{-# LANGUAGE TypeOperators, GADTs #-} -- | Generation of random shrinkable, showable functions. -- See the paper \"Shrinking and showing functions\" by Koen Claessen. -- -- Example of use: -- -- >>> :{ -- >>> let prop :: Fun String Integer -> Bool -- >>> prop (Fun _ f) = f "monkey" == f "banana" || f "banana" == f "elephant" -- >>> :} -- >>> quickCheck prop -- *** Failed! Falsifiable (after 3 tests and 134 shrinks): -- {"elephant"->1, "monkey"->1, _->0} -- -- To generate random values of type @'Fun' a b@, -- you must have an instance @'Function' a@. -- If your type has a 'Show' instance, you can use 'functionShow' to write the instance; otherwise, -- use 'functionMap' to give a bijection between your type and a type that is already an instance of 'Function'. -- See the @'Function' [a]@ instance for an example of the latter. module Test.QuickCheck.Function ( Fun(..) , apply , (:->) , Function(..) , functionMap , functionShow ) where -------------------------------------------------------------------------- -- imports import Test.QuickCheck.Arbitrary import Test.QuickCheck.Poly import Data.Char import Data.Word import Data.List( intersperse ) import Data.Maybe( fromJust ) -------------------------------------------------------------------------- -- concrete functions -- the type of possibly partial concrete functions data a :-> c where Pair :: (a :-> (b :-> c)) -> ((a,b) :-> c) (:+:) :: (a :-> c) -> (b :-> c) -> (Either a b :-> c) Unit :: c -> (() :-> c) Nil :: a :-> c Table :: Eq a => [(a,c)] -> (a :-> c) Map :: (a -> b) -> (b -> a) -> (b :-> c) -> (a :-> c) instance Functor ((:->) a) where fmap f (Pair p) = Pair (fmap (fmap f) p) fmap f (p:+:q) = fmap f p :+: fmap f q fmap f (Unit c) = Unit (f c) fmap f Nil = Nil fmap f (Table xys) = Table [ (x,f y) | (x,y) <- xys ] fmap f (Map g h p) = Map g h (fmap f p) instance (Show a, Show b) => Show (a:->b) where show p = showFunction p Nothing -- only use this on finite functions showFunction :: (Show a, Show b) => (a :-> b) -> Maybe b -> String showFunction p md = "{" ++ concat (intersperse ", " ( [ show x ++ "->" ++ show c | (x,c) <- table p ] ++ [ "_->" ++ show d | Just d <- [md] ] )) ++ "}" -- turning a concrete function into an abstract function (with a default result) abstract :: (a :-> c) -> c -> (a -> c) abstract (Pair p) d (x,y) = abstract (fmap (\q -> abstract q d y) p) d x abstract (p :+: q) d exy = either (abstract p d) (abstract q d) exy abstract (Unit c) _ _ = c abstract Nil d _ = d abstract (Table xys) d x = head ([y | (x',y) <- xys, x == x'] ++ [d]) abstract (Map g _ p) d x = abstract p d (g x) -- generating a table from a concrete function table :: (a :-> c) -> [(a,c)] table (Pair p) = [ ((x,y),c) | (x,q) <- table p, (y,c) <- table q ] table (p :+: q) = [ (Left x, c) | (x,c) <- table p ] ++ [ (Right y,c) | (y,c) <- table q ] table (Unit c) = [ ((), c) ] table Nil = [] table (Table xys) = xys table (Map _ h p) = [ (h x, c) | (x,c) <- table p ] -------------------------------------------------------------------------- -- Function class Function a where function :: (a->b) -> (a:->b) -- basic instances instance Function () where function f = Unit (f ()) instance Function Word8 where function f = Table [(x,f x) | x <- [0..255]] instance (Function a, Function b) => Function (a,b) where function f = Pair (function `fmap` function (curry f)) instance (Function a, Function b) => Function (Either a b) where function f = function (f . Left) :+: function (f . Right) -- tuple convenience instances instance (Function a, Function b, Function c) => Function (a,b,c) where function = functionMap (\(a,b,c) -> (a,(b,c))) (\(a,(b,c)) -> (a,b,c)) instance (Function a, Function b, Function c, Function d) => Function (a,b,c,d) where function = functionMap (\(a,b,c,d) -> (a,(b,c,d))) (\(a,(b,c,d)) -> (a,b,c,d)) instance (Function a, Function b, Function c, Function d, Function e) => Function (a,b,c,d,e) where function = functionMap (\(a,b,c,d,e) -> (a,(b,c,d,e))) (\(a,(b,c,d,e)) -> (a,b,c,d,e)) instance (Function a, Function b, Function c, Function d, Function e, Function f) => Function (a,b,c,d,e,f) where function = functionMap (\(a,b,c,d,e,f) -> (a,(b,c,d,e,f))) (\(a,(b,c,d,e,f)) -> (a,b,c,d,e,f)) instance (Function a, Function b, Function c, Function d, Function e, Function f, Function g) => Function (a,b,c,d,e,f,g) where function = functionMap (\(a,b,c,d,e,f,g) -> (a,(b,c,d,e,f,g))) (\(a,(b,c,d,e,f,g)) -> (a,b,c,d,e,f,g)) -- other instances functionMap :: Function b => (a->b) -> (b->a) -> (a->c) -> (a:->c) functionMap g h f = Map g h (function (\b -> f (h b))) functionShow :: (Show a, Read a) => (a->c) -> (a:->c) functionShow f = functionMap show read f instance Function a => Function [a] where function = functionMap g h where g [] = Left () g (x:xs) = Right (x,xs) h (Left _) = [] h (Right (x,xs)) = x:xs instance Function a => Function (Maybe a) where function = functionMap g h where g Nothing = Left () g (Just x) = Right x h (Left _) = Nothing h (Right x) = Just x instance Function Bool where function = functionMap g h where g False = Left () g True = Right () h (Left _) = False h (Right _) = True instance Function Integer where function = functionMap gInteger hInteger where gInteger n | n < 0 = Left (gNatural (abs n - 1)) | otherwise = Right (gNatural n) hInteger (Left ws) = -(hNatural ws + 1) hInteger (Right ws) = hNatural ws gNatural 0 = [] gNatural n = (fromIntegral (n `mod` 256) :: Word8) : gNatural (n `div` 256) hNatural [] = 0 hNatural (w:ws) = fromIntegral w + 256 * hNatural ws instance Function Int where function = functionMap fromIntegral fromInteger instance Function Char where function = functionMap ord' chr' where ord' c = fromIntegral (ord c) :: Word8 chr' n = chr (fromIntegral n) -- poly instances instance Function A where function = functionMap unA A instance Function B where function = functionMap unB B instance Function C where function = functionMap unC C instance Function OrdA where function = functionMap unOrdA OrdA instance Function OrdB where function = functionMap unOrdB OrdB instance Function OrdC where function = functionMap unOrdC OrdC -- instance Arbitrary instance (Function a, CoArbitrary a, Arbitrary b) => Arbitrary (a:->b) where arbitrary = function `fmap` arbitrary shrink = shrinkFun shrink -------------------------------------------------------------------------- -- shrinking shrinkFun :: (c -> [c]) -> (a :-> c) -> [a :-> c] shrinkFun shr (Pair p) = [ pair p' | p' <- shrinkFun (\q -> shrinkFun shr q) p ] where pair Nil = Nil pair p = Pair p shrinkFun shr (p :+: q) = [ p .+. Nil | not (isNil q) ] ++ [ Nil .+. q | not (isNil p) ] ++ [ p .+. q' | q' <- shrinkFun shr q ] ++ [ p' .+. q | p' <- shrinkFun shr p ] where isNil :: (a :-> b) -> Bool isNil Nil = True isNil _ = False Nil .+. Nil = Nil p .+. q = p :+: q shrinkFun shr (Unit c) = [ Nil ] ++ [ Unit c' | c' <- shr c ] shrinkFun shr (Table xys) = [ table xys' | xys' <- shrinkList shrXy xys ] where shrXy (x,y) = [(x,y') | y' <- shr y] table [] = Nil table xys = Table xys shrinkFun shr Nil = [] shrinkFun shr (Map g h p) = [ mapp g h p' | p' <- shrinkFun shr p ] where mapp g h Nil = Nil mapp g h p = Map g h p -------------------------------------------------------------------------- -- the Fun modifier data Fun a b = Fun (a :-> b, b) (a -> b) mkFun :: (a :-> b) -> b -> Fun a b mkFun p d = Fun (p,d) (abstract p d) apply :: Fun a b -> (a -> b) apply (Fun _ f) = f instance (Show a, Show b) => Show (Fun a b) where show (Fun (p,d) _) = showFunction p (Just d) instance (Function a, CoArbitrary a, Arbitrary b) => Arbitrary (Fun a b) where arbitrary = do p <- arbitrary d <- arbitrary return (mkFun p d) shrink (Fun (p,d) _) = [ mkFun p' d' | (p', d') <- shrink (p, d) ] -------------------------------------------------------------------------- -- the end.