/**CFile**************************************************************** FileName [luckySwap.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [Semi-canonical form computation package.] Synopsis [Swapping variables in the truth table.] Author [Jake] Date [Started - August 2012] ***********************************************************************/ #include "luckyInt.h" ABC_NAMESPACE_IMPL_START static word mask0[6] = { ABC_CONST(0x5555555555555555),ABC_CONST(0x3333333333333333), ABC_CONST(0x0F0F0F0F0F0F0F0F),ABC_CONST(0x00FF00FF00FF00FF),ABC_CONST(0x0000FFFF0000FFFF), ABC_CONST(0x00000000FFFFFFFF)}; /* static word mask1[6] = { 0xAAAAAAAAAAAAAAAA,0xCCCCCCCCCCCCCCCC, 0xF0F0F0F0F0F0F0F0,0xFF00FF00FF00FF00,0xFFFF0000FFFF0000, 0xFFFFFFFF00000000 }; static word mask[6][2] = { {0x5555555555555555,0xAAAAAAAAAAAAAAAA}, {0x3333333333333333,0xCCCCCCCCCCCCCCCC}, {0x0F0F0F0F0F0F0F0F,0xF0F0F0F0F0F0F0F0}, {0x00FF00FF00FF00FF,0xFF00FF00FF00FF00}, {0x0000FFFF0000FFFF,0xFFFF0000FFFF0000}, {0x00000000FFFFFFFF,0xFFFFFFFF00000000} }; */ int Kit_TruthWordNum_64bit( int nVars ) { return nVars <= 6 ? 1 : (1 << (nVars - 6));} int Kit_WordCountOnes_64bit(word x) { x = x - ((x >> 1) & ABC_CONST(0x5555555555555555)); x = (x & ABC_CONST(0x3333333333333333)) + ((x >> 2) & ABC_CONST(0x3333333333333333)); x = (x + (x >> 4)) & ABC_CONST(0x0F0F0F0F0F0F0F0F); x = x + (x >> 8); x = x + (x >> 16); x = x + (x >> 32); return (int)(x & 0xFF); } int Kit_TruthCountOnes_64bit( word* pIn, int nVars ) { int w, Counter = 0; for ( w = Kit_TruthWordNum_64bit(nVars)-1; w >= 0; w-- ) Counter += Kit_WordCountOnes_64bit(pIn[w]); return Counter; } void Kit_TruthCountOnesInCofs_64bit( word * pTruth, int nVars, int * pStore ) { int nWords = Kit_TruthWordNum_64bit( nVars ); int i, k, Counter; memset( pStore, 0, sizeof(int) * nVars ); if ( nVars <= 6 ) { if ( nVars > 0 ) pStore[0] = Kit_WordCountOnes_64bit( pTruth[0] & ABC_CONST(0x5555555555555555) ); if ( nVars > 1 ) pStore[1] = Kit_WordCountOnes_64bit( pTruth[0] & ABC_CONST(0x3333333333333333) ); if ( nVars > 2 ) pStore[2] = Kit_WordCountOnes_64bit( pTruth[0] & ABC_CONST(0x0F0F0F0F0F0F0F0F) ); if ( nVars > 3 ) pStore[3] = Kit_WordCountOnes_64bit( pTruth[0] & ABC_CONST(0x00FF00FF00FF00FF) ); if ( nVars > 4 ) pStore[4] = Kit_WordCountOnes_64bit( pTruth[0] & ABC_CONST(0x0000FFFF0000FFFF) ); if ( nVars > 5 ) pStore[5] = Kit_WordCountOnes_64bit( pTruth[0] & ABC_CONST(0x00000000FFFFFFFF) ); return; } // nVars > 6 // count 1's for all other variables for ( k = 0; k < nWords; k++ ) { Counter = Kit_WordCountOnes_64bit( pTruth[k] ); for ( i = 6; i < nVars; i++ ) if ( (k & (1 << (i-6))) == 0) pStore[i] += Counter; } // count 1's for the first six variables for ( k = nWords/2; k>0; k-- ) { pStore[0] += Kit_WordCountOnes_64bit( (pTruth[0] & ABC_CONST(0x5555555555555555)) | ((pTruth[1] & ABC_CONST(0x5555555555555555)) << 1) ); pStore[1] += Kit_WordCountOnes_64bit( (pTruth[0] & ABC_CONST(0x3333333333333333)) | ((pTruth[1] & ABC_CONST(0x3333333333333333)) << 2) ); pStore[2] += Kit_WordCountOnes_64bit( (pTruth[0] & ABC_CONST(0x0F0F0F0F0F0F0F0F)) | ((pTruth[1] & ABC_CONST(0x0F0F0F0F0F0F0F0F)) << 4) ); pStore[3] += Kit_WordCountOnes_64bit( (pTruth[0] & ABC_CONST(0x00FF00FF00FF00FF)) | ((pTruth[1] & ABC_CONST(0x00FF00FF00FF00FF)) << 8) ); pStore[4] += Kit_WordCountOnes_64bit( (pTruth[0] & ABC_CONST(0x0000FFFF0000FFFF)) | ((pTruth[1] & ABC_CONST(0x0000FFFF0000FFFF)) << 16) ); pStore[5] += Kit_WordCountOnes_64bit( (pTruth[0] & ABC_CONST(0x00000000FFFFFFFF)) | ((pTruth[1] & ABC_CONST(0x00000000FFFFFFFF)) << 32) ); pTruth += 2; } } void Kit_TruthChangePhase_64bit( word * pInOut, int nVars, int iVar ) { int nWords = Kit_TruthWordNum_64bit( nVars ); int i, Step,SizeOfBlock; word Temp[512]; assert( iVar < nVars ); if(iVar<=5) { for ( i = 0; i < nWords; i++ ) pInOut[i] = ((pInOut[i] & mask0[iVar]) << (1<<(iVar))) | ((pInOut[i] & ~mask0[iVar]) >> (1<<(iVar))); } else { Step = (1 << (iVar - 6)); SizeOfBlock = sizeof(word)*Step; for ( i = 0; i < nWords; i += 2*Step ) { memcpy(Temp,pInOut,SizeOfBlock); memcpy(pInOut,pInOut+Step,SizeOfBlock); memcpy(pInOut+Step,Temp,SizeOfBlock); // Temp = pInOut[i]; // pInOut[i] = pInOut[Step+i]; // pInOut[Step+i] = Temp; pInOut += 2*Step; } } } void Kit_TruthNot_64bit(word * pIn, int nVars ) { int w; for ( w = Kit_TruthWordNum_64bit(nVars)-1; w >= 0; w-- ) pIn[w] = ~pIn[w]; } void Kit_TruthCopy_64bit( word * pOut, word * pIn, int nVars ) { memcpy(pOut,pIn,Kit_TruthWordNum_64bit(nVars)*sizeof(word)); } void Kit_TruthSwapAdjacentVars_64bit( word * pInOut, int nVars, int iVar ) { int i, Step, Shift, SizeOfBlock; // word temp[256]; // to make only pInOut possible static word PMasks[5][3] = { { ABC_CONST(0x9999999999999999), ABC_CONST(0x2222222222222222), ABC_CONST(0x4444444444444444) }, { ABC_CONST(0xC3C3C3C3C3C3C3C3), ABC_CONST(0x0C0C0C0C0C0C0C0C), ABC_CONST(0x3030303030303030) }, { ABC_CONST(0xF00FF00FF00FF00F), ABC_CONST(0x00F000F000F000F0), ABC_CONST(0x0F000F000F000F00) }, { ABC_CONST(0xFF0000FFFF0000FF), ABC_CONST(0x0000FF000000FF00), ABC_CONST(0x00FF000000FF0000) }, { ABC_CONST(0xFFFF00000000FFFF), ABC_CONST(0x00000000FFFF0000), ABC_CONST(0x0000FFFF00000000) } }; int nWords = Kit_TruthWordNum_64bit( nVars ); assert( iVar < nVars - 1 ); if ( iVar < 5 ) { Shift = (1 << iVar); for ( i = 0; i < nWords; i++ ) pInOut[i] = (pInOut[i] & PMasks[iVar][0]) | ((pInOut[i] & PMasks[iVar][1]) << Shift) | ((pInOut[i] & PMasks[iVar][2]) >> Shift); } else if ( iVar > 5 ) { Step = 1 << (iVar - 6); SizeOfBlock = sizeof(word)*Step; pInOut += 2*Step; for(i=2*Step; i> 32; pInOut[i] = (pInOut[i] & 0x00000000FFFFFFFF) | temp[0]; } } } unsigned Kit_TruthSemiCanonicize_Yasha( word* pInOut, int nVars, char * pCanonPerm ) { int pStore[16]; int nWords = Kit_TruthWordNum_64bit( nVars ); int i, Temp, fChange, nOnes; unsigned uCanonPhase=0; assert( nVars <= 16 ); nOnes = Kit_TruthCountOnes_64bit(pInOut, nVars); if ( (nOnes > nWords * 32) ) { uCanonPhase |= (1 << nVars); Kit_TruthNot_64bit( pInOut, nVars ); nOnes = nWords*64 - nOnes; } // collect the minterm counts Kit_TruthCountOnesInCofs_64bit( pInOut, nVars, pStore ); // canonicize phase for ( i = 0; i < nVars; i++ ) { if ( pStore[i] >= nOnes-pStore[i]) continue; uCanonPhase |= (1 << i); pStore[i] = nOnes-pStore[i]; Kit_TruthChangePhase_64bit( pInOut, nVars, i ); } do { fChange = 0; for ( i = 0; i < nVars-1; i++ ) { if ( pStore[i] <= pStore[i+1] ) continue; fChange = 1; Temp = pCanonPerm[i]; pCanonPerm[i] = pCanonPerm[i+1]; pCanonPerm[i+1] = Temp; Temp = pStore[i]; pStore[i] = pStore[i+1]; pStore[i+1] = Temp; // if the polarity of variables is different, swap them if ( ((uCanonPhase & (1 << i)) > 0) != ((uCanonPhase & (1 << (i+1))) > 0) ) { uCanonPhase ^= (1 << i); uCanonPhase ^= (1 << (i+1)); } Kit_TruthSwapAdjacentVars_64bit( pInOut, nVars, i ); } } while ( fChange ); return uCanonPhase; } unsigned Kit_TruthSemiCanonicize_Yasha1( word* pInOut, int nVars, char * pCanonPerm, int * pStore ) { int nWords = Kit_TruthWordNum_64bit( nVars ); int i, fChange, nOnes; int Temp; unsigned uCanonPhase=0; assert( nVars <= 16 ); nOnes = Kit_TruthCountOnes_64bit(pInOut, nVars); if ( nOnes == nWords * 32 ) uCanonPhase |= (1 << (nVars+2)); else if ( (nOnes > nWords * 32) ) { uCanonPhase |= (1 << nVars); Kit_TruthNot_64bit( pInOut, nVars ); nOnes = nWords*64 - nOnes; } // collect the minterm counts Kit_TruthCountOnesInCofs_64bit( pInOut, nVars, pStore ); // canonicize phase for ( i = 0; i < nVars; i++ ) { if ( 2*pStore[i] == nOnes) { uCanonPhase |= (1 << (nVars+1)); continue; } if ( pStore[i] > nOnes-pStore[i]) continue; uCanonPhase |= (1 << i); pStore[i] = nOnes-pStore[i]; Kit_TruthChangePhase_64bit( pInOut, nVars, i ); } do { fChange = 0; for ( i = 0; i < nVars-1; i++ ) { if ( pStore[i] <= pStore[i+1] ) continue; fChange = 1; Temp = pCanonPerm[i]; pCanonPerm[i] = pCanonPerm[i+1]; pCanonPerm[i+1] = Temp; Temp = pStore[i]; pStore[i] = pStore[i+1]; pStore[i+1] = Temp; // if the polarity of variables is different, swap them if ( ((uCanonPhase & (1 << i)) > 0) != ((uCanonPhase & (1 << (i+1))) > 0) ) { uCanonPhase ^= (1 << i); uCanonPhase ^= (1 << (i+1)); } Kit_TruthSwapAdjacentVars_64bit( pInOut, nVars, i ); } } while ( fChange ); return uCanonPhase; } // unsigned Kit_TruthSemiCanonicize_Yasha_simple( word* pInOut, int nVars, char * pCanonPerm ) // { // unsigned uCanonPhase = 0; // int pStore[16]; // int nWords = Kit_TruthWordNum_64bit( nVars ); // int i, Temp, fChange, nOnes; // assert( nVars <= 16 ); // // nOnes = Kit_TruthCountOnes_64bit(pInOut, nVars); // // if ( (nOnes > nWords * 32) ) // { // Kit_TruthNot_64bit( pInOut, nVars ); // nOnes = nWords*64 - nOnes; // } // // // collect the minterm counts // Kit_TruthCountOnesInCofs_64bit( pInOut, nVars, pStore ); // // // canonicize phase // for ( i = 0; i < nVars; i++ ) // { // if ( pStore[i] >= nOnes-pStore[i]) // continue; // pStore[i] = nOnes-pStore[i]; // Kit_TruthChangePhase_64bit( pInOut, nVars, i ); // } // // do { // fChange = 0; // for ( i = 0; i < nVars-1; i++ ) // { // if ( pStore[i] <= pStore[i+1] ) // continue; // fChange = 1; // // Temp = pStore[i]; // pStore[i] = pStore[i+1]; // pStore[i+1] = Temp; // // Kit_TruthSwapAdjacentVars_64bit( pInOut, nVars, i ); // } // } while ( fChange ); // return uCanonPhase; // } void Kit_TruthSemiCanonicize_Yasha_simple( word* pInOut, int nVars, int * pStore ) { int nWords = Kit_TruthWordNum_64bit( nVars ); int i, Temp, fChange, nOnes; assert( nVars <= 16 ); nOnes = Kit_TruthCountOnes_64bit(pInOut, nVars); if ( (nOnes > nWords * 32) ) { Kit_TruthNot_64bit( pInOut, nVars ); nOnes = nWords*64 - nOnes; } // collect the minterm counts Kit_TruthCountOnesInCofs_64bit( pInOut, nVars, pStore ); // canonicize phase for ( i = 0; i < nVars; i++ ) { if ( pStore[i] >= nOnes-pStore[i]) continue; pStore[i] = nOnes-pStore[i]; Kit_TruthChangePhase_64bit( pInOut, nVars, i ); } do { fChange = 0; for ( i = 0; i < nVars-1; i++ ) { if ( pStore[i] <= pStore[i+1] ) continue; fChange = 1; Temp = pStore[i]; pStore[i] = pStore[i+1]; pStore[i+1] = Temp; Kit_TruthSwapAdjacentVars_64bit( pInOut, nVars, i ); } } while ( fChange ); } ABC_NAMESPACE_IMPL_END