-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Write to and read from Strings maintaining internal memory references -- -- Read, Show and Data.Binary do not check for repeated references to the -- same address. As a result, the data is duplicated when serialized. -- This is a waste of space in the filesystem and also a waste of -- serialization time. but the worst consequence is that, when the -- serialized data is read, it allocates multiple copies for the same -- object when referenced multiple times. Because multiple referenced -- data is very typical in a pure language such is Haskell, this means -- that the resulting data loose the beatiful economy of space and -- processing time that referential transparency permits. -- -- Every instance of Show/Read is also a instance of Data.RefSerialize. -- -- This package allows the serialization and deserialization of large -- data structures without duplication of data, with the result of -- optimized performance and memory usage. It is also useful for -- debugging purposes. -- -- There are automatic derived instances for instances of Read/Show. -- Lists of non-chars have its own instance. The deserializer contains a -- subset of Parsec.Token for defining deserializing parsers. -- -- the serialized string has the form: -- --
--   expr( var1, ...varn) where  var1=value1,..valn=valueN
--   
-- -- so that the string can be EVALuated. -- -- See demo.hs and tutorial. -- -- in this release: -- -- -- -- To do: -- -- @package RefSerialize @version 0.2.4 module Data.Serialize type MFun = Char type VarName = String type ShowF = String type Context = Map Int (MFun, ShowF) data Error Error :: String -> Error data Stat Stat :: (Context, String, String) -> Stat varName :: a -> String numVar :: String -> Int -- | A Parsec parser for the refSerialize monad. See package Parsec. all -- the functions have the same meaning module Data.Parser data ST a ST :: (Stat -> Either Error (Stat, a)) -> ST a () :: ST a -> String -> ST a (<|>) :: ST a -> ST a -> ST a char :: Char -> ST Char anyChar :: ST Char string :: [Char] -> ST [Char] upper :: ST Char space :: ST Char digit :: ST Char sepBy :: ST a -> ST sep -> ST [a] between :: (Monad m) => m a -> m a1 -> m b -> m b choice :: [ST a] -> ST a option :: a -> ST a -> ST a notFollowedBy :: (Show t) => ST t -> ST () many :: ST a -> ST [a] bool :: ST Bool charLiteral :: ST Char stringLiteral :: ST [Char] natural :: ST Integer integer :: ST Integer float :: ST Double naturalOrFloat :: ST (Either Integer Double) decimal :: ST Integer hexadecimal :: ST Integer octal :: ST Integer symbol :: [Char] -> ST [Char] lexeme :: ST b -> ST b whiteSpace :: ST () parens :: ST a -> ST a braces :: ST a -> ST a angles :: ST a -> ST a brackets :: ST a -> ST a semi :: ST [Char] comma :: ST [Char] colon :: ST [Char] dot :: ST [Char] semiSep :: ST a -> ST [a] semiSep1 :: ST a -> ST [a] commaSep :: ST a -> ST [a] commaSep1 :: ST a -> ST [a] instance MonadPlus ST instance Monad ST -- | Read, Show and Data.Binary do not check for repeated references to the -- same address. As a result, the data is duplicated when seri<alized. -- This is a waste of space in the filesystem and also a waste of -- serialization time. but the worst consequence is that, when the -- serialized data is read, it allocates multiple copies for the same -- object when referenced multiple times. Because multiple referenced -- data is very typical in a pure language such is Haskell, this means -- that the resulting data loose the beatiful economy of space and -- processing time that referential transparency permits. -- -- Here comes a brief tutorial: -- --
--   runW applies showp, the serialization parser of the instance Int for the RefSerialize class
--   
--   Data.RefSerialize>let x= 5 :: Int
--       Data.RefSerialize>runW $ showp x
--       5
--   
--   every instance of Read and Show is an instance of RefSerialize. for how to construct showp and readp parsers, see the demo.hs
--   
--   rshowp is derived from showp, it labels the serialized data with a variable name
--   
--   Data.RefSerialize>runW $ rshowp x
--        v8 where {v8= 5; }
--   
--   Data.RefSerialize>runW $ rshowp [2::Int,3::Int]
--        v6 where {v6= [ v9,  v10]; v9= 2; v10= 3; }
--   
--   while showp does a normal show serialization
--   
--   Data.RefSerialize>runW $ showp [x,x]
--       [5, 5]
--   
--   rshowp variables are serialized memory references: no piece of data that point to the same addrees is serialized but one time
--   
--   Data.RefSerialize>runW $ rshowp [x,x]
--        v9 where {v6= 5; v9= [ v6, v6]; }
--   
--   this happens recursively
--   
--   Data.RefSerialize>let xs= [x,x] in str = runW $ rshowp [xs,xs]
--       Data.RefSerialize>str
--        v8 where {v8= [ v10, v10]; v9= 5; v10= [ v9, v9]; }
--   
--   the rshowp serialized data is read with rreadp. The showp serialized data is read by readp
--   
--   Data.RefSerialize>let xss= runR rreadp str :: [[Int]]
--       Data.RefSerialize>print xss
--       [[5,5],[5,5]]
--   
--   this is the deserialized data
--   
--   the deserialized data keep the references!! pointers are restored! That is the whole point!
--   
--   Data.RefSerialize>varName xss !! 0 == varName xss !! 1
--       True
--   
--   rShow= runW rshowp
--       rRead= runR rreadp
--   
--   Data.RefSerialize>rShow x
--        v11 where {v11= 5; }
--   
--   In the definition of a referencing parser non referencing parsers can be used and viceversa. Use a referencing parser
--       when the piece of data is being referenced many times inside the serialized data.
--   
--   by default the referencing parser is constructed by:
--   
--   rshowp= insertVar showp
--       rreadp= readVar readp
--       but this can be redefined. See for example the instance of [] in RefSerialize.hs
--   
--   This is an example of a showp parser for a simple data structure.
--   
--   data S= S Int Int deriving ( Show, Eq)
--   
--   instance  Serialize S  where
--           showp (S x y)= do
--                           xs <- rshowp x  -- rshowp parsers can be inside showp parser
--                           ys <- rshowp y
--                           return $ S ++xs++ ++ys
--   
--   readp =  do
--                           symbol S     -- I included a (almost) complete Parsec for deserialization
--                           x <- rreadp
--                           y <- rreadp
--                           return $ S x y
--   
--   there is a mix between referencing and no referencing parser here:
--   
--   Data.RefSerialize>putStrLn $ runW $ showp $ S x x
--       S  v23 v23 where {v23= 5; }
--   
module Data.RefSerialize class Serialize c showp :: (Serialize c) => c -> ST String readp :: (Serialize c) => ST c rshowp :: (Serialize c) => c -> ST String rreadp :: (Serialize c) => ST c -- | use the rshowp parser to serialize the object rShow c= runW $ -- rshowp c rShow :: (Serialize c) => c -> String -- | deserialize trough the rreadp parser rRead str= runR rreadp $ -- str rRead :: (Serialize c) => String -> c -- | insert a variable at this position. The expression value is inserted -- the where part if it is not already created. If the address of this -- object being parsed correspond with an address already parsed and it -- is in the where section, then the same variable name is used runW -- showp (1::Int) -> 1 runW (insertVar showp) (1::Int) -> v1 -- where { v1=1} runW (insertVar showp) [(1::Int) ,1] -> [v1.v1] where -- { v1=1} This is useful when the object is referenced many times insertVar :: (a -> ST String) -> a -> ST String -- | deserialize a variable serialized with insertVar. Memory references -- are restored readVar :: (Serialize c) => ST c -> ST c varName :: a -> String -- | deserialize the string with the parser runR :: ST a -> String -> a -- | serialize x with the parser runW :: ST String -> String readHexp :: (Num a, Integral a) => ST a showHexp :: (Num a, Integral a) => a -> ST String instance [incoherent] (Show a, Read a) => Serialize a instance [incoherent] (Serialize a) => Serialize [a] instance [incoherent] Serialize String