Copyright | [2012..2017] Manuel M T Chakravarty Gabriele Keller Trevor L. McDonell [2013..2017] Robert Clifton-Everest |
---|---|

License | BSD3 |

Maintainer | Trevor L. McDonell <tmcdonell@cse.unsw.edu.au> |

Stability | experimental |

Portability | non-portable (GHC extensions) |

Safe Haskell | None |

Language | Haskell98 |

These transforms allow the centering of the frequency domain of a DFT such that the the zero frequency is in the middle. The centering transform, when performed on the input of a DFT, will cause zero frequency to be centred in the middle. The shifting transform however takes the output of a DFT to give the same result. Therefore the relationship between the two is:

fft(center(X)) = shift(fft(X))

- centre1D :: (RealFloat e, FromIntegral Int e) => Acc (Array DIM1 (Complex e)) -> Acc (Array DIM1 (Complex e))
- centre2D :: (RealFloat e, FromIntegral Int e) => Acc (Array DIM2 (Complex e)) -> Acc (Array DIM2 (Complex e))
- centre3D :: (RealFloat e, FromIntegral Int e) => Acc (Array DIM3 (Complex e)) -> Acc (Array DIM3 (Complex e))
- shift1D :: Elt e => Acc (Vector e) -> Acc (Vector e)
- shift2D :: Elt e => Acc (Array DIM2 e) -> Acc (Array DIM2 e)
- shift3D :: Elt e => Acc (Array DIM3 e) -> Acc (Array DIM3 e)

# Documentation

centre1D :: (RealFloat e, FromIntegral Int e) => Acc (Array DIM1 (Complex e)) -> Acc (Array DIM1 (Complex e)) Source #

Apply the centring transform to a vector

centre2D :: (RealFloat e, FromIntegral Int e) => Acc (Array DIM2 (Complex e)) -> Acc (Array DIM2 (Complex e)) Source #

Apply the centring transform to a matrix

centre3D :: (RealFloat e, FromIntegral Int e) => Acc (Array DIM3 (Complex e)) -> Acc (Array DIM3 (Complex e)) Source #

Apply the centring transform to a 3D array

shift1D :: Elt e => Acc (Vector e) -> Acc (Vector e) Source #

Apply the shifting transform to a vector