ord k, Ord p) => (k -> p -> Maybe p) -> k -> PSQ k p -> PSQ k p
-- | O(log n). The expression (alter f k q) alters
-- the priority p bound to k, or absence thereof. alter
-- can be used to insert, delete, or update a priority in a queue.
alter :: (Ord k, Ord p) => (Maybe p -> Maybe p) -> k -> PSQ k p -> PSQ k p
-- | O(n) The keys of a priority queue
keys :: (Ord k, Ord p) => PSQ k p -> [k]
-- | O(n) Convert a queue to a list.
toList :: (Ord k, Ord p) => PSQ k p -> [Binding k p]
-- | O(n) Convert a queue to a list in ascending order of keys.
toAscList :: (Ord k, Ord p) => PSQ k p -> [Binding k p]
-- | O(n) Convert a queue to a list in descending order of keys.
toDescList :: (Ord k, Ord p) => PSQ k p -> [Binding k p]
-- | O(n log n) Build a queue from a list of bindings.
fromList :: (Ord k, Ord p) => [Binding k p] -> PSQ k p
-- | O(n) Build a queue from a list of bindings in order of
-- ascending keys. The precondition that the keys are ascending is not
-- checked.
fromAscList :: (Ord k, Ord p) => [Binding k p] -> PSQ k p
-- | O(n) Build a queue from a list of distinct bindings in order of
-- ascending keys. The precondition that keys are distinct and ascending
-- is not checked.
fromDistinctAscList :: (Ord k, Ord p) => [Binding k p] -> PSQ k p
-- | O(1) The binding with the lowest priority.
findMin :: (Ord k, Ord p) => PSQ k p -> Maybe (Binding k p)
-- | O(log n) Remove the binding with the lowest priority.
deleteMin :: (Ord k, Ord p) => PSQ k p -> PSQ k p
-- | O(log n) Retrieve the binding with the least priority, and the
-- rest of the queue stripped of that binding.
minView :: (Ord k, Ord p) => PSQ k p -> Maybe (Binding k p, PSQ k p)
-- | O(r(log n - log r) atMost p q is a list of all the
-- bindings in q with priority less than p, in order of
-- ascending keys. Effectively,
--
--
-- atMost p' q = filter (\(k:->p) -> p<=p') . toList
--
atMost :: (Ord k, Ord p) => p -> PSQ k p -> [Binding k p]
-- | O(r(log n - log r)) atMostRange p (l,u) q is a list of
-- all the bindings in q with a priority less than p
-- and a key in the range (l,u) inclusive. Effectively,
--
--
-- atMostRange p' (l,u) q = filter (\(k:->p) -> l<=k && k<=u ) . atMost p'
--
atMostRange :: (Ord k, Ord p) => p -> (k, k) -> PSQ k p -> [Binding k p]
-- | Right fold over the bindings in the queue, in key order.
foldr :: (Ord k, Ord p) => (Binding k p -> b -> b) -> b -> PSQ k p -> b
-- | Left fold over the bindings in the queue, in key order.
foldl :: (Ord k, Ord p) => (b -> Binding k p -> b) -> b -> PSQ k p -> b
instance (GHC.Read.Read k, GHC.Read.Read p) => GHC.Read.Read (Data.PSQueue.Binding k p)
instance (GHC.Show.Show k, GHC.Show.Show p) => GHC.Show.Show (Data.PSQueue.Binding k p)
instance (GHC.Classes.Ord k, GHC.Classes.Ord p) => GHC.Classes.Ord (Data.PSQueue.Binding k p)
instance (GHC.Classes.Eq k, GHC.Classes.Eq p) => GHC.Classes.Eq (Data.PSQueue.Binding k p)
instance GHC.Show.Show a => GHC.Show.Show (Data.PSQueue.Sequ a)
instance (GHC.Show.Show k, GHC.Show.Show p, GHC.Classes.Ord k, GHC.Classes.Ord p) => GHC.Show.Show (Data.PSQueue.PSQ k p)