/**CFile**************************************************************** FileName [satMem.h] SystemName [ABC: Logic synthesis and verification system.] PackageName [SAT solver.] Synopsis [Memory management.] Author [Alan Mishchenko ] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - January 1, 2004.] Revision [$Id: satMem.h,v 1.0 2004/01/01 1:00:00 alanmi Exp $] ***********************************************************************/ #ifndef ABC__sat__bsat__satMem_h #define ABC__sat__bsat__satMem_h //////////////////////////////////////////////////////////////////////// /// INCLUDES /// //////////////////////////////////////////////////////////////////////// #include "misc/util/abc_global.h" ABC_NAMESPACE_HEADER_START //////////////////////////////////////////////////////////////////////// /// PARAMETERS /// //////////////////////////////////////////////////////////////////////// //#define LEARNT_MAX_START_DEFAULT 0 #define LEARNT_MAX_START_DEFAULT 10000 #define LEARNT_MAX_INCRE_DEFAULT 1000 #define LEARNT_MAX_RATIO_DEFAULT 50 //////////////////////////////////////////////////////////////////////// /// STRUCTURE DEFINITIONS /// //////////////////////////////////////////////////////////////////////// //================================================================================================= // Clause datatype + minor functions: typedef struct clause_t clause; struct clause_t { unsigned lrn : 1; unsigned mark : 1; unsigned partA : 1; unsigned lbd : 8; unsigned size : 21; lit lits[0]; }; // learned clauses have "hidden" literal (c->lits[c->size]) to store clause ID // data-structure for logging entries // memory is allocated in 2^nPageSize word-sized pages // the first 'word' of each page are stores the word limit // although clause memory pieces are aligned to 64-bit words // the integer clause handles are in terms of 32-bit unsigneds // allowing for the first bit to be used for labeling 2-lit clauses typedef struct Sat_Mem_t_ Sat_Mem_t; struct Sat_Mem_t_ { int nEntries[2]; // entry count int BookMarkH[2]; // bookmarks for handles int BookMarkE[2]; // bookmarks for entries int iPage[2]; // current memory page int nPageSize; // page log size in terms of ints unsigned uPageMask; // page mask unsigned uLearnedMask; // learned mask int nPagesAlloc; // page count allocated int ** pPages; // page pointers }; static inline int Sat_MemLimit( int * p ) { return p[0]; } static inline int Sat_MemIncLimit( int * p, int nInts ) { return p[0] += nInts; } static inline void Sat_MemWriteLimit( int * p, int nInts ) { p[0] = nInts; } static inline int Sat_MemHandPage( Sat_Mem_t * p, cla h ) { return h >> p->nPageSize; } static inline int Sat_MemHandShift( Sat_Mem_t * p, cla h ) { return h & p->uPageMask; } static inline int Sat_MemIntSize( int size, int lrn ) { return (size + 2 + lrn) & ~01; } static inline int Sat_MemClauseSize( clause * p ) { return Sat_MemIntSize(p->size, p->lrn); } static inline int Sat_MemClauseSize2( clause * p ) { return Sat_MemIntSize(p->size, 1); } //static inline clause * Sat_MemClause( Sat_Mem_t * p, int i, int k ) { assert(i <= p->iPage[i&1] && k <= Sat_MemLimit(p->pPages[i])); return (clause *)(p->pPages[i] + k ); } static inline clause * Sat_MemClause( Sat_Mem_t * p, int i, int k ) { assert( k ); return (clause *)(p->pPages[i] + k); } //static inline clause * Sat_MemClauseHand( Sat_Mem_t * p, cla h ) { assert(Sat_MemHandPage(p, h) <= p->iPage[(h & p->uLearnedMask) > 0]); assert(Sat_MemHandShift(p, h) >= 2 && Sat_MemHandShift(p, h) < (int)p->uLearnedMask); return Sat_MemClause( p, Sat_MemHandPage(p, h), Sat_MemHandShift(p, h) ); } static inline clause * Sat_MemClauseHand( Sat_Mem_t * p, cla h ) { return h ? Sat_MemClause( p, Sat_MemHandPage(p, h), Sat_MemHandShift(p, h) ) : NULL; } static inline int Sat_MemEntryNum( Sat_Mem_t * p, int lrn ) { return p->nEntries[lrn]; } static inline cla Sat_MemHand( Sat_Mem_t * p, int i, int k ) { return (i << p->nPageSize) | k; } static inline cla Sat_MemHandCurrent( Sat_Mem_t * p, int lrn ) { return (p->iPage[lrn] << p->nPageSize) | Sat_MemLimit( p->pPages[p->iPage[lrn]] ); } static inline int Sat_MemClauseUsed( Sat_Mem_t * p, cla h ) { return h < p->BookMarkH[(h & p->uLearnedMask) > 0]; } static inline double Sat_MemMemoryHand( Sat_Mem_t * p, cla h ) { return 1.0 * ((Sat_MemHandPage(p, h) + 2)/2 * (1 << (p->nPageSize+2)) + Sat_MemHandShift(p, h) * 4); } static inline double Sat_MemMemoryUsed( Sat_Mem_t * p, int lrn ) { return Sat_MemMemoryHand( p, Sat_MemHandCurrent(p, lrn) ); } static inline double Sat_MemMemoryAllUsed( Sat_Mem_t * p ) { return Sat_MemMemoryUsed( p, 0 ) + Sat_MemMemoryUsed( p, 1 ); } static inline double Sat_MemMemoryAll( Sat_Mem_t * p ) { return 1.0 * (p->iPage[0] + p->iPage[1] + 2) * (1 << (p->nPageSize+2)); } // p is memory storage // c is clause pointer // i is page number // k is page offset // print problem clauses NOT in proof mode #define Sat_MemForEachClause( p, c, i, k ) \ for ( i = 0; i <= p->iPage[0]; i += 2 ) \ for ( k = 2; k < Sat_MemLimit(p->pPages[i]) && ((c) = Sat_MemClause( p, i, k )); k += Sat_MemClauseSize(c) ) if ( i == 0 && k == 2 ) {} else // print problem clauses in proof mode #define Sat_MemForEachClause2( p, c, i, k ) \ for ( i = 0; i <= p->iPage[0]; i += 2 ) \ for ( k = 2; k < Sat_MemLimit(p->pPages[i]) && ((c) = Sat_MemClause( p, i, k )); k += Sat_MemClauseSize2(c) ) if ( i == 0 && k == 2 ) {} else #define Sat_MemForEachLearned( p, c, i, k ) \ for ( i = 1; i <= p->iPage[1]; i += 2 ) \ for ( k = 2; k < Sat_MemLimit(p->pPages[i]) && ((c) = Sat_MemClause( p, i, k )); k += Sat_MemClauseSize(c) ) //////////////////////////////////////////////////////////////////////// /// GLOBAL VARIABLES /// //////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////// /// MACRO DEFINITIONS /// //////////////////////////////////////////////////////////////////////// static inline int clause_from_lit( lit l ) { return l + l + 1; } static inline int clause_is_lit( cla h ) { return (h & 1); } static inline lit clause_read_lit( cla h ) { return (lit)(h >> 1); } static inline int clause_learnt_h( Sat_Mem_t * p, cla h ) { return (h & p->uLearnedMask) > 0; } static inline int clause_learnt( clause * c ) { return c->lrn; } static inline int clause_id( clause * c ) { return c->lits[c->size]; } static inline void clause_set_id( clause * c, int id ) { c->lits[c->size] = id; } static inline int clause_size( clause * c ) { return c->size; } static inline lit * clause_begin( clause * c ) { return c->lits; } static inline lit * clause_end( clause * c ) { return c->lits + c->size; } static inline void clause_print( clause * c ) { int i; printf( "{ " ); for ( i = 0; i < clause_size(c); i++ ) printf( "%d ", (clause_begin(c)[i] & 1)? -(clause_begin(c)[i] >> 1) : clause_begin(c)[i] >> 1 ); printf( "}\n" ); } //////////////////////////////////////////////////////////////////////// /// FUNCTION DECLARATIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Allocating vector.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline int Sat_MemCountL( Sat_Mem_t * p ) { clause * c; int i, k, Count = 0; Sat_MemForEachLearned( p, c, i, k ) Count++; return Count; } /**Function************************************************************* Synopsis [Allocating vector.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline void Sat_MemAlloc_( Sat_Mem_t * p, int nPageSize ) { assert( nPageSize > 8 && nPageSize < 32 ); memset( p, 0, sizeof(Sat_Mem_t) ); p->nPageSize = nPageSize; p->uLearnedMask = (unsigned)(1 << nPageSize); p->uPageMask = (unsigned)((1 << nPageSize) - 1); p->nPagesAlloc = 256; p->pPages = ABC_CALLOC( int *, p->nPagesAlloc ); p->pPages[0] = ABC_ALLOC( int, (1 << p->nPageSize) ); p->pPages[1] = ABC_ALLOC( int, (1 << p->nPageSize) ); p->iPage[0] = 0; p->iPage[1] = 1; Sat_MemWriteLimit( p->pPages[0], 2 ); Sat_MemWriteLimit( p->pPages[1], 2 ); } static inline Sat_Mem_t * Sat_MemAlloc( int nPageSize ) { Sat_Mem_t * p; p = ABC_CALLOC( Sat_Mem_t, 1 ); Sat_MemAlloc_( p, nPageSize ); return p; } /**Function************************************************************* Synopsis [Resetting vector.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline void Sat_MemRestart( Sat_Mem_t * p ) { p->nEntries[0] = 0; p->nEntries[1] = 0; p->iPage[0] = 0; p->iPage[1] = 1; Sat_MemWriteLimit( p->pPages[0], 2 ); Sat_MemWriteLimit( p->pPages[1], 2 ); } /**Function************************************************************* Synopsis [Sets the bookmark.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline void Sat_MemBookMark( Sat_Mem_t * p ) { p->BookMarkE[0] = p->nEntries[0]; p->BookMarkE[1] = p->nEntries[1]; p->BookMarkH[0] = Sat_MemHandCurrent( p, 0 ); p->BookMarkH[1] = Sat_MemHandCurrent( p, 1 ); } static inline void Sat_MemRollBack( Sat_Mem_t * p ) { p->nEntries[0] = p->BookMarkE[0]; p->nEntries[1] = p->BookMarkE[1]; p->iPage[0] = Sat_MemHandPage( p, p->BookMarkH[0] ); p->iPage[1] = Sat_MemHandPage( p, p->BookMarkH[1] ); Sat_MemWriteLimit( p->pPages[p->iPage[0]], Sat_MemHandShift( p, p->BookMarkH[0] ) ); Sat_MemWriteLimit( p->pPages[p->iPage[1]], Sat_MemHandShift( p, p->BookMarkH[1] ) ); } /**Function************************************************************* Synopsis [Freeing vector.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline void Sat_MemFree_( Sat_Mem_t * p ) { int i; for ( i = 0; i < p->nPagesAlloc; i++ ) ABC_FREE( p->pPages[i] ); ABC_FREE( p->pPages ); } static inline void Sat_MemFree( Sat_Mem_t * p ) { Sat_MemFree_( p ); ABC_FREE( p ); } /**Function************************************************************* Synopsis [Creates new clause.] Description [The resulting clause is fully initialized.] SideEffects [] SeeAlso [] ***********************************************************************/ static inline int Sat_MemAppend( Sat_Mem_t * p, int * pArray, int nSize, int lrn, int fPlus1 ) { clause * c; int * pPage = p->pPages[p->iPage[lrn]]; int nInts = Sat_MemIntSize( nSize, lrn | fPlus1 ); assert( nInts + 3 < (1 << p->nPageSize) ); // need two extra at the begining of the page and one extra in the end if ( Sat_MemLimit(pPage) + nInts + 2 >= (1 << p->nPageSize) ) { p->iPage[lrn] += 2; if ( p->iPage[lrn] >= p->nPagesAlloc ) { p->pPages = ABC_REALLOC( int *, p->pPages, p->nPagesAlloc * 2 ); memset( p->pPages + p->nPagesAlloc, 0, sizeof(int *) * p->nPagesAlloc ); p->nPagesAlloc *= 2; } if ( p->pPages[p->iPage[lrn]] == NULL ) p->pPages[p->iPage[lrn]] = ABC_ALLOC( int, (1 << p->nPageSize) ); pPage = p->pPages[p->iPage[lrn]]; Sat_MemWriteLimit( pPage, 2 ); } pPage[Sat_MemLimit(pPage)] = 0; c = (clause *)(pPage + Sat_MemLimit(pPage)); c->size = nSize; c->lrn = lrn; if ( pArray ) memcpy( c->lits, pArray, sizeof(int) * nSize ); if ( lrn | fPlus1 ) c->lits[c->size] = p->nEntries[lrn]; p->nEntries[lrn]++; Sat_MemIncLimit( pPage, nInts ); return Sat_MemHandCurrent(p, lrn) - nInts; } /**Function************************************************************* Synopsis [Shrinking vector size.] Description [] SideEffects [This procedure does not update the number of entries.] SeeAlso [] ***********************************************************************/ static inline void Sat_MemShrink( Sat_Mem_t * p, int h, int lrn ) { assert( clause_learnt_h(p, h) == lrn ); assert( h && h <= Sat_MemHandCurrent(p, lrn) ); p->iPage[lrn] = Sat_MemHandPage(p, h); Sat_MemWriteLimit( p->pPages[p->iPage[lrn]], Sat_MemHandShift(p, h) ); } /**Function************************************************************* Synopsis [Compacts learned clauses by removing marked entries.] Description [Returns the number of remaining entries.] SideEffects [] SeeAlso [] ***********************************************************************/ static inline int Sat_MemCompactLearned( Sat_Mem_t * p, int fDoMove ) { clause * c, * cPivot = NULL; int i, k, iNew = 1, kNew = 2, nInts, fStartLooking, Counter = 0; int hLimit = Sat_MemHandCurrent(p, 1); if ( hLimit == Sat_MemHand(p, 1, 2) ) return 0; if ( fDoMove && p->BookMarkH[1] ) { // move the pivot assert( p->BookMarkH[1] >= Sat_MemHand(p, 1, 2) && p->BookMarkH[1] <= hLimit ); // get the pivot and remember it may be pointed offlimit cPivot = Sat_MemClauseHand( p, p->BookMarkH[1] ); if ( p->BookMarkH[1] < hLimit && !cPivot->mark ) { p->BookMarkH[1] = cPivot->lits[cPivot->size]; cPivot = NULL; } // else find the next used clause after cPivot } // iterate through the learned clauses fStartLooking = 0; Sat_MemForEachLearned( p, c, i, k ) { assert( c->lrn ); // skip marked entry if ( c->mark ) { // if pivot is a marked clause, start looking for the next non-marked one if ( cPivot && cPivot == c ) { fStartLooking = 1; cPivot = NULL; } continue; } // if we started looking before, we found it! if ( fStartLooking ) { fStartLooking = 0; p->BookMarkH[1] = c->lits[c->size]; } // compute entry size nInts = Sat_MemClauseSize(c); assert( !(nInts & 1) ); // check if we need to scroll to the next page if ( kNew + nInts >= (1 << p->nPageSize) ) { // set the limit of the current page if ( fDoMove ) Sat_MemWriteLimit( p->pPages[iNew], kNew ); // move writing position to the new page iNew += 2; kNew = 2; } if ( fDoMove ) { // make sure the result is the same as previous dry run assert( c->lits[c->size] == Sat_MemHand(p, iNew, kNew) ); // only copy the clause if it has changed if ( i != iNew || k != kNew ) { memmove( p->pPages[iNew] + kNew, c, sizeof(int) * nInts ); // c = Sat_MemClause( p, iNew, kNew ); // assersions do not hold during dry run c = (clause *)(p->pPages[iNew] + kNew); assert( nInts == Sat_MemClauseSize(c) ); } // set the new ID value c->lits[c->size] = Counter; } else // remember the address of the clause in the new location c->lits[c->size] = Sat_MemHand(p, iNew, kNew); // update writing position kNew += nInts; assert( iNew <= i && kNew < (1 << p->nPageSize) ); // update counter Counter++; } if ( fDoMove ) { // update the counter p->nEntries[1] = Counter; // update the page count p->iPage[1] = iNew; // set the limit of the last page Sat_MemWriteLimit( p->pPages[iNew], kNew ); // check if the pivot need to be updated if ( p->BookMarkH[1] ) { if ( cPivot ) { p->BookMarkH[1] = Sat_MemHandCurrent(p, 1); p->BookMarkE[1] = p->nEntries[1]; } else p->BookMarkE[1] = clause_id(Sat_MemClauseHand( p, p->BookMarkH[1] )); } } return Counter; } ABC_NAMESPACE_HEADER_END #endif //////////////////////////////////////////////////////////////////////// /// END OF FILE /// ////////////////////////////////////////////////////////////////////////