/**CFile**************************************************************** FileName [llb2Nonlin.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [BDD based reachability.] Synopsis [Non-linear quantification scheduling.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - June 20, 2005.] Revision [$Id: llb2Nonlin.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $] ***********************************************************************/ #include "llbInt.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// typedef struct Llb_Mnn_t_ Llb_Mnn_t; struct Llb_Mnn_t_ { Aig_Man_t * pInit; // AIG manager Aig_Man_t * pAig; // AIG manager Gia_ParLlb_t * pPars; // parameters DdManager * dd; // BDD manager DdManager * ddG; // BDD manager DdManager * ddR; // BDD manager Vec_Ptr_t * vRings; // onion rings in ddR Vec_Ptr_t * vLeaves; Vec_Ptr_t * vRoots; int * pVars2Q; int * pOrderL; int * pOrderL2; int * pOrderG; Vec_Int_t * vCs2Glo; // cur state variables into global variables Vec_Int_t * vNs2Glo; // next state variables into global variables Vec_Int_t * vGlo2Cs; // global variables into cur state variables Vec_Int_t * vGlo2Ns; // global variables into next state variables int ddLocReos; int ddLocGrbs; abctime timeImage; abctime timeTran1; abctime timeTran2; abctime timeGloba; abctime timeOther; abctime timeTotal; abctime timeReo; abctime timeReoG; }; extern abctime timeBuild, timeAndEx, timeOther; extern int nSuppMax; //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Finds variable whose 0-cofactor is the smallest.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Llb_NonlinFindBestVar( DdManager * dd, DdNode * bFunc, Aig_Man_t * pAig ) { int fVerbose = 0; Aig_Obj_t * pObj; DdNode * bCof, * bVar; int i, iVar, iVarBest = -1, iValue, iValueBest = ABC_INFINITY, Size0Best = -1; int Size, Size0, Size1; abctime clk = Abc_Clock(); Size = Cudd_DagSize(bFunc); // printf( "Original = %6d. SuppSize = %3d. Vars = %3d.\n", // Size = Cudd_DagSize(bFunc), Cudd_SupportSize(dd, bFunc), Aig_ManRegNum(pAig) ); Saig_ManForEachLo( pAig, pObj, i ) { iVar = Aig_ObjId(pObj); if ( fVerbose ) printf( "Var =%3d : ", iVar ); bVar = Cudd_bddIthVar(dd, iVar); bCof = Cudd_bddAnd( dd, bFunc, Cudd_Not(bVar) ); Cudd_Ref( bCof ); Size0 = Cudd_DagSize(bCof); if ( fVerbose ) printf( "Supp0 =%3d ", Cudd_SupportSize(dd, bCof) ); if ( fVerbose ) printf( "Size0 =%6d ", Size0 ); Cudd_RecursiveDeref( dd, bCof ); bCof = Cudd_bddAnd( dd, bFunc, bVar ); Cudd_Ref( bCof ); Size1 = Cudd_DagSize(bCof); if ( fVerbose ) printf( "Supp1 =%3d ", Cudd_SupportSize(dd, bCof) ); if ( fVerbose ) printf( "Size1 =%6d ", Size1 ); Cudd_RecursiveDeref( dd, bCof ); iValue = Abc_MaxInt(Size0, Size1) - Abc_MinInt(Size0, Size1) + Size0 + Size1 - Size; if ( fVerbose ) printf( "D =%6d ", Size0 + Size1 - Size ); if ( fVerbose ) printf( "B =%6d ", Abc_MaxInt(Size0, Size1) - Abc_MinInt(Size0, Size1) ); if ( fVerbose ) printf( "S =%6d\n", iValue ); if ( Size0 > 1 && Size1 > 1 && iValueBest > iValue ) { iValueBest = iValue; iVarBest = i; Size0Best = Size0; } } printf( "BestVar = %4d/%4d. Value =%6d. Orig =%6d. Size0 =%6d. ", iVarBest, Aig_ObjId(Saig_ManLo(pAig,iVarBest)), iValueBest, Size, Size0Best ); Abc_PrintTime( 1, "Time", Abc_Clock() - clk ); return iVarBest; } /**Function************************************************************* Synopsis [Finds variable whose 0-cofactor is the smallest.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Llb_NonlinTrySubsetting( DdManager * dd, DdNode * bFunc ) { DdNode * bNew; printf( "Original = %6d. SuppSize = %3d. ", Cudd_DagSize(bFunc), Cudd_SupportSize(dd, bFunc) ); bNew = Cudd_SubsetHeavyBranch( dd, bFunc, Cudd_SupportSize(dd, bFunc), 1000 ); Cudd_Ref( bNew ); printf( "Result = %6d. SuppSize = %3d.\n", Cudd_DagSize(bNew), Cudd_SupportSize(dd, bNew) ); Cudd_RecursiveDeref( dd, bNew ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Llb_NonlinPrepareVarMap( Llb_Mnn_t * p ) { Aig_Obj_t * pObjLi, * pObjLo, * pObj; int i, iVarLi, iVarLo; p->vCs2Glo = Vec_IntStartFull( Aig_ManObjNumMax(p->pAig) ); p->vNs2Glo = Vec_IntStartFull( Aig_ManObjNumMax(p->pAig) ); p->vGlo2Cs = Vec_IntStartFull( Aig_ManRegNum(p->pAig) ); p->vGlo2Ns = Vec_IntStartFull( Aig_ManRegNum(p->pAig) ); Saig_ManForEachLiLo( p->pAig, pObjLi, pObjLo, i ) { iVarLi = Aig_ObjId(pObjLi); iVarLo = Aig_ObjId(pObjLo); assert( iVarLi >= 0 && iVarLi < Aig_ManObjNumMax(p->pAig) ); assert( iVarLo >= 0 && iVarLo < Aig_ManObjNumMax(p->pAig) ); Vec_IntWriteEntry( p->vCs2Glo, iVarLo, i ); Vec_IntWriteEntry( p->vNs2Glo, iVarLi, i ); Vec_IntWriteEntry( p->vGlo2Cs, i, iVarLo ); Vec_IntWriteEntry( p->vGlo2Ns, i, iVarLi ); } // add mapping of the PIs Saig_ManForEachPi( p->pAig, pObj, i ) { Vec_IntWriteEntry( p->vCs2Glo, Aig_ObjId(pObj), Aig_ManRegNum(p->pAig)+i ); Vec_IntWriteEntry( p->vNs2Glo, Aig_ObjId(pObj), Aig_ManRegNum(p->pAig)+i ); } } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ DdNode * Llb_NonlinComputeInitState( Aig_Man_t * pAig, DdManager * dd ) { Aig_Obj_t * pObj; DdNode * bRes, * bVar, * bTemp; int i, iVar; abctime TimeStop; TimeStop = dd->TimeStop; dd->TimeStop = 0; bRes = Cudd_ReadOne( dd ); Cudd_Ref( bRes ); Saig_ManForEachLo( pAig, pObj, i ) { iVar = (Cudd_ReadSize(dd) == Aig_ManRegNum(pAig)) ? i : Aig_ObjId(pObj); bVar = Cudd_bddIthVar( dd, iVar ); bRes = Cudd_bddAnd( dd, bTemp = bRes, Cudd_Not(bVar) ); Cudd_Ref( bRes ); Cudd_RecursiveDeref( dd, bTemp ); } Cudd_Deref( bRes ); dd->TimeStop = TimeStop; return bRes; } /**Function************************************************************* Synopsis [Derives counter-example by backward reachability.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Abc_Cex_t * Llb_NonlinDeriveCex( Llb_Mnn_t * p ) { Abc_Cex_t * pCex; Aig_Obj_t * pObj; Vec_Int_t * vVarsNs; DdNode * bState = NULL, * bImage, * bOneCube, * bTemp, * bRing; int i, v, RetValue, nPiOffset; char * pValues = ABC_ALLOC( char, Cudd_ReadSize(p->ddR) ); assert( Vec_PtrSize(p->vRings) > 0 ); p->dd->TimeStop = 0; p->ddR->TimeStop = 0; // update quantifiable vars memset( p->pVars2Q, 0, sizeof(int) * Cudd_ReadSize(p->dd) ); vVarsNs = Vec_IntAlloc( Aig_ManRegNum(p->pAig) ); Saig_ManForEachLi( p->pAig, pObj, i ) { p->pVars2Q[Aig_ObjId(pObj)] = 1; Vec_IntPush( vVarsNs, Aig_ObjId(pObj) ); } /* Saig_ManForEachLo( p->pAig, pObj, i ) printf( "%d ", pObj->Id ); printf( "\n" ); Saig_ManForEachLi( p->pAig, pObj, i ) printf( "%d(%d) ", pObj->Id, Aig_ObjFaninId0(pObj) ); printf( "\n" ); */ // allocate room for the counter-example pCex = Abc_CexAlloc( Saig_ManRegNum(p->pAig), Saig_ManPiNum(p->pAig), Vec_PtrSize(p->vRings) ); pCex->iFrame = Vec_PtrSize(p->vRings) - 1; pCex->iPo = -1; // get the last cube bOneCube = Cudd_bddIntersect( p->ddR, (DdNode *)Vec_PtrEntryLast(p->vRings), p->ddR->bFunc ); Cudd_Ref( bOneCube ); RetValue = Cudd_bddPickOneCube( p->ddR, bOneCube, pValues ); Cudd_RecursiveDeref( p->ddR, bOneCube ); assert( RetValue ); // write PIs of counter-example nPiOffset = Saig_ManRegNum(p->pAig) + Saig_ManPiNum(p->pAig) * (Vec_PtrSize(p->vRings) - 1); Saig_ManForEachPi( p->pAig, pObj, i ) if ( pValues[Saig_ManRegNum(p->pAig)+i] == 1 ) Abc_InfoSetBit( pCex->pData, nPiOffset + i ); // write state in terms of NS variables if ( Vec_PtrSize(p->vRings) > 1 ) { bState = Llb_CoreComputeCube( p->dd, vVarsNs, 1, pValues ); Cudd_Ref( bState ); } // perform backward analysis Vec_PtrForEachEntryReverse( DdNode *, p->vRings, bRing, v ) { if ( v == Vec_PtrSize(p->vRings) - 1 ) continue; //Extra_bddPrintSupport( p->dd, bState ); printf( "\n" ); //Extra_bddPrintSupport( p->dd, bRing ); printf( "\n" ); // compute the next states bImage = Llb_NonlinImage( p->pAig, p->vLeaves, p->vRoots, p->pVars2Q, p->dd, bState, p->pPars->fReorder, p->pPars->fVeryVerbose, NULL ); // consumed reference assert( bImage != NULL ); Cudd_Ref( bImage ); //Extra_bddPrintSupport( p->dd, bImage ); printf( "\n" ); // move reached states into ring manager bImage = Extra_TransferPermute( p->dd, p->ddR, bTemp = bImage, Vec_IntArray(p->vCs2Glo) ); Cudd_Ref( bImage ); Cudd_RecursiveDeref( p->dd, bTemp ); // intersect with the previous set bOneCube = Cudd_bddIntersect( p->ddR, bImage, bRing ); Cudd_Ref( bOneCube ); Cudd_RecursiveDeref( p->ddR, bImage ); // find any assignment of the BDD RetValue = Cudd_bddPickOneCube( p->ddR, bOneCube, pValues ); Cudd_RecursiveDeref( p->ddR, bOneCube ); assert( RetValue ); // write PIs of counter-example nPiOffset -= Saig_ManPiNum(p->pAig); Saig_ManForEachPi( p->pAig, pObj, i ) if ( pValues[Saig_ManRegNum(p->pAig)+i] == 1 ) Abc_InfoSetBit( pCex->pData, nPiOffset + i ); // check that we get the init state if ( v == 0 ) { Saig_ManForEachLo( p->pAig, pObj, i ) assert( pValues[i] == 0 ); break; } // write state in terms of NS variables bState = Llb_CoreComputeCube( p->dd, vVarsNs, 1, pValues ); Cudd_Ref( bState ); } assert( nPiOffset == Saig_ManRegNum(p->pAig) ); // update the output number //Abc_CexPrint( pCex ); RetValue = Saig_ManFindFailedPoCex( p->pInit, pCex ); assert( RetValue >= 0 && RetValue < Saig_ManPoNum(p->pInit) ); // invalid CEX!!! pCex->iPo = RetValue; // cleanup ABC_FREE( pValues ); Vec_IntFree( vVarsNs ); return pCex; } /**Function************************************************************* Synopsis [Perform reachability with hints.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Llb_NonlinReoHook( DdManager * dd, char * Type, void * Method ) { Aig_Man_t * pAig = (Aig_Man_t *)dd->bFunc; Aig_Obj_t * pObj; int i; printf( "Order: " ); for ( i = 0; i < Cudd_ReadSize(dd); i++ ) { pObj = Aig_ManObj( pAig, i ); if ( pObj == NULL ) continue; if ( Saig_ObjIsPi(pAig, pObj) ) printf( "pi" ); else if ( Saig_ObjIsLo(pAig, pObj) ) printf( "lo" ); else if ( Saig_ObjIsPo(pAig, pObj) ) printf( "po" ); else if ( Saig_ObjIsLi(pAig, pObj) ) printf( "li" ); else continue; printf( "%d=%d ", i, dd->perm[i] ); } printf( "\n" ); return 1; } /**Function************************************************************* Synopsis [Perform reachability with hints.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Llb_NonlinCompPerms( DdManager * dd, int * pVar2Lev ) { DdSubtable * pSubt; int i, Sum = 0, Entry; for ( i = 0; i < dd->size; i++ ) { pSubt = &(dd->subtables[dd->perm[i]]); if ( pSubt->keys == pSubt->dead + 1 ) continue; Entry = Abc_MaxInt(dd->perm[i], pVar2Lev[i]) - Abc_MinInt(dd->perm[i], pVar2Lev[i]); Sum += Entry; //printf( "%d-%d(%d) ", dd->perm[i], pV2L[i], Entry ); } return Sum; } /**Function************************************************************* Synopsis [Perform reachability with hints.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Llb_NonlinReachability( Llb_Mnn_t * p ) { DdNode * bTemp, * bNext; int nIters, nBddSize0, nBddSize = -1, NumCmp;//, Limit = p->pPars->nBddMax; abctime clk2, clk3, clk = Abc_Clock(); assert( Aig_ManRegNum(p->pAig) > 0 ); // compute time to stop p->pPars->TimeTarget = p->pPars->TimeLimit ? p->pPars->TimeLimit * CLOCKS_PER_SEC + Abc_Clock(): 0; // set the stop time parameter p->dd->TimeStop = p->pPars->TimeTarget; p->ddG->TimeStop = p->pPars->TimeTarget; p->ddR->TimeStop = p->pPars->TimeTarget; // set reordering hooks assert( p->dd->bFunc == NULL ); // p->dd->bFunc = (DdNode *)p->pAig; // Cudd_AddHook( p->dd, Llb_NonlinReoHook, CUDD_POST_REORDERING_HOOK ); // create bad state in the ring manager p->ddR->bFunc = Llb_BddComputeBad( p->pInit, p->ddR, p->pPars->TimeTarget ); if ( p->ddR->bFunc == NULL ) { if ( !p->pPars->fSilent ) printf( "Reached timeout (%d seconds) during constructing the bad states.\n", p->pPars->TimeLimit ); p->pPars->iFrame = -1; return -1; } Cudd_Ref( p->ddR->bFunc ); // compute the starting set of states Cudd_Quit( p->dd ); p->dd = Llb_NonlinImageStart( p->pAig, p->vLeaves, p->vRoots, p->pVars2Q, p->pOrderL, 1, p->pPars->TimeTarget ); if ( p->dd == NULL ) { if ( !p->pPars->fSilent ) printf( "Reached timeout (%d seconds) during constructing the bad states.\n", p->pPars->TimeLimit ); p->pPars->iFrame = -1; return -1; } p->dd->bFunc = Llb_NonlinComputeInitState( p->pAig, p->dd ); Cudd_Ref( p->dd->bFunc ); // current p->ddG->bFunc = Llb_NonlinComputeInitState( p->pAig, p->ddG ); Cudd_Ref( p->ddG->bFunc ); // reached p->ddG->bFunc2 = Llb_NonlinComputeInitState( p->pAig, p->ddG ); Cudd_Ref( p->ddG->bFunc2 ); // frontier for ( nIters = 0; nIters < p->pPars->nIterMax; nIters++ ) { // check the runtime limit clk2 = Abc_Clock(); if ( p->pPars->TimeLimit && Abc_Clock() > p->pPars->TimeTarget ) { if ( !p->pPars->fSilent ) printf( "Reached timeout (%d seconds) during image computation.\n", p->pPars->TimeLimit ); p->pPars->iFrame = nIters - 1; Llb_NonlinImageQuit(); return -1; } // save the onion ring bTemp = Extra_TransferPermute( p->dd, p->ddR, p->dd->bFunc, Vec_IntArray(p->vCs2Glo) ); if ( bTemp == NULL ) { if ( !p->pPars->fSilent ) printf( "Reached timeout (%d seconds) during ring transfer.\n", p->pPars->TimeLimit ); p->pPars->iFrame = nIters - 1; Llb_NonlinImageQuit(); return -1; } Cudd_Ref( bTemp ); Vec_PtrPush( p->vRings, bTemp ); // check it for bad states if ( !p->pPars->fSkipOutCheck && !Cudd_bddLeq( p->ddR, bTemp, Cudd_Not(p->ddR->bFunc) ) ) { assert( p->pInit->pSeqModel == NULL ); if ( !p->pPars->fBackward ) p->pInit->pSeqModel = Llb_NonlinDeriveCex( p ); if ( !p->pPars->fSilent ) { if ( !p->pPars->fBackward ) Abc_Print( 1, "Output %d of miter \"%s\" was asserted in frame %d. ", p->pInit->pSeqModel->iPo, nIters ); else Abc_Print( 1, "Output ??? was asserted in frame %d (counter-example is not produced). ", nIters ); Abc_PrintTime( 1, "Time", Abc_Clock() - clk ); } p->pPars->iFrame = nIters - 1; Llb_NonlinImageQuit(); return 0; } // compute the next states clk3 = Abc_Clock(); nBddSize0 = Cudd_DagSize( p->dd->bFunc ); bNext = Llb_NonlinImageCompute( p->dd->bFunc, p->pPars->fReorder, 0, 1, p->pOrderL ); // consumes ref // bNext = Llb_NonlinImage( p->pAig, p->vLeaves, p->vRoots, p->pVars2Q, p->dd, bCurrent, // p->pPars->fReorder, p->pPars->fVeryVerbose, NULL, ABC_INFINITY, p->pPars->TimeTarget ); if ( bNext == NULL ) { if ( !p->pPars->fSilent ) printf( "Reached timeout (%d seconds) during image computation in quantification.\n", p->pPars->TimeLimit ); p->pPars->iFrame = nIters - 1; Llb_NonlinImageQuit(); return -1; } Cudd_Ref( bNext ); nBddSize = Cudd_DagSize( bNext ); p->timeImage += Abc_Clock() - clk3; // transfer to the state manager clk3 = Abc_Clock(); Cudd_RecursiveDeref( p->ddG, p->ddG->bFunc2 ); p->ddG->bFunc2 = Extra_TransferPermute( p->dd, p->ddG, bNext, Vec_IntArray(p->vNs2Glo) ); // p->ddG->bFunc2 = Extra_bddAndPermute( p->ddG, Cudd_Not(p->ddG->bFunc), p->dd, bNext, Vec_IntArray(p->vNs2Glo) ); if ( p->ddG->bFunc2 == NULL ) { if ( !p->pPars->fSilent ) printf( "Reached timeout (%d seconds) during image computation in transfer 1.\n", p->pPars->TimeLimit ); p->pPars->iFrame = nIters - 1; Cudd_RecursiveDeref( p->dd, bNext ); Llb_NonlinImageQuit(); return -1; } Cudd_Ref( p->ddG->bFunc2 ); Cudd_RecursiveDeref( p->dd, bNext ); p->timeTran1 += Abc_Clock() - clk3; // save permutation NumCmp = Llb_NonlinCompPerms( p->dd, p->pOrderL2 ); // save order before image computation memcpy( p->pOrderL2, p->dd->perm, sizeof(int) * p->dd->size ); // update the image computation manager p->timeReo += Cudd_ReadReorderingTime(p->dd); p->ddLocReos += Cudd_ReadReorderings(p->dd); p->ddLocGrbs += Cudd_ReadGarbageCollections(p->dd); Llb_NonlinImageQuit(); p->dd = Llb_NonlinImageStart( p->pAig, p->vLeaves, p->vRoots, p->pVars2Q, p->pOrderL, 0, p->pPars->TimeTarget ); if ( p->dd == NULL ) { if ( !p->pPars->fSilent ) printf( "Reached timeout (%d seconds) during constructing the bad states.\n", p->pPars->TimeLimit ); p->pPars->iFrame = nIters - 1; return -1; } //Extra_TestAndPerm( p->ddG, Cudd_Not(p->ddG->bFunc), p->ddG->bFunc2 ); // derive new states clk3 = Abc_Clock(); p->ddG->bFunc2 = Cudd_bddAnd( p->ddG, bTemp = p->ddG->bFunc2, Cudd_Not(p->ddG->bFunc) ); if ( p->ddG->bFunc2 == NULL ) { if ( !p->pPars->fSilent ) printf( "Reached timeout (%d seconds) during image computation in transfer 1.\n", p->pPars->TimeLimit ); p->pPars->iFrame = nIters - 1; Cudd_RecursiveDeref( p->ddG, bTemp ); Llb_NonlinImageQuit(); return -1; } Cudd_Ref( p->ddG->bFunc2 ); Cudd_RecursiveDeref( p->ddG, bTemp ); p->timeGloba += Abc_Clock() - clk3; if ( Cudd_IsConstant(p->ddG->bFunc2) ) break; // add to the reached set clk3 = Abc_Clock(); p->ddG->bFunc = Cudd_bddOr( p->ddG, bTemp = p->ddG->bFunc, p->ddG->bFunc2 ); if ( p->ddG->bFunc == NULL ) { if ( !p->pPars->fSilent ) printf( "Reached timeout (%d seconds) during image computation in transfer 1.\n", p->pPars->TimeLimit ); p->pPars->iFrame = nIters - 1; Cudd_RecursiveDeref( p->ddG, bTemp ); Llb_NonlinImageQuit(); return -1; } Cudd_Ref( p->ddG->bFunc ); Cudd_RecursiveDeref( p->ddG, bTemp ); p->timeGloba += Abc_Clock() - clk3; // reset permutation // RetValue = Cudd_CheckZeroRef( dd ); // assert( RetValue == 0 ); // Cudd_ShuffleHeap( dd, pOrderG ); // move new states to the working manager clk3 = Abc_Clock(); p->dd->bFunc = Extra_TransferPermute( p->ddG, p->dd, p->ddG->bFunc2, Vec_IntArray(p->vGlo2Cs) ); if ( p->dd->bFunc == NULL ) { if ( !p->pPars->fSilent ) printf( "Reached timeout (%d seconds) during image computation in transfer 2.\n", p->pPars->TimeLimit ); p->pPars->iFrame = nIters - 1; Llb_NonlinImageQuit(); return -1; } Cudd_Ref( p->dd->bFunc ); p->timeTran2 += Abc_Clock() - clk3; // report the results if ( p->pPars->fVerbose ) { printf( "I =%3d : ", nIters ); printf( "Fr =%7d ", nBddSize0 ); printf( "Im =%7d ", nBddSize ); printf( "(%4d %4d) ", p->ddLocReos, p->ddLocGrbs ); printf( "Rea =%6d ", Cudd_DagSize(p->ddG->bFunc) ); printf( "(%4d %4d) ", Cudd_ReadReorderings(p->ddG), Cudd_ReadGarbageCollections(p->ddG) ); printf( "S =%4d ", nSuppMax ); printf( "cL =%5d ", NumCmp ); printf( "cG =%5d ", Llb_NonlinCompPerms( p->ddG, p->pOrderG ) ); Abc_PrintTime( 1, "T", Abc_Clock() - clk2 ); memcpy( p->pOrderG, p->ddG->perm, sizeof(int) * p->ddG->size ); } /* if ( pPars->fVerbose ) { double nMints = Cudd_CountMinterm(ddG, bReached, Saig_ManRegNum(pAig) ); // Extra_bddPrint( ddG, bReached );printf( "\n" ); printf( "Reachable states = %.0f. (Ratio = %.4f %%)\n", nMints, 100.0*nMints/pow(2.0, Saig_ManRegNum(pAig)) ); fflush( stdout ); } */ if ( nIters == p->pPars->nIterMax - 1 ) { if ( !p->pPars->fSilent ) printf( "Reached limit on the number of timeframes (%d).\n", p->pPars->nIterMax ); p->pPars->iFrame = nIters; Llb_NonlinImageQuit(); return -1; } } Llb_NonlinImageQuit(); // report the stats if ( p->pPars->fVerbose ) { double nMints = Cudd_CountMinterm(p->ddG, p->ddG->bFunc, Saig_ManRegNum(p->pAig) ); if ( nIters >= p->pPars->nIterMax || nBddSize > p->pPars->nBddMax ) printf( "Reachability analysis is stopped after %d frames.\n", nIters ); else printf( "Reachability analysis completed after %d frames.\n", nIters ); printf( "Reachable states = %.0f. (Ratio = %.4f %%)\n", nMints, 100.0*nMints/pow(2.0, Saig_ManRegNum(p->pAig)) ); fflush( stdout ); } if ( nIters >= p->pPars->nIterMax || nBddSize > p->pPars->nBddMax ) { if ( !p->pPars->fSilent ) printf( "Verified only for states reachable in %d frames. ", nIters ); p->pPars->iFrame = p->pPars->nIterMax; return -1; // undecided } // report if ( !p->pPars->fSilent ) printf( "The miter is proved unreachable after %d iterations. ", nIters ); p->pPars->iFrame = nIters - 1; Abc_PrintTime( 1, "Time", Abc_Clock() - clk ); return 1; // unreachable } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Llb_Mnn_t * Llb_MnnStart( Aig_Man_t * pInit, Aig_Man_t * pAig, Gia_ParLlb_t * pPars ) { Llb_Mnn_t * p; Aig_Obj_t * pObj; int i; p = ABC_CALLOC( Llb_Mnn_t, 1 ); p->pInit = pInit; p->pAig = pAig; p->pPars = pPars; p->dd = Cudd_Init( Aig_ManObjNumMax(pAig), 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0 ); p->ddG = Cudd_Init( Aig_ManRegNum(pAig), 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0 ); p->ddR = Cudd_Init( Aig_ManCiNum(pAig), 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0 ); Cudd_AutodynEnable( p->dd, CUDD_REORDER_SYMM_SIFT ); Cudd_AutodynEnable( p->ddG, CUDD_REORDER_SYMM_SIFT ); Cudd_AutodynEnable( p->ddR, CUDD_REORDER_SYMM_SIFT ); p->vRings = Vec_PtrAlloc( 100 ); // create leaves p->vLeaves = Vec_PtrAlloc( Aig_ManCiNum(pAig) ); Aig_ManForEachCi( pAig, pObj, i ) Vec_PtrPush( p->vLeaves, pObj ); // create roots p->vRoots = Vec_PtrAlloc( Aig_ManCoNum(pAig) ); Saig_ManForEachLi( pAig, pObj, i ) Vec_PtrPush( p->vRoots, pObj ); // variables to quantify p->pOrderL = ABC_CALLOC( int, Aig_ManObjNumMax(pAig) ); p->pOrderL2= ABC_CALLOC( int, Aig_ManObjNumMax(pAig) ); p->pOrderG = ABC_CALLOC( int, Aig_ManObjNumMax(pAig) ); p->pVars2Q = ABC_CALLOC( int, Aig_ManObjNumMax(pAig) ); Aig_ManForEachCi( pAig, pObj, i ) p->pVars2Q[Aig_ObjId(pObj)] = 1; for ( i = 0; i < Aig_ManObjNumMax(pAig); i++ ) p->pOrderL[i] = p->pOrderL2[i] = p->pOrderG[i] = i; Llb_NonlinPrepareVarMap( p ); return p; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Llb_MnnStop( Llb_Mnn_t * p ) { DdNode * bTemp; int i; if ( p->pPars->fVerbose ) { p->timeOther = p->timeTotal - p->timeImage - p->timeTran1 - p->timeTran2 - p->timeGloba; p->timeReoG = Cudd_ReadReorderingTime(p->ddG); ABC_PRTP( "Image ", p->timeImage, p->timeTotal ); ABC_PRTP( " build ", timeBuild, p->timeTotal ); ABC_PRTP( " and-ex ", timeAndEx, p->timeTotal ); ABC_PRTP( " other ", timeOther, p->timeTotal ); ABC_PRTP( "Transfer1", p->timeTran1, p->timeTotal ); ABC_PRTP( "Transfer2", p->timeTran2, p->timeTotal ); ABC_PRTP( "Global ", p->timeGloba, p->timeTotal ); ABC_PRTP( "Other ", p->timeOther, p->timeTotal ); ABC_PRTP( "TOTAL ", p->timeTotal, p->timeTotal ); ABC_PRTP( " reo ", p->timeReo, p->timeTotal ); ABC_PRTP( " reoG ", p->timeReoG, p->timeTotal ); } if ( p->ddR->bFunc ) Cudd_RecursiveDeref( p->ddR, p->ddR->bFunc ); Vec_PtrForEachEntry( DdNode *, p->vRings, bTemp, i ) Cudd_RecursiveDeref( p->ddR, bTemp ); Vec_PtrFree( p->vRings ); if ( p->ddG->bFunc ) Cudd_RecursiveDeref( p->ddG, p->ddG->bFunc ); if ( p->ddG->bFunc2 ) Cudd_RecursiveDeref( p->ddG, p->ddG->bFunc2 ); // printf( "manager1\n" ); // Extra_StopManager( p->dd ); // printf( "manager2\n" ); Extra_StopManager( p->ddG ); // printf( "manager3\n" ); Extra_StopManager( p->ddR ); Vec_IntFreeP( &p->vCs2Glo ); Vec_IntFreeP( &p->vNs2Glo ); Vec_IntFreeP( &p->vGlo2Cs ); Vec_IntFreeP( &p->vGlo2Ns ); Vec_PtrFree( p->vLeaves ); Vec_PtrFree( p->vRoots ); ABC_FREE( p->pVars2Q ); ABC_FREE( p->pOrderL ); ABC_FREE( p->pOrderL2 ); ABC_FREE( p->pOrderG ); ABC_FREE( p ); } /**Function************************************************************* Synopsis [Finds balanced cut.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Llb_NonlinExperiment( Aig_Man_t * pAig, int Num ) { Llb_Mnn_t * pMnn; Gia_ParLlb_t Pars, * pPars = &Pars; Aig_Man_t * p; abctime clk = Abc_Clock(); Llb_ManSetDefaultParams( pPars ); pPars->fVerbose = 1; p = Aig_ManDupFlopsOnly( pAig ); //Aig_ManShow( p, 0, NULL ); Aig_ManPrintStats( pAig ); Aig_ManPrintStats( p ); pMnn = Llb_MnnStart( pAig, p, pPars ); Llb_NonlinReachability( pMnn ); pMnn->timeTotal = Abc_Clock() - clk; Llb_MnnStop( pMnn ); Aig_ManStop( p ); } /**Function************************************************************* Synopsis [Finds balanced cut.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Llb_NonlinCoreReach( Aig_Man_t * pAig, Gia_ParLlb_t * pPars ) { Llb_Mnn_t * pMnn; Aig_Man_t * p; int RetValue = -1; p = Aig_ManDupFlopsOnly( pAig ); //Aig_ManShow( p, 0, NULL ); if ( pPars->fVerbose ) Aig_ManPrintStats( pAig ); if ( pPars->fVerbose ) Aig_ManPrintStats( p ); if ( !pPars->fSkipReach ) { abctime clk = Abc_Clock(); pMnn = Llb_MnnStart( pAig, p, pPars ); RetValue = Llb_NonlinReachability( pMnn ); pMnn->timeTotal = Abc_Clock() - clk; Llb_MnnStop( pMnn ); } Aig_ManStop( p ); return RetValue; } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END