-- | Index structure for context-free grammars on strings. A @Subword@ captures -- a pair @(i,j)@ with @i<=j@. module Data.PrimitiveArray.Index.Subword where import Control.DeepSeq (NFData(..)) import Data.Aeson (FromJSON,ToJSON) import Data.Binary (Binary) import Data.Serialize (Serialize) import Data.Vector.Fusion.Stream.Monadic (Step(..), flatten, map) import Data.Vector.Fusion.Stream.Size import Data.Vector.Unboxed.Deriving import GHC.Generics (Generic) import Test.QuickCheck (Arbitrary(..), choose) import Prelude hiding (map) import Data.PrimitiveArray.Index.Class -- | A subword wraps a pair of @Int@ indices @i,j@ with @i<=j@. -- -- Subwords always yield the upper-triangular part of a rect-angular array. -- This gives the quite curious effect that @(0,N)@ points to the -- ``largest'' index, while @(0,0) ... (1,1) ... (k,k) ... (N,N)@ point to -- the smallest. We do, however, use (0,0) as the smallest as (0,k) gives -- successively smaller upper triangular parts. newtype Subword = Subword {fromSubword :: (Int:.Int)} deriving (Eq,Ord,Show,Generic,Read) derivingUnbox "Subword" [t| Subword -> (Int,Int) |] [| \ (Subword (i:.j)) -> (i,j) |] [| \ (i,j) -> Subword (i:.j) |] instance Binary Subword instance Serialize Subword instance FromJSON Subword instance ToJSON Subword instance NFData Subword where rnf (Subword (i:.j)) = i `seq` rnf j {-# Inline rnf #-} subword :: Int -> Int -> Subword subword i j = Subword (i:.j) {-# INLINE subword #-} -- | triangular numbers -- -- A000217 triangularNumber :: Int -> Int triangularNumber x = (x * (x+1)) `quot` 2 {-# INLINE triangularNumber #-} -- | Size of an upper triangle starting at 'i' and ending at 'j'. "(0,N)" what -- be the normal thing to use. upperTri :: Subword -> Int upperTri (Subword (i:.j)) = triangularNumber $ j-i+1 {-# INLINE upperTri #-} -- | Subword indexing. Given the longest subword and the current subword, -- calculate a linear index "[0,..]". "(l,n)" in this case means "l"ower bound, -- length "n". And "(i,j)" is the normal index. -- -- TODO probably doesn't work right with non-zero base ?! subwordIndex :: Subword -> Subword -> Int subwordIndex (Subword (l:.n)) (Subword (i:.j)) = adr n (i,j) -- - adr n (l,n) where adr n (i,j) = (n+1)*i - triangularNumber i + j {-# INLINE subwordIndex #-} subwordFromIndex :: Subword -> Int -> Subword subwordFromIndex = error "subwordFromIndex not implemented" {-# INLINE subwordFromIndex #-} instance Index Subword where linearIndex _ h i = subwordIndex h i {-# Inline linearIndex #-} smallestLinearIndex _ = error "still needed?" {-# Inline smallestLinearIndex #-} largestLinearIndex = upperTri {-# Inline largestLinearIndex #-} size _ h = upperTri h {-# Inline size #-} inBounds _ (Subword (_:.h)) (Subword (i:.j)) = 0<=i && i<=j && j<=h {-# Inline inBounds #-} instance IndexStream z => IndexStream (z:.Subword) where streamUp (ls:.Subword (l:._)) (hs:.Subword (_:.h)) = flatten mk step Unknown $ streamUp ls hs where mk z = return (z,h,h) step (z,i,j) | i < l = return $ Done | j > h = return $ Skip (z,i-1,i-1) | otherwise = return $ Yield (z:.subword i j) (z,i,j+1) {-# Inline [0] mk #-} {-# Inline [0] step #-} {-# Inline streamUp #-} streamDown (ls:.Subword (l:._)) (hs:.Subword (_:.h)) = flatten mk step Unknown $ streamDown ls hs where mk z = return (z,l,h) step (z,i,j) | i > h = return $ Done | j < i = return $ Skip (z,i+1,h) | otherwise = return $ Yield (z:.subword i j) (z,i,j-1) {-# Inline [0] mk #-} {-# Inline [0] step #-} {-# Inline streamDown #-} -- Default methods don't inline in a good way! instance IndexStream Subword where streamUp l h = map (\(Z:.i) -> i) $ streamUp (Z:.l) (Z:.h) {-# INLINE streamUp #-} streamDown l h = map (\(Z:.i) -> i) $ streamDown (Z:.l) (Z:.h) {-# INLINE streamDown #-} instance Arbitrary Subword where arbitrary = do a <- choose (0,100) b <- choose (0,100) return $ Subword (min a b :. max a b) shrink (Subword (i:.j)) | i