{-# LANGUAGE Rank2Types #-} {-# LANGUAGE BangPatterns #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE FunctionalDependencies #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE ScopedTypeVariables #-} ----------------------------------------------------------------------------- -- | -- Copyright : (c) Edward Kmett 2010-2021 -- License : BSD3 -- Maintainer : ekmett@gmail.com -- Stability : experimental -- Portability : GHC only -- -- Reverse-mode automatic differentiation using Wengert lists and -- Data.Reflection -- -- This version is specialized to `Double` enabling the entire -- structure to be unboxed. -- ----------------------------------------------------------------------------- module Numeric.AD.Mode.Reverse.Double ( ReverseDouble, auto -- * Gradient , grad , grad' , gradWith , gradWith' -- * Jacobian , jacobian , jacobian' , jacobianWith , jacobianWith' -- * Hessian , hessian , hessianF -- * Derivatives , diff , diff' , diffF , diffF' ) where import Data.Typeable import Data.Functor.Compose import Data.Reflection (Reifies) import Numeric.AD.Internal.On import qualified Numeric.AD.Internal.Reverse as R import qualified Numeric.AD.Mode.Reverse as M import Numeric.AD.Internal.Reverse.Double import Numeric.AD.Mode -- $setup -- -- >>> import Numeric.AD.Internal.Doctest -- | The 'grad' function calculates the gradient of a non-scalar-to-scalar function with reverse-mode AD in a single pass. -- -- -- >>> grad (\[x,y,z] -> x*y+z) [1,2,3] -- [2.0,1.0,1.0] -- -- >>> grad (\[x,y] -> x**y) [0,2] -- [0.0,NaN] grad :: Traversable f => (forall s. (Reifies s Tape, Typeable s) => f (ReverseDouble s) -> ReverseDouble s) -> f Double -> f Double grad f as = reifyTypeableTape (snd bds) $ \p -> unbind vs $! partialArrayOf p bds $! f vs where (vs, bds) = bind as {-# INLINE grad #-} -- | The 'grad'' function calculates the result and gradient of a non-scalar-to-scalar function with reverse-mode AD ƒin a single pass. -- -- >>> grad' (\[x,y,z] -> x*y+z) [1,2,3] -- (5.0,[2.0,1.0,1.0]) grad' :: Traversable f => (forall s. (Reifies s Tape, Typeable s) => f (ReverseDouble s) -> ReverseDouble s) -> f Double -> (Double, f Double) grad' f as = reifyTypeableTape (snd bds) $ \p -> case f vs of r -> (primal r, unbind vs $! partialArrayOf p bds $! r) where (vs, bds) = bind as {-# INLINE grad' #-} -- | @'grad' g f@ function calculates the gradient of a non-scalar-to-scalar function @f@ with reverse-mode AD in a single pass. -- The gradient is combined element-wise with the argument using the function @g@. -- -- @ -- 'grad' == 'gradWith' (\_ dx -> dx) -- 'id' == 'gradWith' 'const' -- @ gradWith :: Traversable f => (Double -> Double -> b) -> (forall s. (Reifies s Tape, Typeable s) => f (ReverseDouble s) -> ReverseDouble s) -> f Double -> f b gradWith g f as = reifyTypeableTape (snd bds) $ \p -> unbindWith g vs $! partialArrayOf p bds $! f vs where (vs,bds) = bind as {-# INLINE gradWith #-} -- | @'grad'' g f@ calculates the result and gradient of a non-scalar-to-scalar function @f@ with reverse-mode AD in a single pass -- the gradient is combined element-wise with the argument using the function @g@. -- -- @ -- 'grad'' == 'gradWith'' (\_ dx -> dx) -- @ gradWith' :: Traversable f => (Double -> Double -> b) -> (forall s. (Reifies s Tape, Typeable s) => f (ReverseDouble s) -> ReverseDouble s) -> f Double -> (Double, f b) gradWith' g f as = reifyTypeableTape (snd bds) $ \p -> case f vs of r -> (primal r, unbindWith g vs $! partialArrayOf p bds $! r) where (vs, bds) = bind as {-# INLINE gradWith' #-} -- | The 'jacobian' function calculates the jacobian of a non-scalar-to-non-scalar function with reverse AD lazily in @m@ passes for @m@ outputs. -- -- >>> jacobian (\[x,y] -> [y,x,x*y]) [2,1] -- [[0.0,1.0],[1.0,0.0],[1.0,2.0]] jacobian :: (Traversable f, Functor g) => (forall s. (Reifies s Tape, Typeable s) => f (ReverseDouble s) -> g (ReverseDouble s)) -> f Double -> g (f Double) jacobian f as = reifyTypeableTape (snd bds) $ \p -> unbind vs . partialArrayOf p bds <$> f vs where (vs, bds) = bind as {-# INLINE jacobian #-} -- | The 'jacobian'' function calculates both the result and the Jacobian of a nonscalar-to-nonscalar function, using @m@ invocations of reverse AD, -- where @m@ is the output dimensionality. Applying @fmap snd@ to the result will recover the result of 'jacobian' -- | An alias for 'gradF'' -- -- >>> jacobian' (\[x,y] -> [y,x,x*y]) [2,1] -- [(1.0,[0.0,1.0]),(2.0,[1.0,0.0]),(2.0,[1.0,2.0])] jacobian' :: (Traversable f, Functor g) => (forall s. (Reifies s Tape, Typeable s) => f (ReverseDouble s) -> g (ReverseDouble s)) -> f Double -> g (Double, f Double) jacobian' f as = reifyTypeableTape (snd bds) $ \p -> let row a = (primal a, unbind vs $! partialArrayOf p bds $! a) in row <$> f vs where (vs, bds) = bind as {-# INLINE jacobian' #-} -- | 'jacobianWith g f' calculates the Jacobian of a non-scalar-to-non-scalar function @f@ with reverse AD lazily in @m@ passes for @m@ outputs. -- -- Instead of returning the Jacobian matrix, the elements of the matrix are combined with the input using the @g@. -- -- @ -- 'jacobian' == 'jacobianWith' (\_ dx -> dx) -- 'jacobianWith' 'const' == (\f x -> 'const' x '<$>' f x) -- @ jacobianWith :: (Traversable f, Functor g) => (Double -> Double -> b) -> (forall s. (Reifies s Tape, Typeable s) => f (ReverseDouble s) -> g (ReverseDouble s)) -> f Double -> g (f b) jacobianWith g f as = reifyTypeableTape (snd bds) $ \p -> unbindWith g vs . partialArrayOf p bds <$> f vs where (vs, bds) = bind as {-# INLINE jacobianWith #-} -- | 'jacobianWith' g f' calculates both the result and the Jacobian of a nonscalar-to-nonscalar function @f@, using @m@ invocations of reverse AD, -- where @m@ is the output dimensionality. Applying @fmap snd@ to the result will recover the result of 'jacobianWith' -- -- Instead of returning the Jacobian matrix, the elements of the matrix are combined with the input using the @g@. -- -- @'jacobian'' == 'jacobianWith'' (\_ dx -> dx)@ -- jacobianWith' :: (Traversable f, Functor g) => (Double -> Double -> b) -> (forall s. (Reifies s Tape, Typeable s) => f (ReverseDouble s) -> g (ReverseDouble s)) -> f Double -> g (Double, f b) jacobianWith' g f as = reifyTypeableTape (snd bds) $ \p -> let row a = (primal a, unbindWith g vs $! partialArrayOf p bds $! a) in row <$> f vs where (vs, bds) = bind as {-# INLINE jacobianWith' #-} -- | Compute the derivative of a function. -- -- >>> diff sin 0 -- 1.0 diff :: (forall s. (Reifies s Tape, Typeable s) => ReverseDouble s -> ReverseDouble s) -> Double -> Double diff f a = reifyTypeableTape 1 $ \p -> derivativeOf p $! f (var a 0) {-# INLINE diff #-} -- | The 'diff'' function calculates the result and derivative, as a pair, of a scalar-to-scalar function. -- -- >>> diff' sin 0 -- (0.0,1.0) -- -- >>> diff' exp 0 -- (1.0,1.0) diff' :: (forall s. (Reifies s Tape, Typeable s) => ReverseDouble s -> ReverseDouble s) -> Double -> (Double, Double) diff' f a = reifyTypeableTape 1 $ \p -> derivativeOf' p $! f (var a 0) {-# INLINE diff' #-} -- | Compute the derivatives of each result of a scalar-to-vector function with regards to its input. -- -- >>> diffF (\a -> [sin a, cos a]) 0 -- [1.0,0.0] -- diffF :: Functor f => (forall s. (Reifies s Tape, Typeable s) => ReverseDouble s -> f (ReverseDouble s)) -> Double -> f Double diffF f a = reifyTypeableTape 1 $ \p -> derivativeOf p <$> f (var a 0) {-# INLINE diffF #-} -- | Compute the derivatives of each result of a scalar-to-vector function with regards to its input along with the answer. -- -- >>> diffF' (\a -> [sin a, cos a]) 0 -- [(0.0,1.0),(1.0,0.0)] diffF' :: Functor f => (forall s. (Reifies s Tape, Typeable s) => ReverseDouble s -> f (ReverseDouble s)) -> Double -> f (Double, Double) diffF' f a = reifyTypeableTape 1 $ \p -> derivativeOf' p <$> f (var a 0) {-# INLINE diffF' #-} -- | Compute the hessian via the jacobian of the gradient. gradient is computed in reverse mode and then the jacobian is computed in reverse mode. -- -- However, since the @'grad' f :: f a -> f a@ is square this is not as fast as using the forward-mode Jacobian of a reverse mode gradient provided by 'Numeric.AD.hessian'. -- -- >>> hessian (\[x,y] -> x*y) [1,2] -- [[0.0,1.0],[1.0,0.0]] hessian :: Traversable f => (forall s s'. (Reifies s R.Tape, Typeable s, Reifies s' Tape, Typeable s') => f (On (R.Reverse s (ReverseDouble s'))) -> On (R.Reverse s (ReverseDouble s'))) -> f Double -> f (f Double) hessian f = jacobian (M.grad (off . f . fmap On)) {-# INLINE hessian #-} -- | Compute the order 3 Hessian tensor on a non-scalar-to-non-scalar function via the reverse-mode Jacobian of the reverse-mode Jacobian of the function. -- -- Less efficient than 'Numeric.AD.Mode.Mixed.hessianF'. -- -- >>> hessianF (\[x,y] -> [x*y,x+y,exp x*cos y]) [1,2 :: Double] -- [[[0.0,1.0],[1.0,0.0]],[[0.0,0.0],[0.0,0.0]],[[-1.1312043837568135,-2.4717266720048188],[-2.4717266720048188,1.1312043837568135]]] hessianF :: (Traversable f, Functor g) => (forall s s'. (Reifies s R.Tape, Typeable s, Reifies s' Tape, Typeable s') => f (On (R.Reverse s (ReverseDouble s'))) -> g (On (R.Reverse s (ReverseDouble s')))) -> f Double -> g (f (f Double)) hessianF f = getCompose . jacobian (Compose . M.jacobian (fmap off . f . fmap On)) {-# INLINE hessianF #-}