module Data.TrieMap.UnionMap () where
import Data.TrieMap.TrieKey
import Data.TrieMap.Regular.Class
import Data.TrieMap.Applicative
import Control.Applicative
data UMap m1 k2 a = m1 a :&: TrieMap k2 a
type instance TrieMapT (Either a) = UMap (TrieMap a)
type instance TrieMap (Either a b) = UMap (TrieMap a) b
instance (TrieKey a m, TrieKey b (TrieMap b)) => TrieKey (Either a b) (UMap m b) where
emptyM = emptyT
nullM = nullT
lookupM = lookupT
lookupIxM = lookupIxT
assocAtM = assocAtT
alterM = alterT
alterLookupM = alterLookupT
traverseWithKeyM = traverseWithKeyT
foldWithKeyM = foldWithKeyT
foldlWithKeyM = foldlWithKeyT
mapEitherM = mapEitherT
splitLookupM = splitLookupT
unionM = unionT
isectM = isectT
diffM = diffT
extractM = extractT
isSubmapM = isSubmapT
fromListM = fromListT
fromAscListM = fromAscListT
fromDistAscListM = fromDistAscListT
instance TrieKey k1 m1 => TrieKeyT (Either k1) (UMap m1) where
emptyT = emptyM :&: emptyM
nullT (m1 :&: m2) = nullM m1 && nullM m2
sizeT s (m1 :&: m2) = sizeM s m1 + sizeM s m2
lookupT k (m1 :&: m2) = either (`lookupM` m1) (`lookupM` m2) k
lookupIxT s k (m1 :&: m2) = case k of
Left k | (lb, x, ub) <- onKey Left $ lookupIxM s k m1
-> (lb, x, ub <|> aboutM (\ k -> return . Asc (sizeM s m1) (Right k)) m2)
Right k | (lb, x, ub) <- onKey Right $ lookupIxM s k m2
-> (aboutM (\ k a -> return (Asc (sizeM s m1 s a) (Left k) a)) m1 <|> lb, x, ub)
assocAtT s i (m1 :&: m2)
| i < s1, (lb, x, ub) <- onKey Left (assocAtM s i m1)
= (lb, x, ub <|> aboutM (\ k -> return . Asc s1 (Right k)) m2)
| (lb, x, ub) <- onKey Right (onIndex (s1 +) (assocAtM s (i s1) m2))
= (aboutM (\ k a -> return (Asc (s1 s a) (Left k) a)) m1 <|> lb, x, ub)
where s1 = sizeM s m1
alterT s f k (m1 :&: m2) = case k of
Left k -> alterM s f k m1 :&: m2
Right k -> m1 :&: alterM s f k m2
alterLookupT s f k (m1 :&: m2) = case k of
Left k -> fmap (:&: m2) (alterLookupM s f k m1)
Right k -> fmap (m1 :&:) (alterLookupM s f k m2)
traverseWithKeyT s f (m1 :&: m2) = (:&:) <$> traverseWithKeyM s (f . Left) m1 <*> traverseWithKeyM s (f . Right) m2
foldWithKeyT f (m1 :&: m2) = foldWithKeyM (f . Left) m1 . foldWithKeyM (f . Right) m2
foldlWithKeyT f (m1 :&: m2) = foldlWithKeyM (f . Right) m2 . foldlWithKeyM (f . Left) m1
mapEitherT s1 s2 f (m1 :&: m2) = (m1L :&: m2L, m1R :&: m2R)
where (m1L, m1R) = mapEitherM s1 s2 (f . Left) m1
(m2L, m2R) = mapEitherM s1 s2 (f . Right) m2
extractT s f (m1 :&: m2) = fmap (:&: m2) <$> extractM s (f . Left) m1 <|>
fmap (m1 :&:) <$> extractM s (f . Right) m2
splitLookupT s f k (m1 :&: m2) = case k of
Left k | (m1L, x, m1R) <- splitLookupM s f k m1
-> (m1L :&: emptyM, x, m1R :&: m2)
Right k | (m2L, x, m2R) <- splitLookupM s f k m2
-> (m1 :&: m2L, x, emptyM :&: m2R)
unionT s f (m11 :&: m12) (m21 :&: m22)
= unionM s (f . Left) m11 m21 :&: unionM s (f . Right) m12 m22
isectT s f (m11 :&: m12) (m21 :&: m22)
= isectM s (f . Left) m11 m21 :&: isectM s (f . Right) m12 m22
diffT s f (m11 :&: m12) (m21 :&: m22)
= diffM s (f . Left) m11 m21 :&: diffM s (f . Right) m12 m22
isSubmapT (<=) (m11 :&: m12) (m21 :&: m22) = isSubmapM (<=) m11 m21 && isSubmapM (<=) m12 m22
fromListT s f xs = case partEithers xs of
(ys, zs) -> fromListM s (f . Left) ys :&: fromListM s (f . Right) zs
fromAscListT s f xs = case partEithers xs of
(ys, zs) -> fromAscListM s (f . Left) ys :&: fromAscListM s (f . Right) zs
fromDistAscListT s xs = case partEithers xs of
(ys, zs) -> fromDistAscListM s ys :&: fromDistAscListM s zs
partEithers :: [(Either a b, x)] -> ([(a, x)], [(b, x)])
partEithers = foldr part ([], []) where
part (Left x, z) (xs, ys) = ((x,z):xs, ys)
part (Right y, z) (xs, ys) = (xs, (y, z):ys)