{-# LANGUAGE Rank2Types #-} {-# LANGUAGE ScopedTypeVariables #-} ----------------------------------------------------------------------------- -- | -- Copyright : (c) Edward Kmett 2010-2015 -- License : BSD3 -- Maintainer : ekmett@gmail.com -- Stability : experimental -- Portability : GHC only -- -- Root finding using Halley's rational method (the second in -- the class of Householder methods). Assumes the function is three -- times continuously differentiable and converges cubically when -- progress can be made. -- ----------------------------------------------------------------------------- module Numeric.AD.Halley ( -- * Halley's Method (Tower AD) findZero , inverse , fixedPoint , extremum ) where import Prelude import Numeric.AD.Internal.Forward (Forward) import Numeric.AD.Internal.On import Numeric.AD.Internal.Tower (Tower) import Numeric.AD.Internal.Type (AD(..)) import qualified Numeric.AD.Rank1.Halley as Rank1 -- $setup -- >>> import Data.Complex -- | The 'findZero' function finds a zero of a scalar function using -- Halley's method; its output is a stream of increasingly accurate -- results. (Modulo the usual caveats.) If the stream becomes constant -- ("it converges"), no further elements are returned. -- -- Examples: -- -- >>> take 10 $ findZero (\x->x^2-4) 1 -- [1.0,1.8571428571428572,1.9997967892704736,1.9999999999994755,2.0] -- -- >>> last $ take 10 $ findZero ((+1).(^2)) (1 :+ 1) -- 0.0 :+ 1.0 findZero :: (Fractional a, Eq a) => (forall s. AD s (Tower a) -> AD s (Tower a)) -> a -> [a] findZero f = Rank1.findZero (runAD.f.AD) {-# INLINE findZero #-} -- | The 'inverse' function inverts a scalar function using -- Halley's method; its output is a stream of increasingly accurate -- results. (Modulo the usual caveats.) If the stream becomes constant -- ("it converges"), no further elements are returned. -- -- Note: the @take 10 $ inverse sqrt 1 (sqrt 10)@ example that works for Newton's method -- fails with Halley's method because the preconditions do not hold! inverse :: (Fractional a, Eq a) => (forall s. AD s (Tower a) -> AD s (Tower a)) -> a -> a -> [a] inverse f = Rank1.inverse (runAD.f.AD) {-# INLINE inverse #-} -- | The 'fixedPoint' function find a fixedpoint of a scalar -- function using Halley's method; its output is a stream of -- increasingly accurate results. (Modulo the usual caveats.) -- -- If the stream becomes constant ("it converges"), no further -- elements are returned. -- -- >>> last $ take 10 $ fixedPoint cos 1 -- 0.7390851332151607 fixedPoint :: (Fractional a, Eq a) => (forall s. AD s (Tower a) -> AD s (Tower a)) -> a -> [a] fixedPoint f = Rank1.fixedPoint (runAD.f.AD) {-# INLINE fixedPoint #-} -- | The 'extremum' function finds an extremum of a scalar -- function using Halley's method; produces a stream of increasingly -- accurate results. (Modulo the usual caveats.) If the stream becomes -- constant ("it converges"), no further elements are returned. -- -- >>> take 10 $ extremum cos 1 -- [1.0,0.29616942658570555,4.59979519460002e-3,1.6220740159042513e-8,0.0] extremum :: (Fractional a, Eq a) => (forall s. AD s (On (Forward (Tower a))) -> AD s (On (Forward (Tower a)))) -> a -> [a] extremum f = Rank1.extremum (runAD.f.AD) {-# INLINE extremum #-}