module Tests.Extra.Graph where import AtCoder.Extra.Graph qualified as Gr import Control.Monad (unless) import Control.Monad.Fix (fix) import Data.List qualified as L import Data.Vector qualified as V import Data.Vector.Generic qualified as VG import Data.Vector.Unboxed qualified as VU import Data.Vector.Unboxed.Mutable qualified as VUM import Test.Tasty import Test.Tasty.HUnit import Test.Tasty.QuickCheck as QC genDag :: Int -> QC.Gen (Gr.Csr ()) genDag n = do edges <- VU.fromList <$> QC.sublistOf [(u, v) | u <- [0 .. n - 1], v <- [u + 1 .. n - 1]] verts <- VU.fromList <$> QC.shuffle [0 .. n - 1] pure $ Gr.build n $ VU.map (\(!u, !v) -> (verts VG.! u, verts VG.! v, ())) edges reachableFlags :: Int -> (Int -> VU.Vector Int) -> Int -> VU.Vector Bool reachableFlags n gr u0 = VU.create $ do vis <- VUM.replicate n False VUM.write vis u0 True flip fix u0 $ \loop u -> do VU.forM_ (gr u) $ \v -> do b <- VUM.exchange vis v True unless b $ do loop v pure vis testTopSort :: Int -> Gr.Csr () -> VU.Vector Int -> Bool testTopSort n gr vs = let reachables = V.generate n (reachableFlags n (gr `Gr.adj`)) in and [ not $ reachables VG.! v VG.! u | iu <- [0 .. n - 1], let u = vs VG.! iu, iv <- [iu + 1 .. n - 1], let v = vs VG.! iv ] -- | Tests lexicographically smallest topological ordering. prop_topSort :: QC.Gen QC.Property prop_topSort = do n <- QC.chooseInt (1, 3) dag <- genDag n let vs = Gr.topSort n (dag `Gr.adj`) let perms = map (VU.fromListN n) $ L.permutations [0 .. n - 1] pure $ vs QC.=== minimum (filter (testTopSort n dag) perms) genComplexEdges :: Int -> QC.Gen (VU.Vector (Int, Int, Int)) genComplexEdges n = do m <- QC.chooseInt (1, 2 * n * n) (VU.fromList <$>) . QC.vectorOf m $ do u <- QC.chooseInt (0, n - 1) v <- QC.chooseInt (0, n - 1) w <- QC.arbitrary @Int pure (u, v, w) prop_floydWarshall :: QC.Gen QC.Property prop_floydWarshall = do -- n <- QC.chooseInt (1, 16) let n = 4 es <- genComplexEdges n let !undefW = maxBound `div` 2 :: Int let (!distFw, !_prevFw) = Gr.trackingFloydWarshall n es undefW let gr = Gr.build n es let !bell = V.generate n $ Gr.trackingBellmanFord n (Gr.adjW gr) undefW . VU.singleton . (,0) pure $ QC.counterexample (show (n, es)) $ QC.conjoin [ case bell VG.! u of -- TODO: assertion function? Nothing -> any (\vtx -> distFw VG.! (n * vtx + vtx) < 0) [0 .. n - 1] QC.=== True Just (!distB, !_prevB) -> QC.conjoin [ distFw VG.! (n * u + v) QC.=== distB VG.! v -- TODO: Shortest paths cannot be uniqueified, so other test would be suitable -- , Gr.constructPathFromRootNN prevFw u v QC.=== Gr.constructPathFromRoot prevB v ] | u <- [0 .. n - 1], v <- [0 .. n - 1] ] unit_loopPathConstruction :: TestTree unit_loopPathConstruction = testCase "loop path reconstruction" $ do let parents = VU.fromList [3, 0, 1, 2] let path = Gr.constructPathFromRoot parents 3 path @?= VU.fromList [0, 1, 2, 3] tests :: [TestTree] tests = [ QC.testProperty "topSort" prop_topSort, -- not writing much tests, as we have verification problems QC.testProperty "floydWarshall" prop_floydWarshall ]