{-# LANGUAGE CPP #-} {-# LANGUAGE Rank2Types #-} ----------------------------------------------------------------------------- -- | -- Copyright : (c) Edward Kmett 2010-2015 -- License : BSD3 -- Maintainer : ekmett@gmail.com -- Stability : experimental -- Portability : GHC only -- -- Forward mode automatic differentiation -- ----------------------------------------------------------------------------- module Numeric.AD.Mode.Forward ( AD , Forward , auto -- * Gradient , grad , grad' , gradWith , gradWith' -- * Jacobian , jacobian , jacobian' , jacobianWith , jacobianWith' -- * Transposed Jacobian , jacobianT , jacobianWithT -- * Hessian Product , hessianProduct , hessianProduct' -- * Derivatives , diff , diff' , diffF , diffF' -- * Directional Derivatives , du , du' , duF , duF' ) where #if __GLASGOW_HASKELL__ < 710 import Data.Traversable (Traversable) #endif import Numeric.AD.Internal.Forward import Numeric.AD.Internal.On import Numeric.AD.Internal.Type import qualified Numeric.AD.Rank1.Forward as Rank1 import Numeric.AD.Mode -- | Compute the directional derivative of a function given a zipped up 'Functor' of the input values and their derivatives du :: (Functor f, Num a) => (forall s. f (AD s (Forward a)) -> AD s (Forward a)) -> f (a, a) -> a du f = Rank1.du (runAD.f.fmap AD) {-# INLINE du #-} -- | Compute the answer and directional derivative of a function given a zipped up 'Functor' of the input values and their derivatives du' :: (Functor f, Num a) => (forall s. f (AD s (Forward a)) -> AD s (Forward a)) -> f (a, a) -> (a, a) du' f = Rank1.du' (runAD.f.fmap AD) {-# INLINE du' #-} -- | Compute a vector of directional derivatives for a function given a zipped up 'Functor' of the input values and their derivatives. duF :: (Functor f, Functor g, Num a) => (forall s. f (AD s (Forward a)) -> g (AD s (Forward a))) -> f (a, a) -> g a duF f = Rank1.duF (fmap runAD.f.fmap AD) {-# INLINE duF #-} -- | Compute a vector of answers and directional derivatives for a function given a zipped up 'Functor' of the input values and their derivatives. duF' :: (Functor f, Functor g, Num a) => (forall s. f (AD s (Forward a)) -> g (AD s (Forward a))) -> f (a, a) -> g (a, a) duF' f = Rank1.duF' (fmap runAD.f.fmap AD) {-# INLINE duF' #-} -- | The 'diff' function calculates the first derivative of a scalar-to-scalar function by forward-mode 'AD' -- -- >>> diff sin 0 -- 1.0 diff :: Num a => (forall s. AD s (Forward a) -> AD s (Forward a)) -> a -> a diff f = Rank1.diff (runAD.f.AD) {-# INLINE diff #-} -- | The 'diff'' function calculates the result and first derivative of scalar-to-scalar function by 'Forward' mode 'AD' -- -- @ -- 'diff'' 'sin' == 'sin' 'Control.Arrow.&&&' 'cos' -- 'diff'' f = f 'Control.Arrow.&&&' d f -- @ -- -- >>> diff' sin 0 -- (0.0,1.0) -- -- >>> diff' exp 0 -- (1.0,1.0) diff' :: Num a => (forall s. AD s (Forward a) -> AD s (Forward a)) -> a -> (a, a) diff' f = Rank1.diff' (runAD.f.AD) {-# INLINE diff' #-} -- | The 'diffF' function calculates the first derivatives of scalar-to-nonscalar function by 'Forward' mode 'AD' -- -- >>> diffF (\a -> [sin a, cos a]) 0 -- [1.0,-0.0] diffF :: (Functor f, Num a) => (forall s. AD s (Forward a) -> f (AD s (Forward a))) -> a -> f a diffF f = Rank1.diffF (fmap runAD.f.AD) {-# INLINE diffF #-} -- | The 'diffF'' function calculates the result and first derivatives of a scalar-to-non-scalar function by 'Forward' mode 'AD' -- -- >>> diffF' (\a -> [sin a, cos a]) 0 -- [(0.0,1.0),(1.0,-0.0)] diffF' :: (Functor f, Num a) => (forall s. AD s (Forward a) -> f (AD s (Forward a))) -> a -> f (a, a) diffF' f = Rank1.diffF' (fmap runAD.f.AD) {-# INLINE diffF' #-} -- | A fast, simple, transposed Jacobian computed with forward-mode AD. jacobianT :: (Traversable f, Functor g, Num a) => (forall s. f (AD s (Forward a)) -> g (AD s (Forward a))) -> f a -> f (g a) jacobianT f = Rank1.jacobianT (fmap runAD.f.fmap AD) {-# INLINE jacobianT #-} -- | A fast, simple, transposed Jacobian computed with 'Forward' mode 'AD' that combines the output with the input. jacobianWithT :: (Traversable f, Functor g, Num a) => (a -> a -> b) -> (forall s. f (AD s (Forward a)) -> g (AD s (Forward a))) -> f a -> f (g b) jacobianWithT g f = Rank1.jacobianWithT g (fmap runAD.f.fmap AD) {-# INLINE jacobianWithT #-} -- | Compute the Jacobian using 'Forward' mode 'AD'. This must transpose the result, so 'jacobianT' is faster and allows more result types. -- -- -- >>> jacobian (\[x,y] -> [y,x,x+y,x*y,exp x * sin y]) [pi,1] -- [[0.0,1.0],[1.0,0.0],[1.0,1.0],[1.0,3.141592653589793],[19.472221418841606,12.502969588876512]] jacobian :: (Traversable f, Traversable g, Num a) => (forall s . f (AD s (Forward a)) -> g (AD s (Forward a))) -> f a -> g (f a) jacobian f = Rank1.jacobian (fmap runAD.f.fmap AD) {-# INLINE jacobian #-} -- | Compute the Jacobian using 'Forward' mode 'AD' and combine the output with the input. This must transpose the result, so 'jacobianWithT' is faster, and allows more result types. jacobianWith :: (Traversable f, Traversable g, Num a) => (a -> a -> b) -> (forall s. f (AD s (Forward a)) -> g (AD s (Forward a))) -> f a -> g (f b) jacobianWith g f = Rank1.jacobianWith g (fmap runAD.f.fmap AD) {-# INLINE jacobianWith #-} -- | Compute the Jacobian using 'Forward' mode 'AD' along with the actual answer. jacobian' :: (Traversable f, Traversable g, Num a) => (forall s. f (AD s (Forward a)) -> g (AD s (Forward a))) -> f a -> g (a, f a) jacobian' f = Rank1.jacobian' (fmap runAD.f.fmap AD) {-# INLINE jacobian' #-} -- | Compute the Jacobian using 'Forward' mode 'AD' combined with the input using a user specified function, along with the actual answer. jacobianWith' :: (Traversable f, Traversable g, Num a) => (a -> a -> b) -> (forall s. f (AD s (Forward a)) -> g (AD s (Forward a))) -> f a -> g (a, f b) jacobianWith' g f = Rank1.jacobianWith' g (fmap runAD.f.fmap AD) {-# INLINE jacobianWith' #-} -- | Compute the gradient of a function using forward mode AD. -- -- Note, this performs /O(n)/ worse than 'Numeric.AD.Mode.Wengert.grad' for @n@ inputs, in exchange for better space utilization. grad :: (Traversable f, Num a) => (forall s. f (AD s (Forward a)) -> AD s (Forward a)) -> f a -> f a grad f = Rank1.grad (runAD.f.fmap AD) {-# INLINE grad #-} -- | Compute the gradient and answer to a function using forward mode AD. -- -- Note, this performs /O(n)/ worse than 'Numeric.AD.Mode.Wengert.grad'' for @n@ inputs, in exchange for better space utilization. grad' :: (Traversable f, Num a) => (forall s. f (AD s (Forward a)) -> AD s (Forward a)) -> f a -> (a, f a) grad' f = Rank1.grad' (runAD.f.fmap AD) {-# INLINE grad' #-} -- | Compute the gradient of a function using forward mode AD and combine the result with the input using a user-specified function. -- -- Note, this performs /O(n)/ worse than 'Numeric.AD.Mode.Wengert.gradWith' for @n@ inputs, in exchange for better space utilization. gradWith :: (Traversable f, Num a) => (a -> a -> b) -> (forall s. f (AD s (Forward a)) -> AD s (Forward a)) -> f a -> f b gradWith g f = Rank1.gradWith g (runAD.f.fmap AD) {-# INLINE gradWith #-} -- | Compute the gradient of a function using forward mode AD and the answer, and combine the result with the input using a -- user-specified function. -- -- Note, this performs /O(n)/ worse than 'Numeric.AD.Mode.Wengert.gradWith'' for @n@ inputs, in exchange for better space utilization. -- -- >>> gradWith' (,) sum [0..4] -- (10,[(0,1),(1,1),(2,1),(3,1),(4,1)]) gradWith' :: (Traversable f, Num a) => (a -> a -> b) -> (forall s. f (AD s (Forward a)) -> AD s (Forward a)) -> f a -> (a, f b) gradWith' g f = Rank1.gradWith' g (runAD.f.fmap AD) {-# INLINE gradWith' #-} -- | Compute the product of a vector with the Hessian using forward-on-forward-mode AD. -- hessianProduct :: (Traversable f, Num a) => (forall s. f (AD s (On (Forward (Forward a)))) -> AD s (On (Forward (Forward a)))) -> f (a, a) -> f a hessianProduct f = Rank1.hessianProduct (runAD.f.fmap AD) {-# INLINE hessianProduct #-} -- | Compute the gradient and hessian product using forward-on-forward-mode AD. hessianProduct' :: (Traversable f, Num a) => (forall s. f (AD s (On (Forward (Forward a)))) -> AD s (On (Forward (Forward a)))) -> f (a, a) -> f (a, a) hessianProduct' f = Rank1.hessianProduct' (runAD.f.fmap AD) {-# INLINE hessianProduct' #-}