-- | Type classes for random generation of values. {-# LANGUAGE CPP #-} #ifndef NO_GENERICS {-# LANGUAGE DefaultSignatures, FlexibleContexts, TypeOperators #-} {-# LANGUAGE FlexibleInstances, KindSignatures, ScopedTypeVariables #-} {-# LANGUAGE MultiParamTypeClasses, OverlappingInstances #-} #endif #ifndef NO_SAFE_HASKELL {-# LANGUAGE Safe #-} #endif module Test.QuickCheck.Arbitrary ( -- * Arbitrary and CoArbitrary classes Arbitrary(..) , CoArbitrary(..) -- ** Helper functions for implementing arbitrary , arbitrarySizedIntegral -- :: Integral a => Gen a , arbitrarySizedNatural -- :: Integral a => Gen a , arbitraryBoundedIntegral -- :: (Bounded a, Integral a) => Gen a , arbitrarySizedBoundedIntegral -- :: (Bounded a, Integral a) => Gen a , arbitrarySizedFractional -- :: Fractional a => Gen a , arbitraryBoundedRandom -- :: (Bounded a, Random a) => Gen a , arbitraryBoundedEnum -- :: (Bounded a, Enum a) => Gen a -- ** Helper functions for implementing shrink #ifndef NO_GENERICS , genericShrink -- :: (Generic a, Arbitrary a, RecursivelyShrink (Rep a), GSubterms (Rep a) a) => a -> [a] , subterms -- :: (Generic a, Arbitrary a, GSubterms (Rep a) a) => a -> [a] , recursivelyShrink -- :: (Generic a, RecursivelyShrink (Rep a)) => a -> [a] , genericCoarbitrary -- :: (Generic a, GCoArbitrary (Rep a)) => a -> Gen b -> Gen b #endif , shrinkNothing -- :: a -> [a] , shrinkList -- :: (a -> [a]) -> [a] -> [[a]] , shrinkIntegral -- :: Integral a => a -> [a] , shrinkRealFrac -- :: RealFrac a => a -> [a] , shrinkRealFracToInteger -- :: RealFrac a => a -> [a] -- ** Helper functions for implementing coarbitrary , coarbitraryIntegral -- :: Integral a => a -> Gen b -> Gen b , coarbitraryReal -- :: Real a => a -> Gen b -> Gen b , coarbitraryShow -- :: Show a => a -> Gen b -> Gen b , coarbitraryEnum -- :: Enum a => a -> Gen b -> Gen b , (><) -- ** Generators which use arbitrary , vector -- :: Arbitrary a => Int -> Gen [a] , orderedList -- :: (Ord a, Arbitrary a) => Gen [a] , infiniteList -- :: Arbitrary a => Gen [a] ) where -------------------------------------------------------------------------- -- imports import Control.Applicative import System.Random(Random) import Test.QuickCheck.Gen import Test.QuickCheck.Gen.Unsafe {- import Data.Generics ( (:*:)(..) , (:+:)(..) , Unit(..) ) -} import Data.Char ( chr , ord , isLower , isUpper , toLower , isDigit , isSpace ) #ifndef NO_FIXED import Data.Fixed ( Fixed , HasResolution ) #endif #ifndef NO_NATURALS import Numeric.Natural #endif import Data.Ratio ( Ratio , (%) , numerator , denominator ) import Data.Complex ( Complex((:+)) ) import Data.List ( sort , nub ) import Control.Monad ( liftM , liftM2 , liftM3 , liftM4 , liftM5 ) import Data.Int(Int8, Int16, Int32, Int64) import Data.Word(Word, Word8, Word16, Word32, Word64) #ifndef NO_GENERICS import GHC.Generics #endif -------------------------------------------------------------------------- -- ** class Arbitrary -- | Random generation and shrinking of values. class Arbitrary a where -- | A generator for values of the given type. arbitrary :: Gen a arbitrary = error "no default generator" -- | Produces a (possibly) empty list of all the possible -- immediate shrinks of the given value. The default implementation -- returns the empty list, so will not try to shrink the value. -- -- Most implementations of 'shrink' should try at least three things: -- -- 1. Shrink a term to any of its immediate subterms. -- -- 2. Recursively apply 'shrink' to all immediate subterms. -- -- 3. Type-specific shrinkings such as replacing a constructor by a -- simpler constructor. -- -- For example, suppose we have the following implementation of binary trees: -- -- > data Tree a = Nil | Branch a (Tree a) (Tree a) -- -- We can then define 'shrink' as follows: -- -- > shrink Nil = [] -- > shrink (Branch x l r) = -- > -- shrink Branch to Nil -- > [Nil] ++ -- > -- shrink to subterms -- > [l, r] ++ -- > -- recursively shrink subterms -- > [Branch x' l' r' | (x', l', r') <- shrink (x, l, r)] -- -- There are a couple of subtleties here: -- -- * QuickCheck tries the shrinking candidates in the order they -- appear in the list, so we put more aggressive shrinking steps -- (such as replacing the whole tree by @Nil@) before smaller -- ones (such as recursively shrinking the subtrees). -- -- * It is tempting to write the last line as -- @[Branch x' l' r' | x' <- shrink x, l' <- shrink l, r' <- shrink r]@ -- but this is the /wrong thing/! It will force QuickCheck to shrink -- @x@, @l@ and @r@ in tandem, and shrinking will stop once /one/ of -- the three is fully shrunk. -- -- There is a fair bit of boilerplate in the code above. -- We can avoid it with the help of some generic functions; -- note that these only work on GHC 7.2 and above. -- The function 'genericShrink' tries shrinking a term to all of its -- subterms and, failing that, recursively shrinks the subterms. -- Using it, we can define 'shrink' as: -- -- > shrink x = shrinkToNil x ++ genericShrink x -- > where -- > shrinkToNil Nil = [] -- > shrinkToNil (Branch _ l r) = [Nil] -- -- 'genericShrink' is a combination of 'subterms', which shrinks -- a term to any of its subterms, and 'recursivelyShrink', which shrinks -- all subterms of a term. These may be useful if you need a bit more -- control over shrinking than 'genericShrink' gives you. -- -- A final gotcha: we cannot define 'shrink' as simply @'shrink' x = Nil:'genericShrink' x@ -- as this shrinks @Nil@ to @Nil@, and shrinking will go into an -- infinite loop. -- -- If all this leaves you bewildered, you might try @'shrink' = 'genericShrink'@ to begin with, -- after deriving @Generic@ for your type. However, if your data type has any -- special invariants, you will need to check that 'genericShrink' can't break those invariants. shrink :: a -> [a] shrink _ = [] #ifndef NO_GENERICS -- | Shrink a term to any of its immediate subterms, -- and also recursively shrink all subterms. genericShrink :: (Generic a, Arbitrary a, RecursivelyShrink (Rep a), GSubterms (Rep a) a) => a -> [a] genericShrink x = subterms x ++ recursivelyShrink x -- | Recursively shrink all immediate subterms. recursivelyShrink :: (Generic a, RecursivelyShrink (Rep a)) => a -> [a] recursivelyShrink = map to . grecursivelyShrink . from class RecursivelyShrink f where grecursivelyShrink :: f a -> [f a] instance (RecursivelyShrink f, RecursivelyShrink g) => RecursivelyShrink (f :*: g) where grecursivelyShrink (x :*: y) = [x' :*: y | x' <- grecursivelyShrink x] ++ [x :*: y' | y' <- grecursivelyShrink y] instance (RecursivelyShrink f, RecursivelyShrink g) => RecursivelyShrink (f :+: g) where grecursivelyShrink (L1 x) = map L1 (grecursivelyShrink x) grecursivelyShrink (R1 x) = map R1 (grecursivelyShrink x) instance RecursivelyShrink f => RecursivelyShrink (M1 i c f) where grecursivelyShrink (M1 x) = map M1 (grecursivelyShrink x) instance Arbitrary a => RecursivelyShrink (K1 i a) where grecursivelyShrink (K1 x) = map K1 (shrink x) instance RecursivelyShrink U1 where grecursivelyShrink U1 = [] instance RecursivelyShrink V1 where -- The empty type can't be shrunk to anything. grecursivelyShrink _ = [] -- | All immediate subterms of a term. subterms :: (Generic a, Arbitrary a, GSubterms (Rep a) a) => a -> [a] subterms = gSubterms . from class GSubterms f a where -- | Provides the immediate subterms of a term that are of the same type -- as the term itself. -- -- Requires a constructor to be stripped off; this means it skips through -- @M1@ wrappers and returns @[]@ on everything that's not `(:*:)` or `(:+:)`. -- -- Once a `(:*:)` or `(:+:)` constructor has been reached, this function -- delegates to `gSubtermsIncl` to return the immediately next constructor -- available. gSubterms :: f a -> [a] instance GSubterms V1 a where -- The empty type can't be shrunk to anything. gSubterms _ = [] instance GSubterms U1 a where gSubterms U1 = [] instance (GSubtermsIncl f a, GSubtermsIncl g a) => GSubterms (f :*: g) a where gSubterms (l :*: r) = gSubtermsIncl l ++ gSubtermsIncl r instance (GSubtermsIncl f a, GSubtermsIncl g a) => GSubterms (f :+: g) a where gSubterms (L1 x) = gSubtermsIncl x gSubterms (R1 x) = gSubtermsIncl x instance GSubterms f a => GSubterms (M1 i c f) a where gSubterms (M1 x) = gSubterms x instance GSubterms (K1 i a) b where gSubterms (K1 _) = [] class GSubtermsIncl f a where -- | Provides the immediate subterms of a term that are of the same type -- as the term itself. -- -- In contrast to `gSubterms`, this returns the immediate next constructor -- available. gSubtermsIncl :: f a -> [a] instance GSubtermsIncl V1 a where -- The empty type can't be shrunk to anything. gSubtermsIncl _ = [] instance GSubtermsIncl U1 a where gSubtermsIncl U1 = [] instance (GSubtermsIncl f a, GSubtermsIncl g a) => GSubtermsIncl (f :*: g) a where gSubtermsIncl (l :*: r) = gSubtermsIncl l ++ gSubtermsIncl r instance (GSubtermsIncl f a, GSubtermsIncl g a) => GSubtermsIncl (f :+: g) a where gSubtermsIncl (L1 x) = gSubtermsIncl x gSubtermsIncl (R1 x) = gSubtermsIncl x instance GSubtermsIncl f a => GSubtermsIncl (M1 i c f) a where gSubtermsIncl (M1 x) = gSubtermsIncl x -- This is the important case: We've found a term of the same type. instance Arbitrary a => GSubtermsIncl (K1 i a) a where gSubtermsIncl (K1 x) = [x] instance GSubtermsIncl (K1 i a) b where gSubtermsIncl (K1 _) = [] #endif -- instances instance (CoArbitrary a, Arbitrary b) => Arbitrary (a -> b) where arbitrary = promote (`coarbitrary` arbitrary) instance Arbitrary () where arbitrary = return () instance Arbitrary Bool where arbitrary = choose (False,True) shrink True = [False] shrink False = [] instance Arbitrary Ordering where arbitrary = elements [LT, EQ, GT] shrink GT = [EQ, LT] shrink LT = [EQ] shrink EQ = [] instance Arbitrary a => Arbitrary (Maybe a) where arbitrary = frequency [(1, return Nothing), (3, liftM Just arbitrary)] shrink (Just x) = Nothing : [ Just x' | x' <- shrink x ] shrink _ = [] instance (Arbitrary a, Arbitrary b) => Arbitrary (Either a b) where arbitrary = oneof [liftM Left arbitrary, liftM Right arbitrary] shrink (Left x) = [ Left x' | x' <- shrink x ] shrink (Right y) = [ Right y' | y' <- shrink y ] instance Arbitrary a => Arbitrary [a] where arbitrary = sized $ \n -> do k <- choose (0,n) sequence [ arbitrary | _ <- [1..k] ] shrink xs = shrinkList shrink xs -- | Shrink a list of values given a shrinking function for individual values. shrinkList :: (a -> [a]) -> [a] -> [[a]] shrinkList shr xs = concat [ removes k n xs | k <- takeWhile (>0) (iterate (`div`2) n) ] ++ shrinkOne xs where n = length xs shrinkOne [] = [] shrinkOne (x:xs) = [ x':xs | x' <- shr x ] ++ [ x:xs' | xs' <- shrinkOne xs ] removes k n xs | k > n = [] | null xs2 = [[]] | otherwise = xs2 : map (xs1 ++) (removes k (n-k) xs2) where xs1 = take k xs xs2 = drop k xs {- -- "standard" definition for lists: shrink [] = [] shrink (x:xs) = [ xs ] ++ [ x:xs' | xs' <- shrink xs ] ++ [ x':xs | x' <- shrink x ] -} instance (Integral a, Arbitrary a) => Arbitrary (Ratio a) where arbitrary = arbitrarySizedFractional shrink = shrinkRealFracToInteger instance (RealFloat a, Arbitrary a) => Arbitrary (Complex a) where arbitrary = liftM2 (:+) arbitrary arbitrary shrink (x :+ y) = [ x' :+ y | x' <- shrink x ] ++ [ x :+ y' | y' <- shrink y ] #ifndef NO_FIXED instance HasResolution a => Arbitrary (Fixed a) where arbitrary = arbitrarySizedFractional shrink = shrinkRealFrac #endif instance (Arbitrary a, Arbitrary b) => Arbitrary (a,b) where arbitrary = liftM2 (,) arbitrary arbitrary shrink (x, y) = [ (x', y) | x' <- shrink x ] ++ [ (x, y') | y' <- shrink y ] instance (Arbitrary a, Arbitrary b, Arbitrary c) => Arbitrary (a,b,c) where arbitrary = liftM3 (,,) arbitrary arbitrary arbitrary shrink (x, y, z) = [ (x', y', z') | (x', (y', z')) <- shrink (x, (y, z)) ] instance (Arbitrary a, Arbitrary b, Arbitrary c, Arbitrary d) => Arbitrary (a,b,c,d) where arbitrary = liftM4 (,,,) arbitrary arbitrary arbitrary arbitrary shrink (w, x, y, z) = [ (w', x', y', z') | (w', (x', (y', z'))) <- shrink (w, (x, (y, z))) ] instance (Arbitrary a, Arbitrary b, Arbitrary c, Arbitrary d, Arbitrary e) => Arbitrary (a,b,c,d,e) where arbitrary = liftM5 (,,,,) arbitrary arbitrary arbitrary arbitrary arbitrary shrink (v, w, x, y, z) = [ (v', w', x', y', z') | (v', (w', (x', (y', z')))) <- shrink (v, (w, (x, (y, z)))) ] -- typical instance for primitive (numerical) types instance Arbitrary Integer where arbitrary = arbitrarySizedIntegral shrink = shrinkIntegral #ifndef NO_NATURALS instance Arbitrary Natural where arbitrary = arbitrarySizedNatural shrink = shrinkIntegral #endif instance Arbitrary Int where arbitrary = arbitrarySizedIntegral shrink = shrinkIntegral instance Arbitrary Int8 where arbitrary = arbitrarySizedBoundedIntegral shrink = shrinkIntegral instance Arbitrary Int16 where arbitrary = arbitrarySizedBoundedIntegral shrink = shrinkIntegral instance Arbitrary Int32 where arbitrary = arbitrarySizedBoundedIntegral shrink = shrinkIntegral instance Arbitrary Int64 where arbitrary = arbitrarySizedBoundedIntegral shrink = shrinkIntegral instance Arbitrary Word where arbitrary = arbitrarySizedBoundedIntegral shrink = shrinkIntegral instance Arbitrary Word8 where arbitrary = arbitrarySizedBoundedIntegral shrink = shrinkIntegral instance Arbitrary Word16 where arbitrary = arbitrarySizedBoundedIntegral shrink = shrinkIntegral instance Arbitrary Word32 where arbitrary = arbitrarySizedBoundedIntegral shrink = shrinkIntegral instance Arbitrary Word64 where arbitrary = arbitrarySizedBoundedIntegral shrink = shrinkIntegral instance Arbitrary Char where arbitrary = chr `fmap` oneof [choose (0,127), choose (0,255)] shrink c = filter (<. c) $ nub $ ['a','b','c'] ++ [ toLower c | isUpper c ] ++ ['A','B','C'] ++ ['1','2','3'] ++ [' ','\n'] where a <. b = stamp a < stamp b stamp a = ( (not (isLower a) , not (isUpper a) , not (isDigit a)) , (not (a==' ') , not (isSpace a) , a) ) instance Arbitrary Float where arbitrary = arbitrarySizedFractional shrink = shrinkRealFrac instance Arbitrary Double where arbitrary = arbitrarySizedFractional shrink = shrinkRealFrac -- ** Helper functions for implementing arbitrary -- | Generates an integral number. The number can be positive or negative -- and its maximum absolute value depends on the size parameter. arbitrarySizedIntegral :: Integral a => Gen a arbitrarySizedIntegral = sized $ \n -> inBounds fromInteger (choose (-toInteger n, toInteger n)) -- | Generates a natural number. The number's maximum value depends on -- the size parameter. arbitrarySizedNatural :: Integral a => Gen a arbitrarySizedNatural = sized $ \n -> inBounds fromInteger (choose (0, toInteger n)) inBounds :: Integral a => (Integer -> a) -> Gen Integer -> Gen a inBounds fi g = fmap fi (g `suchThat` (\x -> toInteger (fi x) == x)) -- | Generates a fractional number. The number can be positive or negative -- and its maximum absolute value depends on the size parameter. arbitrarySizedFractional :: Fractional a => Gen a arbitrarySizedFractional = sized $ \n -> let n' = toInteger n in do a <- choose ((-n') * precision, n' * precision) b <- choose (1, precision) return (fromRational (a % b)) where precision = 9999999999999 :: Integer -- Useful for getting at minBound and maxBound without having to -- fiddle around with asTypeOf. withBounds :: Bounded a => (a -> a -> Gen a) -> Gen a withBounds k = k minBound maxBound -- | Generates an integral number. The number is chosen uniformly from -- the entire range of the type. You may want to use -- 'arbitrarySizedBoundedIntegral' instead. arbitraryBoundedIntegral :: (Bounded a, Integral a) => Gen a arbitraryBoundedIntegral = withBounds $ \mn mx -> do n <- choose (toInteger mn, toInteger mx) return (fromInteger n) -- | Generates an element of a bounded type. The element is -- chosen from the entire range of the type. arbitraryBoundedRandom :: (Bounded a, Random a) => Gen a arbitraryBoundedRandom = choose (minBound,maxBound) -- | Generates an element of a bounded enumeration. arbitraryBoundedEnum :: (Bounded a, Enum a) => Gen a arbitraryBoundedEnum = withBounds $ \mn mx -> do n <- choose (fromEnum mn, fromEnum mx) return (toEnum n) -- | Generates an integral number from a bounded domain. The number is -- chosen from the entire range of the type, but small numbers are -- generated more often than big numbers. Inspired by demands from -- Phil Wadler. arbitrarySizedBoundedIntegral :: (Bounded a, Integral a) => Gen a arbitrarySizedBoundedIntegral = withBounds $ \mn mx -> sized $ \s -> do let bits n | n `quot` 2 == 0 = 0 | otherwise = 1 + bits (n `quot` 2) k = 2^(s*(bits mn `max` bits mx `max` 40) `div` 100) n <- choose (toInteger mn `max` (-k), toInteger mx `min` k) return (fromInteger n) -- ** Helper functions for implementing shrink -- | Returns no shrinking alternatives. shrinkNothing :: a -> [a] shrinkNothing _ = [] -- | Shrink an integral number. shrinkIntegral :: Integral a => a -> [a] shrinkIntegral x = nub $ [ -x | x < 0, -x > x ] ++ [ x' | x' <- takeWhile (<< x) (0:[ x - i | i <- tail (iterate (`quot` 2) x) ]) ] where -- a << b is "morally" abs a < abs b, but taking care of overflow. a << b = case (a >= 0, b >= 0) of (True, True) -> a < b (False, False) -> a > b (True, False) -> a + b < 0 (False, True) -> a + b > 0 -- | Shrink a fraction, but only shrink to integral values. shrinkRealFracToInteger :: RealFrac a => a -> [a] shrinkRealFracToInteger x = nub $ [ -x | x < 0 ] ++ map fromInteger (shrinkIntegral (truncate x)) -- | Shrink a fraction. shrinkRealFrac :: RealFrac a => a -> [a] shrinkRealFrac x = nub $ shrinkRealFracToInteger x ++ [ x - x' | x' <- take 20 (iterate (/ 2) x) , (x - x') << x ] where a << b = abs a < abs b -------------------------------------------------------------------------- -- ** CoArbitrary #ifndef NO_GENERICS -- | Used for random generation of functions. -- -- If you are using a recent GHC, there is a default definition of -- 'coarbitrary' using 'genericCoarbitrary', so if your type has a -- 'Generic' instance it's enough to say -- -- > instance CoArbitrary MyType -- -- You should only use 'genericCoarbitrary' for data types where -- equality is structural, i.e. if you can't have two different -- representations of the same value. An example where it's not -- safe is sets implemented using binary search trees: the same -- set can be represented as several different trees. -- Here you would have to explicitly define -- @coarbitrary s = coarbitrary (toList s)@. #else -- | Used for random generation of functions. #endif class CoArbitrary a where -- | Used to generate a function of type @a -> b@. -- The first argument is a value, the second a generator. -- You should use 'variant' to perturb the random generator; -- the goal is that different values for the first argument will -- lead to different calls to 'variant'. An example will help: -- -- @ -- instance CoArbitrary a => CoArbitrary [a] where -- coarbitrary [] = 'variant' 0 -- coarbitrary (x:xs) = 'variant' 1 . coarbitrary (x,xs) -- @ coarbitrary :: a -> Gen b -> Gen b #ifndef NO_GENERICS default coarbitrary :: (Generic a, GCoArbitrary (Rep a)) => a -> Gen b -> Gen b coarbitrary = genericCoarbitrary -- | Generic CoArbitrary implementation. genericCoarbitrary :: (Generic a, GCoArbitrary (Rep a)) => a -> Gen b -> Gen b genericCoarbitrary = gCoarbitrary . from class GCoArbitrary f where gCoarbitrary :: f a -> Gen b -> Gen b instance GCoArbitrary U1 where gCoarbitrary U1 = id instance (GCoArbitrary f, GCoArbitrary g) => GCoArbitrary (f :*: g) where -- Like the instance for tuples. gCoarbitrary (l :*: r) = gCoarbitrary l . gCoarbitrary r instance (GCoArbitrary f, GCoArbitrary g) => GCoArbitrary (f :+: g) where -- Like the instance for Either. gCoarbitrary (L1 x) = variant 0 . gCoarbitrary x gCoarbitrary (R1 x) = variant 1 . gCoarbitrary x instance GCoArbitrary f => GCoArbitrary (M1 i c f) where gCoarbitrary (M1 x) = gCoarbitrary x instance CoArbitrary a => GCoArbitrary (K1 i a) where gCoarbitrary (K1 x) = coarbitrary x #endif {-# DEPRECATED (><) "Use ordinary function composition instead" #-} -- | Combine two generator perturbing functions, for example the -- results of calls to 'variant' or 'coarbitrary'. (><) :: (Gen a -> Gen a) -> (Gen a -> Gen a) -> (Gen a -> Gen a) (><) = (.) instance (Arbitrary a, CoArbitrary b) => CoArbitrary (a -> b) where coarbitrary f gen = do xs <- arbitrary coarbitrary (map f xs) gen instance CoArbitrary () where coarbitrary _ = id instance CoArbitrary Bool where coarbitrary False = variant 0 coarbitrary True = variant 1 instance CoArbitrary Ordering where coarbitrary GT = variant 0 coarbitrary EQ = variant 1 coarbitrary LT = variant 2 instance CoArbitrary a => CoArbitrary (Maybe a) where coarbitrary Nothing = variant 0 coarbitrary (Just x) = variant 1 . coarbitrary x instance (CoArbitrary a, CoArbitrary b) => CoArbitrary (Either a b) where coarbitrary (Left x) = variant 0 . coarbitrary x coarbitrary (Right y) = variant 1 . coarbitrary y instance CoArbitrary a => CoArbitrary [a] where coarbitrary [] = variant 0 coarbitrary (x:xs) = variant 1 . coarbitrary (x,xs) instance (Integral a, CoArbitrary a) => CoArbitrary (Ratio a) where coarbitrary r = coarbitrary (numerator r,denominator r) #ifndef NO_FIXED instance HasResolution a => CoArbitrary (Fixed a) where coarbitrary = coarbitraryReal #endif instance (RealFloat a, CoArbitrary a) => CoArbitrary (Complex a) where coarbitrary (x :+ y) = coarbitrary x . coarbitrary y instance (CoArbitrary a, CoArbitrary b) => CoArbitrary (a,b) where coarbitrary (x,y) = coarbitrary x . coarbitrary y instance (CoArbitrary a, CoArbitrary b, CoArbitrary c) => CoArbitrary (a,b,c) where coarbitrary (x,y,z) = coarbitrary x . coarbitrary y . coarbitrary z instance (CoArbitrary a, CoArbitrary b, CoArbitrary c, CoArbitrary d) => CoArbitrary (a,b,c,d) where coarbitrary (x,y,z,v) = coarbitrary x . coarbitrary y . coarbitrary z . coarbitrary v instance (CoArbitrary a, CoArbitrary b, CoArbitrary c, CoArbitrary d, CoArbitrary e) => CoArbitrary (a,b,c,d,e) where coarbitrary (x,y,z,v,w) = coarbitrary x . coarbitrary y . coarbitrary z . coarbitrary v . coarbitrary w -- typical instance for primitive (numerical) types instance CoArbitrary Integer where coarbitrary = coarbitraryIntegral #ifndef NO_NATURALS instance CoArbitrary Natural where coarbitrary = coarbitraryIntegral #endif instance CoArbitrary Int where coarbitrary = coarbitraryIntegral instance CoArbitrary Int8 where coarbitrary = coarbitraryIntegral instance CoArbitrary Int16 where coarbitrary = coarbitraryIntegral instance CoArbitrary Int32 where coarbitrary = coarbitraryIntegral instance CoArbitrary Int64 where coarbitrary = coarbitraryIntegral instance CoArbitrary Word where coarbitrary = coarbitraryIntegral instance CoArbitrary Word8 where coarbitrary = coarbitraryIntegral instance CoArbitrary Word16 where coarbitrary = coarbitraryIntegral instance CoArbitrary Word32 where coarbitrary = coarbitraryIntegral instance CoArbitrary Word64 where coarbitrary = coarbitraryIntegral instance CoArbitrary Char where coarbitrary = coarbitrary . ord instance CoArbitrary Float where coarbitrary = coarbitraryReal instance CoArbitrary Double where coarbitrary = coarbitraryReal -- ** Helpers for implementing coarbitrary -- | A 'coarbitrary' implementation for integral numbers. coarbitraryIntegral :: Integral a => a -> Gen b -> Gen b coarbitraryIntegral = variant -- | A 'coarbitrary' implementation for real numbers. coarbitraryReal :: Real a => a -> Gen b -> Gen b coarbitraryReal x = coarbitrary (toRational x) -- | 'coarbitrary' helper for lazy people :-). coarbitraryShow :: Show a => a -> Gen b -> Gen b coarbitraryShow x = coarbitrary (show x) -- | A 'coarbitrary' implementation for enums. coarbitraryEnum :: Enum a => a -> Gen b -> Gen b coarbitraryEnum = variant . fromEnum -------------------------------------------------------------------------- -- ** arbitrary generators -- these are here and not in Gen because of the Arbitrary class constraint -- | Generates a list of a given length. vector :: Arbitrary a => Int -> Gen [a] vector k = vectorOf k arbitrary -- | Generates an ordered list of a given length. orderedList :: (Ord a, Arbitrary a) => Gen [a] orderedList = sort `fmap` arbitrary -- | Generate an infinite list. infiniteList :: Arbitrary a => Gen [a] infiniteList = infiniteListOf arbitrary -------------------------------------------------------------------------- -- the end.