module Data.TrieMap.Regular.UnionMap() where
import Data.TrieMap.Regular.Class
import Data.TrieMap.Regular.Base
import Data.TrieMap.TrieKey
import Control.Applicative
import Control.Arrow
import Control.Monad
import Data.Either
data UnionMap m1 m2 k (a :: * -> *) ix = m1 k a ix :&: m2 k a ix
type instance TrieMapT (f :+: g) = UnionMap (TrieMapT f) (TrieMapT g)
type instance TrieMap ((f :+: g) r) = TrieMapT (f :+: g) r
instance (TrieKeyT f m1, TrieKeyT g m2) => TrieKeyT (f :+: g) (UnionMap m1 m2) where
emptyT = emptyT :&: emptyT
nullT (m1 :&: m2) = nullT m1 && nullT m2
sizeT s (m1 :&: m2) = sizeT s m1 + sizeT s m2
lookupT k (m1 :&: m2) = case k of
L k -> lookupT k m1
R k -> lookupT k m2
lookupIxT s k (m1 :&: m2) = case k of
L k -> lookupIxT s k m1
R k -> first (+ sizeT s m1) <$> lookupIxT s k m2
assocAtT s i (m1 :&: m2)
| i < s1 = case assocAtT s i m1 of
(i', k, a) -> (i', L k, a)
| otherwise = case assocAtT s (i s1) m2 of
(i', k, a) -> (i' + s1, R k, a)
where s1 = sizeT s m1
updateAtT s f i (m1 :&: m2)
| i < s1 = updateAtT s (\ i' -> f i' . L) i m1 :&: m2
| otherwise = m1 :&: updateAtT s (\ i' -> f (i' + s1) . R) (i s1) m2
where s1 = sizeT s m1
alterT s f k (m1 :&: m2) = case k of
L k -> alterT s f k m1 :&: m2
R k -> m1 :&: alterT s f k m2
traverseWithKeyT s f (m1 :&: m2) = (:&:) <$> traverseWithKeyT s (f . L) m1 <*> traverseWithKeyT s (f . R) m2
foldWithKeyT f (m1 :&: m2) = foldWithKeyT (f . L) m1 . foldWithKeyT (f . R) m2
foldlWithKeyT f (m1 :&: m2) = foldlWithKeyT (f . R) m2 . foldlWithKeyT (f . L) m1
mapEitherT s1 s2 f (m1 :&: m2) = case (mapEitherT s1 s2 (f . L) m1, mapEitherT s1 s2 (f . R) m2) of
((m1L, m1R), (m2L, m2R)) -> (m1L :&: m2L, m1R :&: m2R)
splitLookupT s f k (m1 :&: m2) = case k of
L k -> case splitLookupT s f k m1 of
(m1L, ans, m1R) -> (m1L :&: emptyT, ans, m1R :&: m2)
R k -> case splitLookupT s f k m2 of
(m2L, ans, m2R) -> (m1 :&: m2L, ans, emptyT :&: m2R)
unionT s f (m11 :&: m12) (m21 :&: m22) = unionT s (f . L) m11 m21 :&: unionT s (f . R) m12 m22
isectT s f (m11 :&: m12) (m21 :&: m22) = isectT s (f . L) m11 m21 :&: isectT s (f . R) m12 m22
diffT s f (m11 :&: m12) (m21 :&: m22) = diffT s (f . L) m11 m21 :&: diffT s (f . R) m12 m22
extractMinT s (m1 :&: m2) = (do
((k, a), m1') <- extractMinT s m1
return ((L k, a), m1' :&: m2)) `mplus`
(do ((k, a), m2') <- extractMinT s m2
return ((R k, a), m1 :&: m2'))
extractMaxT s (m1 :&: m2) = (do
((k, a), m1') <- extractMaxT s m1
return ((L k, a), m1' :&: m2)) `mplus`
(do ((k, a), m2') <- extractMaxT s m2
return ((R k, a), m1 :&: m2'))
alterMinT s f (m1 :&: m2)
| nullT m1 = m1 :&: alterMinT s (f . R) m2
| otherwise = alterMinT s (f . L) m1 :&: m2
alterMaxT s f (m1 :&: m2)
| nullT m2 = alterMaxT s (f . L) m1 :&: m2
| otherwise = m1 :&: alterMaxT s (f . R) m2
isSubmapT (<=) (m11 :&: m12) (m21 :&: m22) = isSubmapT (<=) m11 m21 && isSubmapT (<=) m12 m22
fromListT s f xs = case partEithers xs of
(ys, zs) -> fromListT s (f . L) ys :&: fromListT s (f . R) zs
fromAscListT s f xs = case partEithers xs of
(ys, zs) -> fromAscListT s (f . L) ys :&: fromAscListT s (f . R) zs
fromDistAscListT s xs = case partEithers xs of
(ys, zs) -> fromDistAscListT s ys :&: fromDistAscListT s zs
partEithers :: [((f :+: g) r, a)] -> ([(f r, a)], [(g r, a)])
partEithers = foldr part ([], []) where
part (L k, a) (xs, ys) = ((k, a):xs, ys)
part (R k, a) (xs, ys) = (xs, (k, a):ys)
instance (TrieKeyT f m1, TrieKeyT g m2, TrieKey k (TrieMap k)) => TrieKey ((f :+: g) k) (UnionMap m1 m2 k) where
emptyM = emptyT
nullM = nullT
lookupM = lookupT
lookupIxM = lookupIxT
assocAtM = assocAtT
updateAtM = updateAtT
alterM = alterT
traverseWithKeyM = traverseWithKeyT
foldWithKeyM = foldWithKeyT
foldlWithKeyM = foldlWithKeyT
mapEitherM = mapEitherT
splitLookupM = splitLookupT
unionM = unionT
isectM = isectT
diffM = diffT
extractMinM = extractMinT
extractMaxM = extractMaxT
alterMinM = alterMinT
alterMaxM = alterMaxT
isSubmapM = isSubmapT
fromListM = fromListT
fromAscListM = fromAscListT
fromDistAscListM = fromDistAscListT