{-# LANGUAGE Rank2Types #-} {-# LANGUAGE FlexibleContexts #-} ----------------------------------------------------------------------------- -- | -- Copyright : (c) Edward Kmett 2010-2021 -- License : BSD3 -- Maintainer : ekmett@gmail.com -- Stability : experimental -- Portability : GHC only -- -- First order dense forward mode using 'Representable' functors -- ----------------------------------------------------------------------------- module Numeric.AD.Mode.Dense.Representable ( AD, Repr, auto -- * Dense Gradients , grad , grad' , gradWith , gradWith' -- * Dense Jacobians (synonyms) , jacobian , jacobian' , jacobianWith , jacobianWith' ) where import Data.Functor.Rep import Numeric.AD.Internal.Dense.Representable (Repr) import qualified Numeric.AD.Rank1.Dense.Representable as Rank1 import Numeric.AD.Internal.Type import Numeric.AD.Mode -- $setup -- >>> :set -XDeriveGeneric -XDeriveFunctor -- >>> import GHC.Generics (Generic1) -- >>> import Data.Distributive (Distributive (..)) -- >>> import Data.Functor.Rep (Representable, distributeRep) -- >>> data V3 a = V3 a a a deriving (Generic1, Functor, Show) -- >>> instance Representable V3; instance Distributive V3 where distribute = distributeRep -- | The 'grad' function calculates the gradient of a non-scalar-to-scalar function with dense-mode AD in a single pass. -- -- >>> grad (\(V3 x y z) -> x*y+z) (V3 1 2 3) -- V3 2 1 1 -- grad :: (Representable f, Eq (Rep f), Num a) => (forall s. f (AD s (Repr f a)) -> AD s (Repr f a)) -> f a -> f a grad f = Rank1.grad (runAD.f.fmap AD) {-# INLINE grad #-} grad' :: (Representable f, Eq (Rep f), Num a) => (forall s. f (AD s (Repr f a)) -> AD s (Repr f a)) -> f a -> (a, f a) grad' f = Rank1.grad' (runAD.f.fmap AD) {-# INLINE grad' #-} gradWith :: (Representable f, Eq (Rep f), Num a) => (a -> a -> b) -> (forall s. f (AD s (Repr f a)) -> AD s (Repr f a)) -> f a -> f b gradWith g f = Rank1.gradWith g (runAD.f.fmap AD) {-# INLINE gradWith #-} gradWith' :: (Representable f, Eq (Rep f), Num a) => (a -> a -> b) -> (forall s. f (AD s (Repr f a)) -> AD s (Repr f a)) -> f a -> (a, f b) gradWith' g f = Rank1.gradWith' g (runAD.f.fmap AD) {-# INLINE gradWith' #-} jacobian :: (Representable f, Eq (Rep f), Functor g, Num a) => (forall s. f (AD s (Repr f a)) -> g (AD s (Repr f a))) -> f a -> g (f a) jacobian f = Rank1.jacobian (fmap runAD.f.fmap AD) {-# INLINE jacobian #-} jacobian' :: (Representable f, Eq (Rep f), Functor g, Num a) => (forall s. f (AD s (Repr f a)) -> g (AD s (Repr f a))) -> f a -> g (a, f a) jacobian' f = Rank1.jacobian' (fmap runAD.f.fmap AD) {-# INLINE jacobian' #-} jacobianWith :: (Representable f, Eq (Rep f), Functor g, Num a) => (a -> a -> b) -> (forall s. f (AD s (Repr f a)) -> g (AD s (Repr f a))) -> f a -> g (f b) jacobianWith g f = Rank1.jacobianWith g (fmap runAD.f.fmap AD) {-# INLINE jacobianWith #-} jacobianWith' :: (Representable f, Eq (Rep f), Functor g, Num a) => (a -> a -> b) -> (forall s. f (AD s (Repr f a)) -> g (AD s (Repr f a))) -> f a -> g (a, f b) jacobianWith' g f = Rank1.jacobianWith' g (fmap runAD.f.fmap AD) {-# INLINE jacobianWith' #-}