úÎoœ3      !"#$%&'()*+,-./012#An adjunction from Hask to Hask^op   Hask (f a) b ~ Op a (g b)  rightAdjunct unit = id  leftAdjunct counit = id  ,A representation of a contravariant functor  #An adjunction from Hask^op to Hask   Op (f a) b ~ Hask a (g b)  rightAdjunct unit = id  leftAdjunct counit = id :Represent a contravariant functor that has a left adjoint 3'This gives rise to the Cont Bool monad 4-This adjunction gives rise to the Cont monad      rank 2 types, MPTCs, fundeps experimentalEdward Kmett <ekmett@gmail.com> %An adjunction between Hask and Hask.  rightAdjunct unit = id  leftAdjunct counit = id    MPTCs, fundeps provisionalEdward Kmett <ekmett@gmail.com>rank-2 types, MPTCs experimentalEdward Kmett <ekmett@gmail.com> !"#$%&'5()*+, !"#$%&'()*+, #$%&'() !"*+, !"!"#$%$%&'()*+,MPTCs, fundeps provisionalEdward Kmett <ekmett@gmail.com>-./0126iExploiting this instance requires that we have the missing Traversables for Identity, (,)e and IdentityT -./012021-./-././0127          !"#$%&'()*adjunctions-0.2.2)Data.Functor.Contravariant.DualAdjunction%Data.Functor.Contravariant.AdjunctionData.Functor.AdjunctionControl.Comonad.Trans.AdjointData.Functor.ZapControl.Monad.Trans.AdjointDualAdjunctionunitOpcounitOp leftAdjunctOprightAdjunctOpRepresentationrepunrep Adjunctionunitcounit leftAdjunct rightAdjunct repAdjunctionrepFlippedAdjunctionAdjointT runAdjointTAdjointadjoint runAdjointBizap bizapWithZapzapWithzapflipZap zapAdjunction composeZapbizap flipBizapbizapProductSum$fAdjunctionPredicatePredicate$fAdjunctionOpOpstrength$fMonadTransAdjointT