/**CFile**************************************************************** FileName [ifTune.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [FPGA mapping based on priority cuts.] Synopsis [Library tuning.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - November 21, 2006.] Revision [$Id: ifTune.c,v 1.00 2006/11/21 00:00:00 alanmi Exp $] ***********************************************************************/ #include "if.h" #include "aig/gia/giaAig.h" #include "sat/bsat/satStore.h" #include "sat/cnf/cnf.h" #include "misc/extra/extra.h" #include "bool/kit/kit.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// #define IFN_INS 11 #define IFN_WRD (IFN_INS > 6 ? 1 << (IFN_INS-6) : 1) #define IFN_PAR 1024 // network types typedef enum { IFN_DSD_NONE = 0, // 0: unknown IFN_DSD_CONST0, // 1: constant IFN_DSD_VAR, // 2: variable IFN_DSD_AND, // 3: AND IFN_DSD_XOR, // 4: XOR IFN_DSD_MUX, // 5: MUX IFN_DSD_PRIME // 6: PRIME } Ifn_DsdType_t; // object types static char * Ifn_Symbs[16] = { NULL, // 0: unknown "const", // 1: constant "var", // 2: variable "()", // 3: AND "[]", // 4: XOR "<>", // 5: MUX "{}" // 6: PRIME }; typedef struct Ifn_Obj_t_ Ifn_Obj_t; struct Ifn_Obj_t_ { unsigned Type : 3; // node type unsigned nFanins : 5; // fanin counter unsigned iFirst : 8; // first parameter unsigned Var : 16; // current variable int Fanins[IFN_INS]; // fanin IDs }; struct Ifn_Ntk_t_ { // cell structure int nInps; // inputs int nObjs; // objects Ifn_Obj_t Nodes[2*IFN_INS]; // nodes // constraints int pConstr[IFN_INS]; // constraint pairs int nConstr; // number of pairs // user data int nVars; // variables int nWords; // truth table words int nParsVNum; // selection parameters per variable int nParsVIni; // first selection parameter int nPars; // total parameters word * pTruth; // user truth table // matching procedures int Values[IFN_PAR]; // variable values word pTtElems[IFN_INS*IFN_WRD]; // elementary truth tables word pTtObjs[2*IFN_INS*IFN_WRD]; // object truth tables }; static inline word * Ifn_ElemTruth( Ifn_Ntk_t * p, int i ) { return p->pTtElems + i * Abc_TtWordNum(p->nInps); } static inline word * Ifn_ObjTruth( Ifn_Ntk_t * p, int i ) { return p->pTtObjs + i * p->nWords; } // variable ordering // - primary inputs [0; p->nInps) // - internal nodes [p->nInps; p->nObjs) // - configuration params [p->nObjs; p->nParsVIni) // - variable selection params [p->nParsVIni; p->pPars) //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Prepare network to check the given function.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Ifn_Prepare( Ifn_Ntk_t * p, word * pTruth, int nVars ) { int i, fVerbose = 0; assert( nVars <= p->nInps ); p->pTruth = pTruth; p->nVars = nVars; p->nWords = Abc_TtWordNum(nVars); p->nPars = p->nObjs; for ( i = p->nInps; i < p->nObjs; i++ ) { if ( p->Nodes[i].Type != IFN_DSD_PRIME ) continue; p->Nodes[i].iFirst = p->nPars; p->nPars += (1 << p->Nodes[i].nFanins); if ( fVerbose ) printf( "Node %d Start %d Vars %d\n", i, p->Nodes[i].iFirst, (1 << p->Nodes[i].nFanins) ); } if ( fVerbose ) printf( "Groups start %d\n", p->nPars ); p->nParsVIni = p->nPars; p->nParsVNum = Abc_Base2Log(nVars); p->nPars += p->nParsVNum * p->nInps; assert( p->nPars <= IFN_PAR ); memset( p->Values, 0xFF, sizeof(int) * p->nPars ); return p->nPars; } void Ifn_NtkPrint( Ifn_Ntk_t * p ) { int i, k; if ( p == NULL ) printf( "String is empty.\n" ); if ( p == NULL ) return; for ( i = p->nInps; i < p->nObjs; i++ ) { printf( "%c=", 'a'+i ); printf( "%c", Ifn_Symbs[p->Nodes[i].Type][0] ); for ( k = 0; k < (int)p->Nodes[i].nFanins; k++ ) printf( "%c", 'a'+p->Nodes[i].Fanins[k] ); printf( "%c", Ifn_Symbs[p->Nodes[i].Type][1] ); printf( ";" ); } printf( "\n" ); } int Ifn_NtkLutSizeMax( Ifn_Ntk_t * p ) { int i, LutSize = 0; for ( i = p->nInps; i < p->nObjs; i++ ) if ( p->Nodes[i].Type == IFN_DSD_PRIME ) LutSize = Abc_MaxInt( LutSize, (int)p->Nodes[i].nFanins ); return LutSize; } int Ifn_NtkInputNum( Ifn_Ntk_t * p ) { return p->nInps; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Ifn_ErrorMessage( const char * format, ... ) { char * pMessage; va_list args; va_start( args, format ); pMessage = vnsprintf( format, args ); va_end( args ); printf( "%s", pMessage ); ABC_FREE( pMessage ); return 0; } int Inf_ManOpenSymb( char * pStr ) { if ( pStr[0] == '(' ) return 3; if ( pStr[0] == '[' ) return 4; if ( pStr[0] == '<' ) return 5; if ( pStr[0] == '{' ) return 6; return 0; } int Ifn_ManStrCheck( char * pStr, int * pnInps, int * pnObjs ) { int i, nNodes = 0, Marks[32] = {0}, MaxVar = -1; for ( i = 0; pStr[i]; i++ ) { if ( Inf_ManOpenSymb(pStr+i) ) nNodes++; if ( pStr[i] == ';' || pStr[i] == '(' || pStr[i] == ')' || pStr[i] == '[' || pStr[i] == ']' || pStr[i] == '<' || pStr[i] == '>' || pStr[i] == '{' || pStr[i] == '}' ) continue; if ( pStr[i] >= 'A' && pStr[i] <= 'Z' ) continue; if ( pStr[i] >= 'a' && pStr[i] <= 'z' ) { MaxVar = Abc_MaxInt( MaxVar, (int)(pStr[i] - 'a') ); Marks[pStr[i] - 'a'] = 1; continue; } return Ifn_ErrorMessage( "String \"%s\" contains unrecognized symbol \'%c\'.\n", pStr, pStr[i] ); } for ( i = 0; i <= MaxVar; i++ ) if ( Marks[i] == 0 ) return Ifn_ErrorMessage( "String \"%s\" has no symbol \'%c\'.\n", pStr, 'a' + i ); *pnInps = MaxVar + 1; *pnObjs = MaxVar + 1 + nNodes; return 1; } static inline char * Ifn_NtkParseFindClosingParenthesis( char * pStr, char Open, char Close ) { int Counter = 0; assert( *pStr == Open ); for ( ; *pStr; pStr++ ) { if ( *pStr == Open ) Counter++; if ( *pStr == Close ) Counter--; if ( Counter == 0 ) return pStr; } return NULL; } int Ifn_NtkParseInt_rec( char * pStr, Ifn_Ntk_t * p, char ** ppFinal, int * piNode ) { Ifn_Obj_t * pObj; int nFanins = 0, pFanins[IFN_INS]; int Type = Inf_ManOpenSymb( pStr ); char * pLim = Ifn_NtkParseFindClosingParenthesis( pStr++, Ifn_Symbs[Type][0], Ifn_Symbs[Type][1] ); *ppFinal = NULL; if ( pLim == NULL ) return Ifn_ErrorMessage( "For symbol \'%c\' cannot find matching symbol \'%c\'.\n", Ifn_Symbs[Type][0], Ifn_Symbs[Type][1] ); while ( pStr < pLim ) { assert( nFanins < IFN_INS ); if ( pStr[0] >= 'a' && pStr[0] <= 'z' ) pFanins[nFanins++] = pStr[0] - 'a', pStr++; else if ( Inf_ManOpenSymb(pStr) ) { if ( !Ifn_NtkParseInt_rec( pStr, p, &pStr, piNode ) ) return 0; pFanins[nFanins++] = *piNode - 1; } else return Ifn_ErrorMessage( "Substring \"%s\" contans unrecognized symbol \'%c\'.\n", pStr, pStr[0] ); } assert( pStr == pLim ); pObj = p->Nodes + (*piNode)++; pObj->Type = Type; assert( pObj->nFanins == 0 ); pObj->nFanins = nFanins; memcpy( pObj->Fanins, pFanins, sizeof(int) * nFanins ); *ppFinal = pLim + 1; if ( Type == IFN_DSD_MUX && nFanins != 3 ) return Ifn_ErrorMessage( "MUX should have exactly three fanins.\n" ); return 1; } int Ifn_NtkParseInt( char * pStr, Ifn_Ntk_t * p ) { char * pFinal; int iNode; if ( !Ifn_ManStrCheck(pStr, &p->nInps, &p->nObjs) ) return 0; if ( p->nInps > IFN_INS ) return Ifn_ErrorMessage( "The number of variables (%d) exceeds predefined limit (%d). Recompile with different value of IFN_INS.\n", p->nInps, IFN_INS ); assert( p->nInps > 1 && p->nInps < p->nObjs && p->nInps <= IFN_INS && p->nObjs < 2*IFN_INS ); if ( !Inf_ManOpenSymb(pStr) ) return Ifn_ErrorMessage( "The first symbol should be one of the symbols: (, [, <, {.\n" ); iNode = p->nInps; if ( !Ifn_NtkParseInt_rec( pStr, p, &pFinal, &iNode ) ) return 0; if ( pFinal[0] && pFinal[0] != ';' ) return Ifn_ErrorMessage( "The last symbol should be \';\'.\n" ); if ( iNode != p->nObjs ) return Ifn_ErrorMessage( "Mismatch in the number of nodes.\n" ); return 1; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Ifn_ManStrType2( char * pStr ) { int i; for ( i = 0; pStr[i]; i++ ) if ( pStr[i] == '=' ) return 1; return 0; } int Ifn_ManStrCheck2( char * pStr, int * pnInps, int * pnObjs ) { int i, Marks[32] = {0}, MaxVar = 0, MaxDef = 0; for ( i = 0; pStr[i]; i++ ) { if ( pStr[i] == '=' || pStr[i] == ';' || pStr[i] == '(' || pStr[i] == ')' || pStr[i] == '[' || pStr[i] == ']' || pStr[i] == '<' || pStr[i] == '>' || pStr[i] == '{' || pStr[i] == '}' ) continue; if ( pStr[i] >= 'A' && pStr[i] <= 'Z' ) continue; if ( pStr[i] >= 'a' && pStr[i] <= 'z' ) { if ( pStr[i+1] == '=' ) Marks[pStr[i] - 'a'] = 2, MaxDef = Abc_MaxInt(MaxDef, pStr[i] - 'a'); continue; } return Ifn_ErrorMessage( "String \"%s\" contains unrecognized symbol \'%c\'.\n", pStr, pStr[i] ); } for ( i = 0; pStr[i]; i++ ) { if ( pStr[i] == '=' || pStr[i] == ';' || pStr[i] == '(' || pStr[i] == ')' || pStr[i] == '[' || pStr[i] == ']' || pStr[i] == '<' || pStr[i] == '>' || pStr[i] == '{' || pStr[i] == '}' ) continue; if ( pStr[i] >= 'A' && pStr[i] <= 'Z' ) continue; if ( pStr[i] >= 'a' && pStr[i] <= 'z' ) { if ( pStr[i+1] != '=' && Marks[pStr[i] - 'a'] != 2 ) Marks[pStr[i] - 'a'] = 1, MaxVar = Abc_MaxInt(MaxVar, pStr[i] - 'a'); continue; } return Ifn_ErrorMessage( "String \"%s\" contains unrecognized symbol \'%c\'.\n", pStr, pStr[i] ); } MaxVar++; MaxDef++; for ( i = 0; i < MaxDef; i++ ) if ( Marks[i] == 0 ) return Ifn_ErrorMessage( "String \"%s\" has no symbol \'%c\'.\n", pStr, 'a' + i ); for ( i = 0; i < MaxVar; i++ ) if ( Marks[i] == 2 ) return Ifn_ErrorMessage( "String \"%s\" has definition of input variable \'%c\'.\n", pStr, 'a' + i ); for ( i = MaxVar; i < MaxDef; i++ ) if ( Marks[i] == 1 ) return Ifn_ErrorMessage( "String \"%s\" has no definition for internal variable \'%c\'.\n", pStr, 'a' + i ); *pnInps = MaxVar; *pnObjs = MaxDef; return 1; } int Ifn_NtkParseInt2( char * pStr, Ifn_Ntk_t * p ) { int i, k, n, f, nFans, iFan; if ( !Ifn_ManStrCheck2(pStr, &p->nInps, &p->nObjs) ) return 0; if ( p->nInps > IFN_INS ) return Ifn_ErrorMessage( "The number of variables (%d) exceeds predefined limit (%d). Recompile with different value of IFN_INS.\n", p->nInps, IFN_INS ); assert( p->nInps > 1 && p->nInps < p->nObjs && p->nInps <= IFN_INS && p->nObjs < 2*IFN_INS ); for ( i = p->nInps; i < p->nObjs; i++ ) { char Next = 0; for ( k = 0; pStr[k]; k++ ) if ( pStr[k] == 'a' + i && pStr[k+1] == '=' ) break; if ( pStr[k] == 0 ) return Ifn_ErrorMessage( "Cannot find definition of signal \'%c\'.\n", 'a' + i ); if ( pStr[k+2] == '(' ) p->Nodes[i].Type = IFN_DSD_AND, Next = ')'; else if ( pStr[k+2] == '[' ) p->Nodes[i].Type = IFN_DSD_XOR, Next = ']'; else if ( pStr[k+2] == '<' ) p->Nodes[i].Type = IFN_DSD_MUX, Next = '>'; else if ( pStr[k+2] == '{' ) p->Nodes[i].Type = IFN_DSD_PRIME, Next = '}'; else return Ifn_ErrorMessage( "Cannot find openning operation symbol in the defition of of signal \'%c\'.\n", 'a' + i ); for ( n = k + 3; pStr[n]; n++ ) if ( pStr[n] == Next ) break; if ( pStr[n] == 0 ) return Ifn_ErrorMessage( "Cannot find closing operation symbol in the defition of of signal \'%c\'.\n", 'a' + i ); nFans = n - k - 3; if ( nFans < 1 || nFans > 8 ) return Ifn_ErrorMessage( "Cannot find matching operation symbol in the defition of of signal \'%c\'.\n", 'a' + i ); for ( f = 0; f < nFans; f++ ) { iFan = pStr[k + 3 + f] - 'a'; if ( iFan < 0 || iFan >= i ) return Ifn_ErrorMessage( "Fanin number %d is signal %d is out of range.\n", f, 'a' + i ); p->Nodes[i].Fanins[f] = iFan; } p->Nodes[i].nFanins = nFans; } return 1; } void Ifn_NtkParseConstraints( char * pStr, Ifn_Ntk_t * p ) { int i, k; // parse constraints p->nConstr = 0; for ( i = 0; i < p->nInps; i++ ) for ( k = 0; pStr[k]; k++ ) if ( pStr[k] == 'A' + i && pStr[k-1] == ';' ) { p->pConstr[p->nConstr++] = ((int)(pStr[k] - 'A') << 16) | (int)(pStr[k+1] - 'A'); // printf( "Added constraint (%c < %c)\n", pStr[k], pStr[k+1] ); } // if ( p->nConstr ) // printf( "Total constraints = %d\n", p->nConstr ); } Ifn_Ntk_t * Ifn_NtkParse( char * pStr ) { Ifn_Ntk_t * p = ABC_CALLOC( Ifn_Ntk_t, 1 ); if ( Ifn_ManStrType2(pStr) ) { if ( !Ifn_NtkParseInt2( pStr, p ) ) { ABC_FREE( p ); return NULL; } } else { if ( !Ifn_NtkParseInt( pStr, p ) ) { ABC_FREE( p ); return NULL; } } Ifn_NtkParseConstraints( pStr, p ); Abc_TtElemInit2( p->pTtElems, p->nInps ); // printf( "Finished parsing: " ); Ifn_NtkPrint(p); return p; } /**Function************************************************************* Synopsis [Derive AIG.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Gia_Man_t * Ifn_ManStrFindModel( Ifn_Ntk_t * p ) { Gia_Man_t * pNew, * pTemp; int i, k, iLit, * pVarMap = ABC_FALLOC( int, p->nParsVIni ); pNew = Gia_ManStart( 1000 ); pNew->pName = Abc_UtilStrsav( "model" ); Gia_ManHashStart( pNew ); for ( i = 0; i < p->nInps; i++ ) pVarMap[i] = Gia_ManAppendCi(pNew); for ( i = p->nObjs; i < p->nParsVIni; i++ ) pVarMap[i] = Gia_ManAppendCi(pNew); for ( i = p->nInps; i < p->nObjs; i++ ) { int Type = p->Nodes[i].Type; int nFans = p->Nodes[i].nFanins; int * pFans = p->Nodes[i].Fanins; int iFanin = p->Nodes[i].iFirst; if ( Type == IFN_DSD_AND ) { iLit = 1; for ( k = 0; k < nFans; k++ ) iLit = Gia_ManHashAnd( pNew, iLit, pVarMap[pFans[k]] ); pVarMap[i] = iLit; } else if ( Type == IFN_DSD_XOR ) { iLit = 0; for ( k = 0; k < nFans; k++ ) iLit = Gia_ManHashXor( pNew, iLit, pVarMap[pFans[k]] ); pVarMap[i] = iLit; } else if ( Type == IFN_DSD_MUX ) { assert( nFans == 3 ); pVarMap[i] = Gia_ManHashMux( pNew, pVarMap[pFans[0]], pVarMap[pFans[1]], pVarMap[pFans[2]] ); } else if ( Type == IFN_DSD_PRIME ) { int n, Step, pVarsData[256]; int nMints = (1 << nFans); assert( nFans >= 1 && nFans <= 8 ); for ( k = 0; k < nMints; k++ ) pVarsData[k] = pVarMap[iFanin + k]; for ( Step = 1, k = 0; k < nFans; k++, Step <<= 1 ) for ( n = 0; n < nMints; n += Step << 1 ) pVarsData[n] = Gia_ManHashMux( pNew, pVarMap[pFans[k]], pVarsData[n+Step], pVarsData[n] ); assert( Step == nMints ); pVarMap[i] = pVarsData[0]; } else assert( 0 ); } Gia_ManAppendCo( pNew, pVarMap[p->nObjs-1] ); ABC_FREE( pVarMap ); pNew = Gia_ManCleanup( pTemp = pNew ); Gia_ManStop( pTemp ); assert( Gia_ManPiNum(pNew) == p->nParsVIni - (p->nObjs - p->nInps) ); assert( Gia_ManPoNum(pNew) == 1 ); return pNew; } // compute cofactors w.r.t. the first nIns variables Gia_Man_t * Ifn_ManStrFindCofactors( int nIns, Gia_Man_t * p ) { Gia_Man_t * pNew, * pTemp; Gia_Obj_t * pObj; int i, m, nMints = 1 << nIns; pNew = Gia_ManStart( Gia_ManObjNum(p) ); pNew->pName = Abc_UtilStrsav( p->pName ); Gia_ManHashAlloc( pNew ); Gia_ManConst0(p)->Value = 0; Gia_ManForEachCi( p, pObj, i ) if ( i >= nIns ) pObj->Value = Gia_ManAppendCi( pNew ); for ( m = 0; m < nMints; m++ ) { Gia_ManForEachCi( p, pObj, i ) if ( i < nIns ) pObj->Value = ((m >> i) & 1); Gia_ManForEachAnd( p, pObj, i ) pObj->Value = Gia_ManHashAnd( pNew, Gia_ObjFanin0Copy(pObj), Gia_ObjFanin1Copy(pObj) ); Gia_ManForEachPo( p, pObj, i ) pObj->Value = Gia_ManAppendCo( pNew, Gia_ObjFanin0Copy(pObj) ); } pNew = Gia_ManCleanup( pTemp = pNew ); Gia_ManStop( pTemp ); return pNew; } /**Function************************************************************* Synopsis [Derive SAT solver.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline Cnf_Dat_t * Cnf_DeriveGiaRemapped( Gia_Man_t * p ) { Cnf_Dat_t * pCnf; Aig_Man_t * pAig = Gia_ManToAigSimple( p ); pAig->nRegs = 0; pCnf = Cnf_Derive( pAig, Aig_ManCoNum(pAig) ); Aig_ManStop( pAig ); return pCnf; } sat_solver * Ifn_ManStrFindSolver( Gia_Man_t * p, Vec_Int_t ** pvPiVars, Vec_Int_t ** pvPoVars ) { sat_solver * pSat; Gia_Obj_t * pObj; Cnf_Dat_t * pCnf; int i; pCnf = Cnf_DeriveGiaRemapped( p ); // start the SAT solver pSat = sat_solver_new(); sat_solver_setnvars( pSat, pCnf->nVars ); // add timeframe clauses for ( i = 0; i < pCnf->nClauses; i++ ) if ( !sat_solver_addclause( pSat, pCnf->pClauses[i], pCnf->pClauses[i+1] ) ) assert( 0 ); // inputs/outputs *pvPiVars = Vec_IntAlloc( Gia_ManPiNum(p) ); Gia_ManForEachCi( p, pObj, i ) Vec_IntPush( *pvPiVars, pCnf->pVarNums[Gia_ObjId(p, pObj)] ); *pvPoVars = Vec_IntAlloc( Gia_ManPoNum(p) ); Gia_ManForEachCo( p, pObj, i ) Vec_IntPush( *pvPoVars, pCnf->pVarNums[Gia_ObjId(p, pObj)] ); Cnf_DataFree( pCnf ); return pSat; } sat_solver * Ifn_ManSatBuild( Ifn_Ntk_t * p, Vec_Int_t ** pvPiVars, Vec_Int_t ** pvPoVars ) { Gia_Man_t * p1, * p2; sat_solver * pSat = NULL; *pvPiVars = *pvPoVars = NULL; p1 = Ifn_ManStrFindModel( p ); // Gia_AigerWrite( p1, "satbuild.aig", 0, 0 ); p2 = Ifn_ManStrFindCofactors( p->nInps, p1 ); Gia_ManStop( p1 ); // Gia_AigerWrite( p2, "satbuild2.aig", 0, 0 ); pSat = Ifn_ManStrFindSolver( p2, pvPiVars, pvPoVars ); Gia_ManStop( p2 ); return pSat; } void * If_ManSatBuildFromCell( char * pStr, Vec_Int_t ** pvPiVars, Vec_Int_t ** pvPoVars, Ifn_Ntk_t ** ppNtk ) { Ifn_Ntk_t * p = Ifn_NtkParse( pStr ); Ifn_Prepare( p, NULL, p->nInps ); *ppNtk = p; if ( p == NULL ) return NULL; // Ifn_NtkPrint( p ); return Ifn_ManSatBuild( p, pvPiVars, pvPoVars ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Ifn_ManSatPrintPerm( char * pPerms, int nVars ) { int i; for ( i = 0; i < nVars; i++ ) printf( "%c", 'a' + pPerms[i] ); printf( "\n" ); } int Ifn_ManSatCheckOne( sat_solver * pSat, Vec_Int_t * vPoVars, word * pTruth, int nVars, int * pPerm, int nInps, Vec_Int_t * vLits ) { int v, Value, m, mNew, nMints = (1 << nVars); // (1 << nInps); assert( (1 << nInps) == Vec_IntSize(vPoVars) ); assert( nVars <= nInps ); // remap minterms Vec_IntFill( vLits, Vec_IntSize(vPoVars), -1 ); for ( m = 0; m < nMints; m++ ) { mNew = 0; for ( v = 0; v < nInps; v++ ) { assert( pPerm[v] < nVars ); if ( ((m >> pPerm[v]) & 1) ) mNew |= (1 << v); } assert( Vec_IntEntry(vLits, mNew) == -1 ); Vec_IntWriteEntry( vLits, mNew, Abc_TtGetBit(pTruth, m) ); } // find assumptions v = 0; Vec_IntForEachEntry( vLits, Value, m ) if ( Value >= 0 ) Vec_IntWriteEntry( vLits, v++, Abc_Var2Lit(Vec_IntEntry(vPoVars, m), !Value) ); Vec_IntShrink( vLits, v ); // run SAT solver Value = sat_solver_solve( pSat, Vec_IntArray(vLits), Vec_IntArray(vLits) + Vec_IntSize(vLits), 0, 0, 0, 0 ); return (int)(Value == l_True); } void Ifn_ManSatDeriveOne( sat_solver * pSat, Vec_Int_t * vPiVars, Vec_Int_t * vValues ) { int i, iVar; Vec_IntClear( vValues ); Vec_IntForEachEntry( vPiVars, iVar, i ) Vec_IntPush( vValues, sat_solver_var_value(pSat, iVar) ); } int If_ManSatFindCofigBits( void * pSat, Vec_Int_t * vPiVars, Vec_Int_t * vPoVars, word * pTruth, int nVars, word Perm, int nInps, Vec_Int_t * vValues ) { // extract permutation int RetValue, i, pPerm[IF_MAX_FUNC_LUTSIZE]; assert( nInps <= IF_MAX_FUNC_LUTSIZE ); for ( i = 0; i < nInps; i++ ) { pPerm[i] = Abc_TtGetHex( &Perm, i ); assert( pPerm[i] < nVars ); } // perform SAT check RetValue = Ifn_ManSatCheckOne( (sat_solver *)pSat, vPoVars, pTruth, nVars, pPerm, nInps, vValues ); Vec_IntClear( vValues ); if ( RetValue == 0 ) return 0; Ifn_ManSatDeriveOne( pSat, vPiVars, vValues ); return 1; } int Ifn_ManSatFindCofigBitsTest( Ifn_Ntk_t * p, word * pTruth, int nVars, word Perm ) { Vec_Int_t * vValues = Vec_IntAlloc( 100 ); Vec_Int_t * vPiVars, * vPoVars; sat_solver * pSat = Ifn_ManSatBuild( p, &vPiVars, &vPoVars ); int RetValue = If_ManSatFindCofigBits( pSat, vPiVars, vPoVars, pTruth, nVars, Perm, p->nInps, vValues ); Vec_IntPrint( vValues ); // cleanup sat_solver_delete( pSat ); Vec_IntFreeP( &vPiVars ); Vec_IntFreeP( &vPoVars ); Vec_IntFreeP( &vValues ); return RetValue; } /**Function************************************************************* Synopsis [Derive GIA using programmable bits.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int If_ManSatDeriveGiaFromBits( void * pGia, Ifn_Ntk_t * p, Vec_Int_t * vValues, Vec_Int_t * vCover ) { Gia_Man_t * pNew = (Gia_Man_t *)pGia; int i, Id, k, iLit, iVar = 0, nVarsNew, pVarMap[1000]; assert( Gia_ManCiNum(pNew) == p->nInps && p->nParsVIni < 1000 ); Gia_ManForEachCiId( pNew, Id, i ) pVarMap[i] = Abc_Var2Lit( Id, 0 ); for ( i = p->nInps; i < p->nObjs; i++ ) { int Type = p->Nodes[i].Type; int nFans = p->Nodes[i].nFanins; int * pFans = p->Nodes[i].Fanins; //int iFanin = p->Nodes[i].iFirst; assert( nFans <= 6 ); if ( Type == IFN_DSD_AND ) { iLit = 1; for ( k = 0; k < nFans; k++ ) iLit = Gia_ManHashAnd( pNew, iLit, pVarMap[pFans[k]] ); pVarMap[i] = iLit; } else if ( Type == IFN_DSD_XOR ) { iLit = 0; for ( k = 0; k < nFans; k++ ) iLit = Gia_ManHashXor( pNew, iLit, pVarMap[pFans[k]] ); pVarMap[i] = iLit; } else if ( Type == IFN_DSD_MUX ) { assert( nFans == 3 ); pVarMap[i] = Gia_ManHashMux( pNew, pVarMap[pFans[0]], pVarMap[pFans[1]], pVarMap[pFans[2]] ); } else if ( Type == IFN_DSD_PRIME ) { int pFaninLits[16]; // collect truth table word uTruth = 0; int nMints = (1 << nFans); for ( k = 0; k < nMints; k++ ) if ( Vec_IntEntry( vValues, iVar++ ) ) uTruth |= ((word)1 << k); uTruth = Abc_Tt6Stretch( uTruth, nFans ); // collect function for ( k = 0; k < nFans; k++ ) pFaninLits[k] = pVarMap[pFans[k]]; // implement the function nVarsNew = Abc_TtMinBase( &uTruth, pFaninLits, nFans, 6 ); if ( nVarsNew == 0 ) pVarMap[i] = (int)(uTruth & 1); else { extern int Kit_TruthToGia( Gia_Man_t * pMan, unsigned * pTruth, int nVars, Vec_Int_t * vMemory, Vec_Int_t * vLeaves, int fHash ); Vec_Int_t Leaves = { nVarsNew, nVarsNew, pFaninLits }; pVarMap[i] = Kit_TruthToGia( pNew, (unsigned *)&uTruth, nVarsNew, vCover, &Leaves, 1 ); // hashing enabled!!! } } else assert( 0 ); } assert( iVar == Vec_IntSize(vValues) ); return pVarMap[p->nObjs - 1]; } /**Function************************************************************* Synopsis [Derive truth table given the configulation values.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ word * Ifn_NtkDeriveTruth( Ifn_Ntk_t * p, int * pValues ) { int i, v, f, iVar, iStart; // elementary variables for ( i = 0; i < p->nInps; i++ ) { // find variable iStart = p->nParsVIni + i * p->nParsVNum; for ( v = iVar = 0; v < p->nParsVNum; v++ ) if ( p->Values[iStart+v] ) iVar += (1 << v); // assign variable Abc_TtCopy( Ifn_ObjTruth(p, i), Ifn_ElemTruth(p, iVar), p->nWords, 0 ); } // internal variables for ( i = p->nInps; i < p->nObjs; i++ ) { int nFans = p->Nodes[i].nFanins; int * pFans = p->Nodes[i].Fanins; word * pTruth = Ifn_ObjTruth( p, i ); if ( p->Nodes[i].Type == IFN_DSD_AND ) { Abc_TtFill( pTruth, p->nWords ); for ( f = 0; f < nFans; f++ ) Abc_TtAnd( pTruth, pTruth, Ifn_ObjTruth(p, pFans[f]), p->nWords, 0 ); } else if ( p->Nodes[i].Type == IFN_DSD_XOR ) { Abc_TtClear( pTruth, p->nWords ); for ( f = 0; f < nFans; f++ ) Abc_TtXor( pTruth, pTruth, Ifn_ObjTruth(p, pFans[f]), p->nWords, 0 ); } else if ( p->Nodes[i].Type == IFN_DSD_MUX ) { assert( nFans == 3 ); Abc_TtMux( pTruth, Ifn_ObjTruth(p, pFans[0]), Ifn_ObjTruth(p, pFans[1]), Ifn_ObjTruth(p, pFans[2]), p->nWords ); } else if ( p->Nodes[i].Type == IFN_DSD_PRIME ) { int nValues = (1 << nFans); word * pTemp = Ifn_ObjTruth(p, p->nObjs); Abc_TtClear( pTruth, p->nWords ); for ( v = 0; v < nValues; v++ ) { if ( pValues[p->Nodes[i].iFirst + v] == 0 ) continue; Abc_TtFill( pTemp, p->nWords ); for ( f = 0; f < nFans; f++ ) if ( (v >> f) & 1 ) Abc_TtAnd( pTemp, pTemp, Ifn_ObjTruth(p, pFans[f]), p->nWords, 0 ); else Abc_TtSharp( pTemp, pTemp, Ifn_ObjTruth(p, pFans[f]), p->nWords ); Abc_TtOr( pTruth, pTruth, pTemp, p->nWords ); } } else assert( 0 ); //Dau_DsdPrintFromTruth( pTruth, p->nVars ); } return Ifn_ObjTruth(p, p->nObjs-1); } /**Function************************************************************* Synopsis [Compute more or equal] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Ifn_TtComparisonConstr( word * pTruth, int nVars, int fMore, int fEqual ) { word Cond[4], Equa[4], Temp[4]; word s_TtElems[8][4] = { { ABC_CONST(0xAAAAAAAAAAAAAAAA),ABC_CONST(0xAAAAAAAAAAAAAAAA),ABC_CONST(0xAAAAAAAAAAAAAAAA),ABC_CONST(0xAAAAAAAAAAAAAAAA) }, { ABC_CONST(0xCCCCCCCCCCCCCCCC),ABC_CONST(0xCCCCCCCCCCCCCCCC),ABC_CONST(0xCCCCCCCCCCCCCCCC),ABC_CONST(0xCCCCCCCCCCCCCCCC) }, { ABC_CONST(0xF0F0F0F0F0F0F0F0),ABC_CONST(0xF0F0F0F0F0F0F0F0),ABC_CONST(0xF0F0F0F0F0F0F0F0),ABC_CONST(0xF0F0F0F0F0F0F0F0) }, { ABC_CONST(0xFF00FF00FF00FF00),ABC_CONST(0xFF00FF00FF00FF00),ABC_CONST(0xFF00FF00FF00FF00),ABC_CONST(0xFF00FF00FF00FF00) }, { ABC_CONST(0xFFFF0000FFFF0000),ABC_CONST(0xFFFF0000FFFF0000),ABC_CONST(0xFFFF0000FFFF0000),ABC_CONST(0xFFFF0000FFFF0000) }, { ABC_CONST(0xFFFFFFFF00000000),ABC_CONST(0xFFFFFFFF00000000),ABC_CONST(0xFFFFFFFF00000000),ABC_CONST(0xFFFFFFFF00000000) }, { ABC_CONST(0x0000000000000000),ABC_CONST(0xFFFFFFFFFFFFFFFF),ABC_CONST(0x0000000000000000),ABC_CONST(0xFFFFFFFFFFFFFFFF) }, { ABC_CONST(0x0000000000000000),ABC_CONST(0x0000000000000000),ABC_CONST(0xFFFFFFFFFFFFFFFF),ABC_CONST(0xFFFFFFFFFFFFFFFF) } }; int i, nWords = Abc_TtWordNum(2*nVars); assert( nVars > 0 && nVars <= 4 ); Abc_TtClear( pTruth, nWords ); Abc_TtFill( Equa, nWords ); for ( i = nVars - 1; i >= 0; i-- ) { if ( fMore ) Abc_TtSharp( Cond, s_TtElems[2*i+1], s_TtElems[2*i+0], nWords ); else Abc_TtSharp( Cond, s_TtElems[2*i+0], s_TtElems[2*i+1], nWords ); Abc_TtAnd( Temp, Equa, Cond, nWords, 0 ); Abc_TtOr( pTruth, pTruth, Temp, nWords ); Abc_TtXor( Temp, s_TtElems[2*i+0], s_TtElems[2*i+1], nWords, 1 ); Abc_TtAnd( Equa, Equa, Temp, nWords, 0 ); } if ( fEqual ) Abc_TtNot( pTruth, nWords ); } /**Function************************************************************* Synopsis [Adds parameter constraints.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Ifn_AddClause( sat_solver * pSat, int * pBeg, int * pEnd ) { int fVerbose = 0; int RetValue = sat_solver_addclause( pSat, pBeg, pEnd ); if ( fVerbose ) { for ( ; pBeg < pEnd; pBeg++ ) printf( "%c%d ", Abc_LitIsCompl(*pBeg) ? '-':'+', Abc_Lit2Var(*pBeg) ); printf( "\n" ); } return RetValue; } void Ifn_NtkAddConstrOne( sat_solver * pSat, Vec_Int_t * vCover, int * pVars, int nVars ) { int RetValue, k, c, Cube, Literal, nLits, pLits[IFN_INS]; Vec_IntForEachEntry( vCover, Cube, c ) { nLits = 0; for ( k = 0; k < nVars; k++ ) { Literal = 3 & (Cube >> (k << 1)); if ( Literal == 1 ) // '0' -> pos lit pLits[nLits++] = Abc_Var2Lit(pVars[k], 0); else if ( Literal == 2 ) // '1' -> neg lit pLits[nLits++] = Abc_Var2Lit(pVars[k], 1); else if ( Literal != 0 ) assert( 0 ); } RetValue = Ifn_AddClause( pSat, pLits, pLits + nLits ); assert( RetValue ); } } void Ifn_NtkAddConstraints( Ifn_Ntk_t * p, sat_solver * pSat ) { int fAddConstr = 1; Vec_Int_t * vCover = Vec_IntAlloc( 0 ); word uTruth = Abc_Tt6Stretch( ~Abc_Tt6Mask(p->nVars), p->nParsVNum ); assert( p->nParsVNum <= 4 ); if ( uTruth ) { int i, k, pVars[IFN_INS]; int RetValue = Kit_TruthIsop( (unsigned *)&uTruth, p->nParsVNum, vCover, 0 ); assert( RetValue == 0 ); // Dau_DsdPrintFromTruth( &uTruth, p->nParsVNum ); // add capacity constraints for ( i = 0; i < p->nInps; i++ ) { for ( k = 0; k < p->nParsVNum; k++ ) pVars[k] = p->nParsVIni + i * p->nParsVNum + k; Ifn_NtkAddConstrOne( pSat, vCover, pVars, p->nParsVNum ); } } // ordering constraints if ( fAddConstr && p->nConstr ) { word pTruth[4]; int i, k, RetValue, pVars[2*IFN_INS]; int fForceDiff = (p->nVars == p->nInps); Ifn_TtComparisonConstr( pTruth, p->nParsVNum, fForceDiff, fForceDiff ); RetValue = Kit_TruthIsop( (unsigned *)pTruth, 2*p->nParsVNum, vCover, 0 ); assert( RetValue == 0 ); // Kit_TruthIsopPrintCover( vCover, 2*p->nParsVNum, 0 ); for ( i = 0; i < p->nConstr; i++ ) { int iVar1 = p->pConstr[i] >> 16; int iVar2 = p->pConstr[i] & 0xFFFF; for ( k = 0; k < p->nParsVNum; k++ ) { pVars[2*k+0] = p->nParsVIni + iVar1 * p->nParsVNum + k; pVars[2*k+1] = p->nParsVIni + iVar2 * p->nParsVNum + k; } Ifn_NtkAddConstrOne( pSat, vCover, pVars, 2*p->nParsVNum ); // printf( "added constraint with %d clauses for %d and %d\n", Vec_IntSize(vCover), iVar1, iVar2 ); } } Vec_IntFree( vCover ); } /**Function************************************************************* Synopsis [Derive clauses given variable assignment.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Ifn_NtkAddClauses( Ifn_Ntk_t * p, int * pValues, sat_solver * pSat ) { int i, f, v, nLits, pLits[IFN_INS+2], pLits2[IFN_INS+2]; // assign new variables int nSatVars = sat_solver_nvars(pSat); for ( i = 0; i < p->nObjs-1; i++ ) p->Nodes[i].Var = nSatVars++; p->Nodes[p->nObjs-1].Var = 0xFFFF; sat_solver_setnvars( pSat, nSatVars ); // verify variable values for ( i = 0; i < p->nVars; i++ ) assert( pValues[i] != -1 ); for ( i = p->nVars; i < p->nObjs-1; i++ ) assert( pValues[i] == -1 ); assert( pValues[p->nObjs-1] != -1 ); // internal variables //printf( "\n" ); for ( i = 0; i < p->nInps; i++ ) { int iParStart = p->nParsVIni + i * p->nParsVNum; for ( v = 0; v < p->nVars; v++ ) { // add output literal pLits[0] = Abc_Var2Lit( p->Nodes[i].Var, pValues[v]==0 ); // add clause literals for ( f = 0; f < p->nParsVNum; f++ ) pLits[f+1] = Abc_Var2Lit( iParStart + f, (v >> f) & 1 ); if ( !Ifn_AddClause( pSat, pLits, pLits+p->nParsVNum+1 ) ) return 0; } } //printf( "\n" ); for ( i = p->nInps; i < p->nObjs; i++ ) { int nFans = p->Nodes[i].nFanins; int * pFans = p->Nodes[i].Fanins; if ( p->Nodes[i].Type == IFN_DSD_AND ) { nLits = 0; pLits[nLits++] = Abc_Var2Lit( p->Nodes[i].Var, 0 ); for ( f = 0; f < nFans; f++ ) { pLits[nLits++] = Abc_Var2Lit( p->Nodes[pFans[f]].Var, 1 ); // add small clause pLits2[0] = Abc_Var2Lit( p->Nodes[i].Var, 1 ); pLits2[1] = Abc_Var2Lit( p->Nodes[pFans[f]].Var, 0 ); if ( !Ifn_AddClause( pSat, pLits2, pLits2 + 2 ) ) return 0; } // add big clause if ( !Ifn_AddClause( pSat, pLits, pLits + nLits ) ) return 0; } else if ( p->Nodes[i].Type == IFN_DSD_XOR ) { int m, nMints = (1 << (nFans+1)); for ( m = 0; m < nMints; m++ ) { // skip even int Count = 0; for ( v = 0; v <= nFans; v++ ) Count += ((m >> v) & 1); if ( (Count & 1) == 0 ) continue; // generate minterm pLits[0] = Abc_Var2Lit( p->Nodes[i].Var, (m >> nFans) & 1 ); for ( v = 0; v < nFans; v++ ) pLits[v+1] = Abc_Var2Lit( p->Nodes[pFans[v]].Var, (m >> v) & 1 ); if ( !Ifn_AddClause( pSat, pLits, pLits + nFans + 1 ) ) return 0; } } else if ( p->Nodes[i].Type == IFN_DSD_MUX ) { pLits[0] = Abc_Var2Lit( p->Nodes[i].Var, 0 ); pLits[1] = Abc_Var2Lit( p->Nodes[pFans[0]].Var, 1 ); // ctrl pLits[2] = Abc_Var2Lit( p->Nodes[pFans[1]].Var, 1 ); if ( !Ifn_AddClause( pSat, pLits, pLits + 3 ) ) return 0; pLits[0] = Abc_Var2Lit( p->Nodes[i].Var, 1 ); pLits[1] = Abc_Var2Lit( p->Nodes[pFans[0]].Var, 1 ); // ctrl pLits[2] = Abc_Var2Lit( p->Nodes[pFans[1]].Var, 0 ); if ( !Ifn_AddClause( pSat, pLits, pLits + 3 ) ) return 0; pLits[0] = Abc_Var2Lit( p->Nodes[i].Var, 0 ); pLits[1] = Abc_Var2Lit( p->Nodes[pFans[0]].Var, 0 ); // ctrl pLits[2] = Abc_Var2Lit( p->Nodes[pFans[2]].Var, 1 ); if ( !Ifn_AddClause( pSat, pLits, pLits + 3 ) ) return 0; pLits[0] = Abc_Var2Lit( p->Nodes[i].Var, 1 ); pLits[1] = Abc_Var2Lit( p->Nodes[pFans[0]].Var, 0 ); // ctrl pLits[2] = Abc_Var2Lit( p->Nodes[pFans[2]].Var, 0 ); if ( !Ifn_AddClause( pSat, pLits, pLits + 3 ) ) return 0; } else if ( p->Nodes[i].Type == IFN_DSD_PRIME ) { int nValues = (1 << nFans); int iParStart = p->Nodes[i].iFirst; for ( v = 0; v < nValues; v++ ) { nLits = 0; if ( pValues[i] == -1 ) { pLits[nLits] = Abc_Var2Lit( p->Nodes[i].Var, 0 ); pLits2[nLits] = Abc_Var2Lit( p->Nodes[i].Var, 1 ); nLits++; } for ( f = 0; f < nFans; f++, nLits++ ) pLits[nLits] = pLits2[nLits] = Abc_Var2Lit( p->Nodes[pFans[f]].Var, (v >> f) & 1 ); pLits[nLits] = Abc_Var2Lit( iParStart + v, 1 ); pLits2[nLits] = Abc_Var2Lit( iParStart + v, 0 ); nLits++; if ( pValues[i] != 0 ) { if ( !Ifn_AddClause( pSat, pLits2, pLits2 + nLits ) ) return 0; } if ( pValues[i] != 1 ) { if ( !Ifn_AddClause( pSat, pLits, pLits + nLits ) ) return 0; } } } else assert( 0 ); //printf( "\n" ); } return 1; } /**Function************************************************************* Synopsis [Returns the minterm number for which there is a mismatch.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Ifn_NtkMatchPrintStatus( sat_solver * p, int Iter, int status, int iMint, int Value, abctime clk ) { printf( "Iter = %5d ", Iter ); printf( "Mint = %5d ", iMint ); printf( "Value = %2d ", Value ); printf( "Var = %6d ", sat_solver_nvars(p) ); printf( "Cla = %6d ", sat_solver_nclauses(p) ); printf( "Conf = %6d ", sat_solver_nconflicts(p) ); if ( status == l_False ) printf( "status = unsat" ); else if ( status == l_True ) printf( "status = sat " ); else printf( "status = undec" ); Abc_PrintTime( 1, "Time", clk ); } void Ifn_NtkMatchPrintConfig( Ifn_Ntk_t * p, sat_solver * pSat ) { int v, i; for ( v = p->nObjs; v < p->nPars; v++ ) { for ( i = p->nInps; i < p->nObjs; i++ ) if ( p->Nodes[i].Type == IFN_DSD_PRIME && (int)p->Nodes[i].iFirst == v ) break; if ( i < p->nObjs ) printf( " " ); else if ( v >= p->nParsVIni && (v - p->nParsVIni) % p->nParsVNum == 0 ) printf( " %d=", (v - p->nParsVIni) / p->nParsVNum ); printf( "%d", sat_solver_var_value(pSat, v) ); } } word Ifn_NtkMatchCollectPerm( Ifn_Ntk_t * p, sat_solver * pSat ) { word Perm = 0; int i, v, Mint; assert( p->nParsVNum <= 4 ); for ( i = 0; i < p->nInps; i++ ) { for ( Mint = v = 0; v < p->nParsVNum; v++ ) if ( sat_solver_var_value(pSat, p->nParsVIni + i * p->nParsVNum + v) ) Mint |= (1 << v); Abc_TtSetHex( &Perm, i, Mint ); } return Perm; } void Ifn_NtkMatchPrintPerm( word Perm, int nInps ) { int i; assert( nInps <= 16 ); for ( i = 0; i < nInps; i++ ) printf( "%c", 'a' + Abc_TtGetHex(&Perm, i) ); printf( "\n" ); } int Ifn_NtkMatch( Ifn_Ntk_t * p, word * pTruth, int nVars, int nConfls, int fVerbose, int fVeryVerbose, word * pPerm ) { word * pTruth1; int RetValue = 0; int nIterMax = (1<nPars ); Ifn_NtkAddConstraints( p, pSat ); if ( fVeryVerbose ) Ifn_NtkMatchPrintStatus( pSat, 0, l_True, -1, -1, Abc_Clock() - clk ); if ( pPerm ) *pPerm = 0; for ( i = 0; i < nIterMax; i++ ) { // get variable assignment for ( v = 0; v < p->nObjs; v++ ) p->Values[v] = v < p->nVars ? (iMint >> v) & 1 : -1; p->Values[p->nObjs-1] = Abc_TtGetBit( pTruth, iMint ); // derive clauses if ( !Ifn_NtkAddClauses( p, p->Values, pSat ) ) break; // find assignment of parameters // clk2 = Abc_Clock(); status = sat_solver_solve( pSat, NULL, NULL, nConfls, 0, 0, 0 ); // clkSat += Abc_Clock() - clk2; if ( fVeryVerbose ) Ifn_NtkMatchPrintStatus( pSat, i+1, status, iMint, p->Values[p->nObjs-1], Abc_Clock() - clk ); if ( status != l_True ) break; // collect assignment for ( v = p->nObjs; v < p->nPars; v++ ) p->Values[v] = sat_solver_var_value(pSat, v); // find truth table // clk2 = Abc_Clock(); pTruth1 = Ifn_NtkDeriveTruth( p, p->Values ); // clkTru += Abc_Clock() - clk2; Abc_TtXor( pTruth1, pTruth1, p->pTruth, p->nWords, 0 ); // find mismatch if present iMint = Abc_TtFindFirstBit( pTruth1, p->nVars ); if ( iMint == -1 ) { if ( pPerm ) *pPerm = Ifn_NtkMatchCollectPerm( p, pSat ); /* if ( pPerm ) { int RetValue = Ifn_ManSatFindCofigBitsTest( p, pTruth, nVars, *pPerm ); Ifn_NtkMatchPrintPerm( *pPerm, p->nInps ); if ( RetValue == 0 ) printf( "Verification failed.\n" ); } */ RetValue = 1; break; } } assert( i < nIterMax ); if ( fVerbose ) { printf( "%s Iter =%4d. Confl = %6d. ", RetValue ? "yes":"no ", i, sat_solver_nconflicts(pSat) ); if ( RetValue ) Ifn_NtkMatchPrintConfig( p, pSat ); printf( "\n" ); } sat_solver_delete( pSat ); // Abc_PrintTime( 1, "Time", Abc_Clock() - clk ); // Abc_PrintTime( 1, "Sat", clkSat ); // Abc_PrintTime( 1, "Tru", clkTru ); return RetValue; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Ifn_NtkRead() { int RetValue; int nVars = 8; // word * pTruth = Dau_DsdToTruth( "(abcdefghi)", nVars ); word * pTruth = Dau_DsdToTruth( "1008{(1008{(ab)cde}f)ghi}", nVars ); // word * pTruth = Dau_DsdToTruth( "18{(1008{(ab)cde}f)gh}", nVars ); // word * pTruth = Dau_DsdToTruth( "1008{(1008{[ab]cde}f)ghi}", nVars ); // word * pTruth = Dau_DsdToTruth( "(abcd)", nVars ); // word * pTruth = Dau_DsdToTruth( "(abc)", nVars ); // word * pTruth = Dau_DsdToTruth( "18{(1008{(ab)cde}f)gh}", nVars ); // char * pStr = "e={abc};f={ed};"; // char * pStr = "d={ab};e={cd};"; // char * pStr = "j=(ab);k={jcde};l=(kf);m={lghi};"; // char * pStr = "i={abc};j={ide};k={ifg};l={jkh};"; // char * pStr = "h={abcde};i={abcdf};j=;"; // char * pStr = "g=;h=;i={fgh};"; // char * pStr = "i=;j=(def);k=[gh];l={ijk};"; char * pStr = "{({(ab)cde}f)ghi};AB;CD;DE;GH;HI"; Ifn_Ntk_t * p = Ifn_NtkParse( pStr ); word Perm = 0; if ( p == NULL ) return; Ifn_NtkPrint( p ); Dau_DsdPrintFromTruth( pTruth, nVars ); // get the given function RetValue = Ifn_NtkMatch( p, pTruth, nVars, 0, 1, 1, &Perm ); ABC_FREE( p ); } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END