úÎZÕ-      !"#$%&'()*+,#An adjunction from Hask to Hask^op   Hask (f a) b ~ Op a (g b)  rightAdjunct unit = id  leftAdjunct counit = id ,A representation of a contravariant functor  #An adjunction from Hask^op to Hask   Op (f a) b ~ Hask a (g b)  rightAdjunct unit = id  leftAdjunct counit = id :Represent a contravariant functor that has a left adjoint -'This gives rise to the Cont Bool monad .-This adjunction gives rise to the Cont monad     rank 2 types, MPTCs, fundeps experimentalEdward Kmett <ekmett@gmail.com> %An adjunction between Hask and Hask.  rightAdjunct unit = id  leftAdjunct counit = id    rank-2 types, MPTCs experimentalEdward Kmett <ekmett@gmail.com> !/"#$%&  !"#$%&  !"#$%&  !"#$%&MPTCs, fundeps provisionalEdward Kmett <ekmett@gmail.com>'()*+,0iExploiting this instance requires that we have the missing Traversables for Identity, (,)e and IdentityT '()*+,*,+'()'()()*+,1            !"#$%&'(adjunctions-0.2%Data.Functor.Contravariant.AdjunctionData.Functor.AdjunctionData.Functor.ZapControl.Monad.Trans.AdjointDualAdjunctionunitOpcounitOp leftAdjunctOprightAdjunctOpRepresentationrepunrep Adjunctionunitcounit leftAdjunct rightAdjunct repAdjunctionrepFlippedAdjunctionBizap bizapWithZapzapWithzapflipZap zapAdjunction composeZapbizap flipBizapbizapProductSumAdjointT runAdjointTAdjointadjoint runAdjoint$fAdjunctionPredicatePredicate$fAdjunctionOpOpstrength$fMonadTransAdjointT