module Data.TrieMap.OrdMap () where
import Data.TrieMap.TrieKey
import Data.TrieMap.Sized
import Data.TrieMap.Modifiers
import Control.Applicative (Applicative(..), Alternative(..), (<$>))
import Control.Monad hiding (join)
import Prelude hiding (lookup)
type OrdMap k = TrieMap (Ordered k)
instance Ord k => TrieKey (Ordered k) where
data TrieMap (Ordered k) a = Tip
| Bin !Int k a !(OrdMap k a) !(OrdMap k a)
emptyM = Tip
singletonM s (Ord k) = singleton s k
nullM Tip = True
nullM _ = False
sizeM _ = size
lookupM (Ord k) = lookup k
alterM s f (Ord k) = alter s f k
alterLookupM s f (Ord k) = alterLookup s f k
traverseWithKeyM s f = traverseWithKey s (f . Ord)
foldWithKeyM f = foldrWithKey (f . Ord)
foldlWithKeyM f = foldlWithKey (f . Ord)
mapMaybeM s f = mapMaybe s (f . Ord)
mapEitherM s1 s2 f = mapEither s1 s2 (f . Ord)
extractM s f = extract s (f . Ord)
splitLookupM s f (Ord k) = splitLookup s f k
isSubmapM = isSubmap
fromAscListM s f xs = fromAscList s (f . Ord) [(k, a) | (Ord k, a) <- xs]
fromDistAscListM s xs = fromDistinctAscList s [(k, a) | (Ord k, a) <- xs]
unionM _ _ Tip m2 = m2
unionM _ _ m1 Tip = m1
unionM s f m1 m2 = hedgeUnionWithKey s (f . Ord) (const LT) (const GT) m1 m2
isectM s f = isect s (f . Ord)
diffM _ _ Tip _ = Tip
diffM _ _ m1 Tip = m1
diffM s f m1 m2 = hedgeDiffWithKey s (f . Ord) (const LT) (const GT) m1 m2
lookup :: Ord k => k -> OrdMap k a -> Maybe a
lookup k (Bin _ k' v l r) = case compare k k' of
LT -> lookup k l
EQ -> Just v
GT -> lookup k r
lookup _ _ = Nothing
alter :: Ord k => Sized a -> (Maybe a -> Maybe a) -> k -> OrdMap k a -> OrdMap k a
alter s f k Tip = case f Nothing of
Nothing -> Tip
Just x -> singleton s k x
alter s f k (Bin _ kx x l r) = case compare k kx of
LT -> balance s kx x (alter s f k l) r
EQ -> case f (Just x) of
Nothing -> glue s l r
Just x' -> balance s k x' l r
GT -> balance s kx x l (alter s f k r)
alterLookup :: Ord k => Sized a -> (Maybe a -> (# z, Maybe a #)) -> k -> OrdMap k a -> (# z, OrdMap k a #)
alterLookup s f k Tip = onUnboxed (maybe Tip (singleton s k)) f Nothing
alterLookup s f k (Bin _ kx x l r) = case compare k kx of
LT -> onUnboxed (\ l' -> balance s kx x l' r) (alterLookup s f k) l
EQ -> onUnboxed (maybe (glue s l r) (\ x' -> balance s k x' l r)) f (Just x)
GT -> onUnboxed (balance s kx x l) (alterLookup s f k) r
singleton :: Sized a -> k -> a -> OrdMap k a
singleton s k a = Bin (s a) k a Tip Tip
traverseWithKey :: Applicative f => Sized b -> (k -> a -> f b) -> OrdMap k a -> f (OrdMap k b)
traverseWithKey _ _ Tip = pure Tip
traverseWithKey s f (Bin _ k a l r) = balance s k <$> f k a <*> traverseWithKey s f l <*> traverseWithKey s f r
foldrWithKey :: (k -> a -> b -> b) -> OrdMap k a -> b -> b
foldrWithKey _ Tip = id
foldrWithKey f (Bin _ k a l r) = foldrWithKey f l . f k a . foldrWithKey f r
foldlWithKey :: (k -> b -> a -> b) -> OrdMap k a -> b -> b
foldlWithKey _ Tip = id
foldlWithKey f (Bin _ k a l r) = foldlWithKey f r . flip (f k) a . foldlWithKey f l
mapMaybe :: Ord k => Sized b -> (k -> a -> Maybe b) -> OrdMap k a -> OrdMap k b
mapMaybe _ _ Tip = Tip
mapMaybe s f (Bin _ k a l r) = joinMaybe s k (f k a) (mapMaybe s f l) (mapMaybe s f r)
mapEither :: Ord k => Sized b -> Sized c -> EitherMap k a b c ->
OrdMap k a -> (# OrdMap k b, OrdMap k c #)
mapEither _ _ _ Tip = (# Tip, Tip #)
mapEither s1 s2 f (Bin _ k a l r)
| (# aL, aR #) <- f k a,
(# lL, lR #) <- mapEither s1 s2 f l,
(# rL, rR #) <- mapEither s1 s2 f r
= (# joinMaybe s1 k aL lL rL, joinMaybe s2 k aR lR rR #)
splitLookup :: Ord k => Sized a -> SplitMap a x -> k -> OrdMap k a -> (# OrdMap k a, Maybe x, OrdMap k a #)
splitLookup s f k m = case m of
Tip -> (# Tip, Nothing, Tip #)
Bin _ kx x l r -> case compare k kx of
LT -> case splitLookup s f k l of
(# lL, ans, lR #) -> (# lL, ans, join s kx x lR r #)
EQ -> case f x of
(# xL, ans, xR #) -> (# maybe l (\ xL -> insertMax s kx xL l) xL, ans,
maybe r (\ xR -> insertMin s kx xR r) xR #)
GT -> case splitLookup s f k r of
(# rL, ans, rR #) -> (# join s kx x l rL, ans, rR #)
isSubmap :: Ord k => LEq a b -> LEq (OrdMap k a) (OrdMap k b)
isSubmap _ Tip _ = True
isSubmap _ _ Tip = False
isSubmap (<=) (Bin _ kx x l r) t = case splitLookup (const 1) (\ x -> (# Nothing, Just x, Nothing #)) kx t of
(# lt, found, gt #) -> case found of
Nothing -> False
Just y -> x <= y && isSubmap (<=) l lt && isSubmap (<=) r gt
fromAscList :: Eq k => Sized a -> (k -> a -> a -> a) -> [(k, a)] -> OrdMap k a
fromAscList s f xs = fromDistinctAscList s (combineEq xs) where
combineEq (x:xs) = combineEq' x xs
combineEq [] = []
combineEq' z [] = [z]
combineEq' (kz, zz) (x@(kx, xx):xs)
| kz == kx = combineEq' (kx, f kx xx zz) xs
| otherwise = (kz,zz):combineEq' x xs
fromDistinctAscList :: Sized a -> [(k, a)] -> OrdMap k a
fromDistinctAscList s xs = build const (length xs) xs
where
build c 0 xs' = c Tip xs'
build c 5 xs' = case xs' of
((k1,x1):(k2,x2):(k3,x3):(k4,x4):(k5,x5):xx)
-> c (bin s k4 x4 (bin s k2 x2 (singleton s k1 x1) (singleton s k3 x3)) (singleton s k5 x5)) xx
_ -> error "fromDistinctAscList build"
build c n xs' = seq nr $ build (buildR nr c) nl xs'
where
nl = n `div` 2
nr = n nl 1
buildR n c l ((k,x):ys) = build (buildB l k x c) n ys
buildR _ _ _ [] = error "fromDistinctAscList buildR []"
buildB l k x c r zs = c (bin s k x l r) zs
hedgeUnionWithKey :: Ord k
=> Sized a -> (k -> a -> a -> Maybe a)
-> (k -> Ordering) -> (k -> Ordering)
-> OrdMap k a -> OrdMap k a -> OrdMap k a
hedgeUnionWithKey _ _ _ _ t1 Tip
= t1
hedgeUnionWithKey s _ cmplo cmphi Tip (Bin _ kx x l r)
= join s kx x (filterGt s cmplo l) (filterLt s cmphi r)
hedgeUnionWithKey s f cmplo cmphi (Bin _ kx x l r) t2
= joinMaybe s kx newx (hedgeUnionWithKey s f cmplo cmpkx l lt)
(hedgeUnionWithKey s f cmpkx cmphi r gt)
where
cmpkx k = compare kx k
lt = trim cmplo cmpkx t2
(found,gt) = trimLookupLo kx cmphi t2
newx = case found of
Nothing -> Just x
Just (_,y) -> f kx x y
filterGt :: Ord k => Sized a -> (k -> Ordering) -> OrdMap k a -> OrdMap k a
filterGt _ _ Tip = Tip
filterGt s cmp (Bin _ kx x l r)
= case cmp kx of
LT -> join s kx x (filterGt s cmp l) r
GT -> filterGt s cmp r
EQ -> r
filterLt :: Ord k => Sized a -> (k -> Ordering) -> OrdMap k a -> OrdMap k a
filterLt _ _ Tip = Tip
filterLt s cmp (Bin _ kx x l r)
= case cmp kx of
LT -> filterLt s cmp l
GT -> join s kx x l (filterLt s cmp r)
EQ -> l
trim :: (k -> Ordering) -> (k -> Ordering) -> OrdMap k a -> OrdMap k a
trim _ _ Tip = Tip
trim cmplo cmphi t@(Bin _ kx _ l r)
= case cmplo kx of
LT -> case cmphi kx of
GT -> t
_ -> trim cmplo cmphi l
_ -> trim cmplo cmphi r
trimLookupLo :: Ord k => k -> (k -> Ordering) -> OrdMap k a -> (Maybe (k,a), OrdMap k a)
trimLookupLo _ _ Tip = (Nothing,Tip)
trimLookupLo lo cmphi t@(Bin _ kx x l r)
= case compare lo kx of
LT -> case cmphi kx of
GT -> (((,) lo) <$> lookup lo t, t)
_ -> trimLookupLo lo cmphi l
GT -> trimLookupLo lo cmphi r
EQ -> (Just (kx,x),trim (compare lo) cmphi r)
isect :: Ord k => Sized c -> IsectFunc k a b c -> OrdMap k a -> OrdMap k b -> OrdMap k c
isect s f t1@Bin{} (Bin _ k2 x2 l2 r2)
| (# lt, found, gt #) <- splitLookup (const 1) (\ x -> (# Nothing, Just x, Nothing #)) k2 t1
= let tl = isect s f lt l2
tr = isect s f gt r2
in joinMaybe s k2 (found >>= \ x1' -> f k2 x1' x2) tl tr
isect _ _ _ _ = Tip
hedgeDiffWithKey :: Ord k
=> Sized a -> (k -> a -> b -> Maybe a)
-> (k -> Ordering) -> (k -> Ordering)
-> OrdMap k a -> OrdMap k b -> OrdMap k a
hedgeDiffWithKey _ _ _ _ Tip _
= Tip
hedgeDiffWithKey s _ cmplo cmphi (Bin _ kx x l r) Tip
= join s kx x (filterGt s cmplo l) (filterLt s cmphi r)
hedgeDiffWithKey s f cmplo cmphi t (Bin _ kx x l r)
= case found of
Nothing -> merge s tl tr
Just (ky,y) ->
case f ky y x of
Nothing -> merge s tl tr
Just z -> join s ky z tl tr
where
cmpkx k = compare kx k
lt = trim cmplo cmpkx t
(found,gt) = trimLookupLo kx cmphi t
tl = hedgeDiffWithKey s f cmplo cmpkx lt l
tr = hedgeDiffWithKey s f cmpkx cmphi gt r
joinMaybe :: Ord k => Sized a -> k -> Maybe a -> OrdMap k a -> OrdMap k a -> OrdMap k a
joinMaybe s kx = maybe (merge s) (join s kx)
join :: Ord k => Sized a -> k -> a -> OrdMap k a -> OrdMap k a -> OrdMap k a
join s kx x Tip r = insertMin s kx x r
join s kx x l Tip = insertMax s kx x l
join s kx x l@(Bin sizeL ky y ly ry) r@(Bin sizeR kz z lz rz)
| delta*sizeL <= sizeR = balance s kz z (join s kx x l lz) rz
| delta*sizeR <= sizeL = balance s ky y ly (join s kx x ry r)
| otherwise = bin s kx x l r
insertMax,insertMin :: Sized a -> k -> a -> OrdMap k a -> OrdMap k a
insertMax s kx x t
= case t of
Tip -> singleton s kx x
Bin _ ky y l r
-> balance s ky y l (insertMax s kx x r)
insertMin s kx x t
= case t of
Tip -> singleton s kx x
Bin _ ky y l r
-> balance s ky y (insertMin s kx x l) r
merge :: Sized a -> OrdMap k a -> OrdMap k a -> OrdMap k a
merge _ Tip r = r
merge _ l Tip = l
merge s l@(Bin sizeL kx x lx rx) r@(Bin sizeR ky y ly ry)
| delta*sizeL <= sizeR = balance s ky y (merge s l ly) ry
| delta*sizeR <= sizeL = balance s kx x lx (merge s rx r)
| otherwise = glue s l r
glue :: Sized a -> OrdMap k a -> OrdMap k a -> OrdMap k a
glue _ Tip r = r
glue _ l Tip = l
glue s l r
| size l > size r = let (f,l') = deleteFindMax s (\ k a -> (balance s k a, Nothing)) l in f l' r
| otherwise = let (f,r') = deleteFindMin s (\ k a -> (balance s k a, Nothing)) r in f l r'
extract :: Alternative t => Sized a -> (k -> a -> t (z, Maybe a)) -> OrdMap k a -> t (z, OrdMap k a)
extract s f t = case t of
Bin _ k x l r ->
fmap (\ l' -> balance s k x l' r) <$> extract s f l <|>
fmap (maybe (glue s l r) (\ x' -> balance s k x' l r)) <$> f k x <|>
fmap (balance s k x l) <$> extract s f r
Tip -> empty
deleteFindMin :: Sized a -> (k -> a -> (x, Maybe a)) -> OrdMap k a -> (x, OrdMap k a)
deleteFindMin s f t
= case t of
Bin _ k x Tip r -> let (ans, x') = f k x in (ans, maybe r (\ y' -> bin s k y' Tip r) x')
Bin _ k x l r -> let (km,l') = deleteFindMin s f l in (km,balance s k x l' r)
Tip -> (error "Map.deleteFindMin: can not return the minimal element of an empty map", Tip)
deleteFindMax :: Sized a -> (k -> a -> (x, Maybe a)) -> OrdMap k a -> (x, OrdMap k a)
deleteFindMax s f t
= case t of
Bin _ k x l Tip -> let (ans, x') = f k x in (ans, maybe l (\ y -> bin s k y l Tip) x')
Bin _ k x l r -> let (km,r') = deleteFindMax s f r in (km,balance s k x l r')
Tip -> (error "Map.deleteFindMax: can not return the maximal element of an empty map", Tip)
delta,ratio :: Int
delta = 5
ratio = 2
size :: OrdMap k a -> Int
size Tip = 0
size (Bin s _ _ _ _) = s
balance :: Sized a -> k -> a -> OrdMap k a -> OrdMap k a -> OrdMap k a
balance s k x l r
| sizeL + sizeR <= 1 = Bin sizeX k x l r
| sizeR >= delta*sizeL = rotateL s k x l r
| sizeL >= delta*sizeR = rotateR s k x l r
| otherwise = Bin sizeX k x l r
where
sizeL = size l
sizeR = size r
sizeX = sizeL + sizeR + s x
rotateL :: Sized a -> k -> a -> OrdMap k a -> OrdMap k a -> OrdMap k a
rotateL s k x l r@(Bin _ _ _ ly ry)
| size ly < ratio*size ry = singleL s k x l r
| otherwise = doubleL s k x l r
rotateL _ _ _ _ Tip = error "rotateL Tip"
rotateR :: Sized a -> k -> a -> OrdMap k a -> OrdMap k a -> OrdMap k a
rotateR s k x l@(Bin _ _ _ ly ry) r
| size ry < ratio*size ly = singleR s k x l r
| otherwise = doubleR s k x l r
rotateR _ _ _ Tip _ = error "rotateR Tip"
singleL, singleR :: Sized a -> k -> a -> OrdMap k a -> OrdMap k a -> OrdMap k a
singleL s k1 x1 t1 (Bin _ k2 x2 t2 t3) = bin s k2 x2 (bin s k1 x1 t1 t2) t3
singleL s k1 x1 t1 Tip = bin s k1 x1 t1 Tip
singleR s k1 x1 (Bin _ k2 x2 t1 t2) t3 = bin s k2 x2 t1 (bin s k1 x1 t2 t3)
singleR s k1 x1 Tip t2 = bin s k1 x1 Tip t2
doubleL, doubleR :: Sized a -> k -> a -> OrdMap k a -> OrdMap k a -> OrdMap k a
doubleL s k1 x1 t1 (Bin _ k2 x2 (Bin _ k3 x3 t2 t3) t4) = bin s k3 x3 (bin s k1 x1 t1 t2) (bin s k2 x2 t3 t4)
doubleL s k1 x1 t1 t2 = singleL s k1 x1 t1 t2
doubleR s k1 x1 (Bin _ k2 x2 t1 (Bin _ k3 x3 t2 t3)) t4 = bin s k3 x3 (bin s k2 x2 t1 t2) (bin s k1 x1 t3 t4)
doubleR s k1 x1 t1 t2 = singleR s k1 x1 t1 t2
bin :: Sized a -> k -> a -> OrdMap k a -> OrdMap k a -> OrdMap k a
bin s k x l r
= Bin (size l + size r + s x) k x l r