
Aivika:

A Simulation Library

David Sorokin <david.sorokin@gmail.com>,
Yoshkar-Ola, Russia

March 28, 2011

mailto:david.sorokin@gmail.com

2

Contents

1 Introduction 5

2 Dynamic Systems 7

3 Discrete Event Simulation 13
3.1 Event Queue . 13
3.2 References . 14
3.3 Example MachRep1 . 15

4 Process-oriented Simulation 19
4.1 Discontinuous Processes . 19
4.2 Revised Example MachRep1 . 21
4.3 Resources . 23
4.4 Example MachRep2 . 24
4.5 Example MachRep3 . 27

5 Activity-oriented Simulation 31
5.1 Ordered Computations and Memoization 31
5.2 Example MachRep1 Again . 33

6 Agent-based Modeling 37
6.1 Stateful Agents . 37
6.2 Example BassDiffusion . 39

7 System Dynamics 45
7.1 Table Functions . 45
7.2 Example FishBank . 46

8 Hybrid Simulation 49

3

4 CONTENTS

Chapter 1

Introduction

In 2009 in the course of my studying the functional programming I invented one
approach of integrating the system of ordinary differential equations using the
Runge-Kutta method and Euler’s method. Before that I had developed a visual
simulation tool Simtegra MapSys[3] together with Dr. Zahed Sheikholeslami for
the field of System Dynamics.

It is turned out that the new approach was not limited to the differential
equations only. The approach can be applied to the Discrete Event Simulation
(DES) and Agent-based Modeling too. It is turned out that my invention can
be applied to simulating the wide range of dynamic systems that evolve and
change in time. So I created an F# library which I called Aivika[6]. Aivika is
also a female Mari name pronounced with accent on the last syllable.

Below is described a Haskell port of my simulation library Aivika. It follows
the same idea but has a slightly different API and implementation.

In chapter 2 a new monad Dynamics is introduced. This is a key point of my
approach. A computation in this monad can be identified with some dynamic
process. It is important that we can bind different computations to create new
ones. It is shown how the differential equations can be written in this monad
and then simulated.

Chapter 3 describes the Event Queue. The queue behaves like a coordination
center processing events. It is important that the events are the Dynamics

computations, which binds the event processing with the main simulation. It
allows us to simulate the models under the event-oriented paradigm of DES.

Chapter 4 develops the idea of the Dynamics computation. A new monad
DynamicsProc is introduced. Only now the DynamicsProc computation can be
identified with the discontinuous process. Such a process can be suspended at
any time and then resumed later. Also the discontinuous process can behave
like a dynamic process, for any Dynamics computation can be lifted to this
new monad. So we can mix computations in the both monads. It allows us to
simulate the models under the process-oriented paradigm of DES.

Chapter 5 returns us to the Dynamics monad. It shows how we can simu-
late the models under the activity-oriented paradigm of DES. Also this chapter

5

6 CHAPTER 1. INTRODUCTION

uncovers some internals of the Dynamics computation.
Chapter 6 shows how the approach can be applied to the agent-based mod-

eling. Following the general line, the agent handlers are the Dynamics compu-
tations. It allows us to involve the agents in the main simulation.

In chapter 7 we return to the differential equations. It is shown how the
approach can be applied to System Dynamics.

The last chapter 8 summarizes my approach and is devoted to hybrid models
stating that the method is actually open to new simulation techniques.

Chapter 2

Dynamic Systems

A dynamic system evolves and changes in time. Examples are systems of or-
dinary differential equations with help of which we can describe the models of
System Dynamics. Each time we define a Discrete Event Simulation task, we
also define a time varying dynamic system. Finally, in the Agent-based Model-
ing we define agents and their behavior actually obeys the rules of some dynamic
system too. What unites all these cases is that the resulting system depends on
the time factor.

In mathematics there is also a notion of dynamic process. This is a gen-
eralization of the time-varying function. The process can take any values of
some arbitrary set. We don’t obligate the process to take only numeric values
in time points. Complex data structures can also be values of the dynamic pro-
cess. Therefore it is natural that the dynamic process can be represented as a
monad. In the Aivika simulation library this is the Dynamics monad.

data Dynamics a

instance Functor Dynamics

instance Monad Dynamics

instance MonadIO Dynamics

instance (Num a) => Num (Dynamics a)

instance (Fractional a) => Fractional (Dynamics a)

instance (Floating a) => Floating (Dynamics a)

So, any value of the Dynamics monad represents some dynamic process that
varies in time. This process can take numerical values. Moreover, we can
construct mathematical expressions from such processes, for this monad can be
an instance of type classes Num, Fractional and Floating.

What makes it a monad is an ability to bind different processes into one
compound process. It is possible due to the fact that the Dynamics monad is
very similar to the standard Reader monad. We only pass the time parameters
to every part of the imperative computation.

7

8 CHAPTER 2. DYNAMIC SYSTEMS

There are four primitives that allow us to know the time parameters:

starttime :: Dynamics Double

stoptime :: Dynamics Double

dt :: Dynamics Double

time :: Dynamics Double

The starttime value represents the initial time of the simulation. The
stoptime value gives us the information about the final time of the simulation.
The dt value returns the integration time step. This is a heritage of System
Dynamics, where we have to define an integration method with help of which
we are going to integrate the system of differential equations. Aivika is a hybrid
framework that supports different simulation paradigms. Therefore we must
know the integration method and its parameters to simulate the models of Sys-
tem Dynamics. Finally, the time built-in value returns the current simulation
time.

Having only these definitions, we can define interesting dynamics processes
and functions that operate on them:

sinWave :: Dynamics Double -> Dynamics Double -> Dynamics Double

sinWave a p = a * sin (2.0 * pi * time / p)

cosWave :: Dynamics Double -> Dynamics Double -> Dynamics Double

cosWave a p = a * sin (2.0 * pi * time / p)

Using the do-notation, we could achieve the same goal differently.

sinWave a p =

do a’ <- a

p’ <- p

t’ <- time

return $ a’ * sin (2.0 * pi * t’ / p’)

The dynamic process can return other data as well, for example, integrals.
In Aivika the integral is some structure that has an initial value, current value
and the time derivative.

data Integ

newInteg :: Dynamics Double -> Dynamics Integ

integValue :: Integ -> Dynamics Double

integDiff :: Integ -> Dynamics Double -> Dynamics ()

Here the newInteg function creates a new integral with the specified ini-
tial value. The integValue function returns the current integral value. The
integDiff function allows us to set the derivative of the integral. The returned
type of the last function means that we perform some side effect during the

9

computation. We actually create a loopback updating some reference in the IO

monad.
Now we can define the system of ordinary differential equations (ODE). The

idea is as follows. At first we create integrals, then we define all equations but
the derivatives. To refer to the integrals, we use the integValue function. At
last we complete the system by setting the derivatives. This scheme allows us
to define complex systems with loopbacks.

Let us consider the following ODE system:

ȧ = −ka× a, a(t0) = 100,

ḃ = ka× a− kb× b, b(t0) = 0,

ċ = kb× b, c(t0) = 0,

ka = 1,

kb = 1.

Its equivalent will take the following form in Aivika:

model :: Dynamics (Dynamics [Double])

model =

do integA <- newInteg 100

integB <- newInteg 0

integC <- newInteg 0

let a = integValue integA

b = integValue integB

c = integValue integC

ka = 1

kb = 1

integDiff integA (- ka * a)

integDiff integB (ka * a - kb * b)

integDiff integC (kb * b)

return $ sequence [time, a, b, c]

Please note an interesting thing. We return a nested dynamic process. The
model is some process that creates a simulation. To integrate the differential
equations, we have to allocate some memory and create loopbacks. This is what
the outer process does. The inner process is the simulation itself. This is so
common in Aivika that all run functions for the Dynamics monad take a nested
dynamic process as their argument.

runDynamics1 :: Dynamics (Dynamics a) -> Specs -> IO a

runDynamics :: Dynamics (Dynamics a) -> Specs -> IO [a]

runDynamicsIO :: Dynamics (Dynamics a) -> Specs -> IO [IO a]

The runDynamics1 function creates a simulation and then runs it in the
last integration time point using the specified simulation specs. Similarly, the

10 CHAPTER 2. DYNAMIC SYSTEMS

runDynamics function creates a simulation and then runs it in all integration
time points using the specified simulation specs. Like the previous one, the
runDynamicsIO function does the same and runs the simulation in all integration
time points but returns raw data in the IO monad.

Using any of the run functions, we can simulate the model. All them require
the simulation specs that have the following definition with the obvious meaning:

data Specs = Specs { spcStartTime :: Double,

spcStopTime :: Double,

spcDT :: Double,

spcMethod :: Method }

deriving (Eq, Ord, Show)

data Method = Euler | RungeKutta2 | RungeKutta4

deriving (Eq, Ord, Show)

The specs is namely that thing which provides the starttime, stoptime, dt
and time built-in values considered above with the input data. The integration
method has effect only on the integrals. All other dynamic processes just ignore
it.

There is a subtle thing related to the Dynamics monad and function join.
A computation in the monad returns multiple values calculated in time points.
It was tempting to write ordinary run functions without the nested type like
that

-- N.B. this function doesn’t exist.

runDynamics’ :: Dynamics a -> Specs -> IO [a]

-- ERROR: this is wrong!

main = do xs <- runDynamics’ (join model) specs

print xs

But that might lead to incorrect results. We could not use the same cache
for the integrals. This cache would be recreated for each time point during the
simulation, which would be impractical and even wrong in some cases!

Therefore it is important that the run functions actually take a nested type
that corresponds to a dynamic process inside another process. The outer process
creates once a cache and other intermediate data such as references. It happens
in the initial integration time point before the actual simulation is started and
when the information about the simulation specs becomes available. Then the
inner process can use already these shared data many times in different time
points to simulate the model.

In the F# version of Aivika the run functions use an unnested ar-
gument like the runDynamics’ function from the example above. It
is possible due to impurity and eager evaluation. Moreover, we can
create new integrals calling an ordinary object constructor. Some

11

side effects are hidden. It is not the case for the Haskell version of
Aivika, where all side effects are explicit.

Now we can simulate our ODE system.

main =

do xs <- runDynamics model specs

print xs

Let the initial time be 0, final time be 10, integration time step equal 1 and
we apply the 4th order Runge-Kutta method.

specs = Specs { spcStartTime = 0,

spcStopTime = 10,

spcDT = 1,

spcMethod = RungeKutta4 }

The simulation will return the following results:

[[0.0,100.0,0.0,0.0],

[1.0,37.5,33.33333333333333,29.166666666666664],

[2.0,14.0625,25.0,60.9375],

[3.0,5.2734375,14.0625,80.6640625],

[4.0,1.9775390625,7.03125,90.9912109375],

[5.0,0.7415771484375,3.2958984375,95.9625244140625],

[6.0,0.2780914306640625,1.483154296875,98.23875427246094],

...]

We saw that the dynamic processes and systems can be modeled with help
of the Dynamics monad. In continuation of this subject the next chapter shows
how this monad can be applied to the Discrete Event Simulation.

12 CHAPTER 2. DYNAMIC SYSTEMS

Chapter 3

Discrete Event Simulation

The Discrete Event Simulation (DES) involves simulating variables that change
in discrete steps. Then an event implies some variable change. The follow-
ing three approaches are widely applied: activity-oriented, event-oriented and
process-oriented. All three are supported by Aivika. In this chapter we will
focus on the event-oriented simulation.

Under the event-oriented paradigm, we put all pending events in the pri-
ority queue, where the first event has the minimal activation time. Then we
sequentially activate the events removing them from the queue. During such an
activation we can add new events. This scheme is called event-driven.

3.1 Event Queue

If the Dynamics monad is a circulatory system of Aivika then the event queue is
its heart. The queue is a motor that makes a model alive. Very much in Aivika
depends on the event queue. Its interface is very simple.

data DynamicsQueue

newQueue :: Dynamics DynamicsQueue

enqueueD :: DynamicsQueue -> Dynamics Double

-> Dynamics () -> Dynamics ()

enqueueD q t m

The newQueue function creates a new event queue. It performs some side
effect. Therefore the result is wrapped in the monad. The enqueueD function
is rather interesting. It adds event m to queue q. The event must be raised at
time t. The result is a computation. The most exciting thing is that the event
is a computation too in the Dynamics monad. If we want to pass some message
with the event then we should use a closure.

13

14 CHAPTER 3. DISCRETE EVENT SIMULATION

So, the event is a dynamic process that has a single purpose to perform once
some side effect at the specified time. The time argument also takes a form
of the process but it was made mostly for easiness. We can create expressions
using the time built-in values to define the moment at which the event will be
raised.

To functionate properly, the event queue must be involved in the main sim-
ulation. The next function returns a computation that represents a moving
force of the queue. The resulting computation should be added to the model,
although many objects you will see later do it implicitly.

runQueue :: DynamicsQueue -> Dynamics ()

It finishes the event queue definition. Such a queue is internally represented
as a heap-based priority queue. It is efficiently implemented using imperative
algorithms in the IO monad.

In the F# version of Aivika the event queue has type Env.

Before we proceed to the simulation approach, I will introduce a reference
type that can be applied to store and pass some data between different parts of
the model.

3.2 References

Values of the DynamicsReference type are very similar to values of the stan-
dard IORef type except for one thing. Each of them is bound to some event
queue. Before the reference value is requested the corresponded queue is checked
whether there are pending events that should be raised. It makes the model
coordinated. If you bind the reference to the event queue then you receive a
guarantee that all that depends on this queue will be actual at time of requesting
for the reference value.

data DynamicsRef a

newRef :: DynamicsQueue -> a -> Dynamics (DynamicsRef a)

readRef :: DynamicsRef a -> Dynamics a

writeRef :: DynamicsRef a -> a -> Dynamics ()

modifyRef :: DynamicsRef a -> (a -> a) -> Dynamics ()

Because of laziness, in general you should not use functions writeRef and
modifyRef in the simulation, for they create thunks that can lead to a space
leak. There are their strict counterparts that you should use, especially if the
reference stores a numeric value.

writeRef’ :: DynamicsRef a -> a -> Dynamics ()

modifyRef’ :: DynamicsRef a -> (a -> a) -> Dynamics ()

3.3. EXAMPLE MACHREP1 15

Thus, with help of references different parts of the model can communicate
to each other. If these references are bound to the same event queue then
this communication will be coordinated. In general, this is a good rule to
define only a single event queue in the whole model, because of the performance
consideration too.

3.3 Example MachRep1

Now it is time to illustrate the simulation approach. I will use the following
task [1].

There are two machines, which sometimes break down. Up time is
exponentially distributed with mean 1.0, and repair time is expo-
nentially distributed with mean 0.5. There are two repairpersons,
so the two machines can be repaired simultaneously if they are down
at the same time. Output is long-run proportion of up time. Should
get value of about 0.66.

As before, we create a model that computes the simulation. Also we need an
auxiliary function to generate exponentially distributed random values. To run
the simulation, we define the specs which some values are rather conditional.
We just have to define them anywhere.

import Random

import Control.Monad.Trans

import Simulation.Aivika.Dynamics

upRate = 1.0 / 1.0 -- reciprocal of mean up time

repairRate = 1.0 / 0.5 -- reciprocal of mean repair time

specs = Specs { spcStartTime = 0.0,

spcStopTime = 1000.0,

spcDT = 1.0,

spcMethod = RungeKutta4 }

exprnd :: Double -> IO Double

exprnd lambda =

do x <- getStdRandom random

return (- log x / lambda)

model :: Dynamics (Dynamics Double)

model =

do queue <- newQueue

totalUpTime <- newRef queue 0.0

16 CHAPTER 3. DISCRETE EVENT SIMULATION

let machineBroken :: Double -> Dynamics ()

machineBroken startUpTime =

do finishUpTime <- time

modifyRef’ totalUpTime

(+ (finishUpTime - startUpTime))

repairTime <- liftIO $ exprnd repairRate

-- enqueue a new event

let t = return $ finishUpTime + repairTime

enqueueD queue t machineRepaired

machineRepaired :: Dynamics ()

machineRepaired =

do startUpTime <- time

upTime <- liftIO $ exprnd upRate

-- enqueue a new event

let t = return $ startUpTime + upTime

enqueueD queue t $ machineBroken startUpTime

-- start the first machine

enqueueD queue starttime machineRepaired

-- start the second machine

enqueueD queue starttime machineRepaired

let system :: Dynamics Double

system =

do x <- readRef totalUpTime

y <- stoptime

return $ x / (2 * y)

return system

main =

do a <- runDynamics1 model specs

print a

Parameter spcDT of the simulation specs is not actually used here by Aivika.
The event queue doesn’t rely on the integration time points. It has its own
order of calculations concerning only with those time points at which the events
must be processed. The event queue is involved in the simulation through the
runQueue function, which is called implicitly each time we call the readRef

function in the main simulation loop.

3.3. EXAMPLE MACHREP1 17

Here the events are created by two local functions machineBroken and
machineRepaired. The latter is just a computation that has type Dynamics

(). The former is a function that accepts one argument. Given the start up
time, this function creates a computation of type Dynamics () too. In such a
way we can transfer with the event any data we want.

-- start the first machine

enqueueD queue starttime machineRepaired

-- start the second machine

enqueueD queue starttime machineRepaired

Here we initialize the event queue passing two events which should be raised
at the initial time of simulation. Each of the events corresponds to a separate
machine. We begin with the state at which the machine is repaired.

To switch from the repaired state to the broken one, we calculate the time
at which the machine should be broken and create a new event passing the start
up time with the closure.

-- enqueue a new event

let t = return $ startUpTime + upTime

enqueueD queue t $ machineBroken startUpTime

After the machine is broken it must be repaired during the random time
with the specified rate. After this time is over the machine becomes repaired,
about which we add the corresponded event to the queue.

-- enqueue a new event

let t = return $ finishUpTime + repairTime

enqueueD queue t machineRepaired

During the repair time we update our counter using the strict function
modifyRef’. If we used a non-strict version that we would achieve a space
leak. This is a rather subtle thing.

modifyRef’ totalUpTime

(+ (finishUpTime - startUpTime))

Finally, we call the simulation at the last integration time point using the
runDynamics1 function. It calls at that time point the readRef function that in
its turn unwinds all the events starting from the initial integration time point,
for the reference is bound to the event queue.

The next chapter shows how the same model can be simulated using the
process-oriented approach.

18 CHAPTER 3. DISCRETE EVENT SIMULATION

Chapter 4

Process-oriented Simulation

Under the process-oriented paradigm, we model simulation activities with help
of a special kind of processes. We can suspend and resume such processes. Also
we can request for and release of the resources suspending and resuming the
processes in case of need.

Before we proceed to examples, I have to introduce this kind of dynamic
processes.

4.1 Discontinuous Processes

Aivika provides a special kind of dynamic processes which I will call discontin-
uous processes to distinguish them from the dynamic processes that have type
Dynamics. They are important for the process-oriented simulation. These pro-
cesses of the new kind can be suspended at any time and then resumed later.
It allows us to model better the corresponded activities.

So, a discontinuous process is a value of type DynamicsProc. In most cases it
can behave like the dynamic process. Indeed, any computation of type Dynamics
can be lifted to the DynamicsProc type.

data DynamicsProc a

class DynamicsTrans m where

liftD :: Dynamics a -> m a

instance DynamicsTrans DynamicsProc

It allows us to include other dynamic processes in the computation of the
discontinuous process. For example, expression liftD time returns a current
simulation time wrapped in this new type.

Moreover, the DynamicsProc type is a monad, which is very important to
define the models.

19

20 CHAPTER 4. PROCESS-ORIENTED SIMULATION

instance Functor DynamicsProc

instance Monad DynamicsProc

instance MonadIO DynamicsProc

Tha main characteristic of the discontinuous processes is their ability to
suspend. Each of the next two functions suspend the current computation in
the DynamicsProc monad for the specified time. The time can be either a
number or a value wrapped in the Dynamics monad.

holdProcD :: Dynamics Double -> DynamicsProc ()

holdProc :: Double -> DynamicsProc ()

The processes can be also passivated. Somewhere it is like a suspension but
lasts for an unspecified time. The current process is stopped and waits for a
moment until somebody else reactivates it.

passivateProc :: DynamicsProc ()

The difference between a hold and passivation is that the hold process stops
and adds an awakening event to the underlying queue that acts behind the
scene. Such a process is resumed right after the corresponded event is raised.
On the contrary, the passivated process stops and stores its continuation in a
special structure called a process PID.

The process PID is actually a handle. Each process is bound to its handle.
They are one. We can use only unique handles. Two handles can be tested for
equality. Also we can request the process for its handle.

data ProcPID

instance Eq ProcPID

procPID :: DynamicsProc DynamicsPID

To reactivate another process, we must know its PID. Also we can test
whether a process with the specified PID is passivated, or not. The next two
functions don’t affect the current computation.

reactivateProc :: DynamicsPID -> DynamicsProc ()

procPassive :: DynamicsPID -> DynamicsProc Bool

A time of the process PID creation and a time of the discontinuous process
start are separated. It allows us to create PIDs, define some logic of the processes
that use these PIDs and then already launch the processes.

newPID :: DynamicsQueue -> Dynamics DynamicsPID

runProc :: DynamicsProc () -> DynamicsPID -> Dynamics Double

-> Dynamics ()

4.2. REVISED EXAMPLE MACHREP1 21

The newPID function requires an event queue. This queue acts behind the
scene each time we hold a process for the specified time or reactivate the previ-
ously passivated process.

The runProc function starts the discontinuous process at the specified time.
Also we must assign a PID to the new process. Note that the PIDs must be
unique. Already used PID cannot be used again.

In the F# version of Aivika I have implemented a slightly different
scheme. There is an object instance that stores the process con-
tinuation. This object is identified with the process itself. Instead
of the DynamicsProc monad the F# version uses a more simple
DynamicsCont monad. Actually, the Haskell version also uses this
monad underneath the DynamicsProc monad.

The next section shows how we can apply the discontinuous processes to the
simulation.

4.2 Revised Example MachRep1

Now I will show how the model from section 3.3 can be rewritten using the
discontinuous processes. Below I give the problem statement[1] again.

There are two machines, which sometimes break down. Up time is
exponentially distributed with mean 1.0, and repair time is expo-
nentially distributed with mean 0.5. There are two repairpersons,
so the two machines can be repaired simultaneously if they are down
at the same time. Output is long-run proportion of up time. Should
get value of about 0.66.

The main idea is to represent each of the machines as a separate discontin-
uous process, i.e. a computation in the DynamicsProc monad.

import Random

import Control.Monad.Trans

import Simulation.Aivika.Dynamics

upRate = 1.0 / 1.0 -- reciprocal of mean up time

repairRate = 1.0 / 0.5 -- reciprocal of mean repair time

specs = Specs { spcStartTime = 0.0,

spcStopTime = 1000.0,

spcDT = 1.0,

spcMethod = RungeKutta4 }

exprnd :: Double -> IO Double

22 CHAPTER 4. PROCESS-ORIENTED SIMULATION

exprnd lambda =

do x <- getStdRandom random

return (- log x / lambda)

model :: Dynamics (Dynamics Double)

model =

do queue <- newQueue

totalUpTime <- newRef queue 0.0

pid1 <- newPID queue

pid2 <- newPID queue

let machine :: DynamicsProc ()

machine =

do startUpTime <- liftD time

upTime <- liftIO $ exprnd upRate

holdProc upTime

finishUpTime <- liftD time

liftD $ modifyRef’ totalUpTime

(+ (finishUpTime - startUpTime))

repairTime <- liftIO $ exprnd repairRate

holdProc repairTime

machine

runProc machine pid1 starttime

runProc machine pid2 starttime

let system :: Dynamics Double

system =

do x <- readRef totalUpTime

y <- stoptime

return $ x / (2 * y)

return system

main =

do a <- runDynamics1 model specs

print a

As before, the integration time step spcDT has no any sense for this model but
we have to define it, though. In case of the hybrid model the spcDT parameter
would play already an important role. But here the discontinuous processes are
implemented on top of the event queue that doesn’t use spcDT.

What is new is that how the machine is constructed. It is defined as a
discontinuous process that looks like an infinite loop which is terminated auto-
matically after the simulation is complete, i.e. when time becomes greater than

4.3. RESOURCES 23

stoptime. In this loop we model the work of the machine. To get the current
simulation time, we use the time built-in that returns a computation of type
Dynamics Double. Such a computation must be lifted to be involved in the
upper computation which has another type DynamicsProc. Therefore we apply
the liftD function. In such a way we get to know of the current simulation
time inside of the DynamicsProc computation.

do startUpTime <- liftD time

In the same way we can receive the current value of any computation in
the Dynamics monad, including the integrals. It allows us to truly build hybrid
models.

After we receive the current simulation time and calculate the up time, we
suspend the current process.

holdProc upTime

In the specified time the process will be resumed and its control flow will
continue. Then we update the counter, calculate the repair time and suspend
the process again. After the process is resumed at the second time we repeat
all calling the process computation recursively.

To initiate two separate processes at the start time of simulation, we use the
runProc function.

runProc machine pid1 starttime

runProc machine pid2 starttime

Note that the process PIDs must be different. It will be a run-time error if
the already used PID is used again.

Before we proceed to more complex models I will describe that how in Aivika
we can model a management of the limited resources.

4.3 Resources

In Aivika the limited resources are modeled with help of the DynamicsResource
data type. We pass an event queue and the initial count to the newResource

function that creates a new resource in the Dynamics computation.

data DynamicsResource

instance Eq DynamicsResource

newResource :: DynamicsQueue -> Int -> Dynamics DynamicsResource

The event queue is necessary to suspend those discontinuous processes that
try to request for the resource in case of its deficiency. In general, to acquire the
next unit of the resource, we call the requestResource function in the current
computation of the discontinuous process.

24 CHAPTER 4. PROCESS-ORIENTED SIMULATION

requestResource :: DynamicsResource -> DynamicsProc ()

If the resource is available then its count is decreased, otherwise the process
is suspended until some other process releases the previously acquired resource
with help of the next function.

releaseResource :: DynamicsResource -> DynamicsProc ()

Any acquired resource must be released. It will be a logical error if you
release the resource that was not acquired with help of the requestResource

function. It would be too costly to track such errors. Therefore this is your
responsibility to release the acquired resources.

To know the available count of the limited resource, we can call function
resourceCount. The next second function returns immediately the initial count
of the specified resource. The third one returns the event queue that actually
manages the resource and processes behind the scene.

resourceCount :: DynamicsResource -> DynamicsProc Int

resourceInitCount :: Int

resourceQueue :: DynamicsQueue

This small set of the new functions allows us to build models with more
complex behavior.

4.4 Example MachRep2

Let us go on with the following task[1].

Two machines, but sometimes break down. Up time is exponen-
tially distributed with mean 1.0, and repair time is exponentially
distributed with mean 0.5. In this example, there is only one re-
pairperson, so the two machines cannot be repaired simultaneously
if they are down at the same time.

In addition to finding the long-run proportion of up time, let us also
find the long-run proportion of the time that a given machine does
not have immediate access to the repairperson when the machine
breaks down. Output values should be about 0.6 and 0.67.

Now we have to work with the limited resource, namely the repairperson.
In many places the model is similar to the previous one. Only the block in
which the machines are repaired are guarded by functions requestResource

and releaseResource. Also we add two new counters.

import Random

import Control.Monad

import Control.Monad.Trans

4.4. EXAMPLE MACHREP2 25

import Simulation.Aivika.Dynamics

upRate = 1.0 / 1.0 -- reciprocal of mean up time

repairRate = 1.0 / 0.5 -- reciprocal of mean repair time

specs = Specs { spcStartTime = 0.0,

spcStopTime = 1000.0,

spcDT = 1.0,

spcMethod = RungeKutta4 }

exprnd :: Double -> IO Double

exprnd lambda =

do x <- getStdRandom random

return (- log x / lambda)

model :: Dynamics (Dynamics (Double, Double))

model =

do queue <- newQueue

-- number of times the machines have broken down

nRep <- newRef queue 0

-- number of breakdowns in which the machine

-- started repair service right away

nImmedRep <- newRef queue 0

-- total up time for all machines

totalUpTime <- newRef queue 0.0

repairPerson <- newResource queue 1

pid1 <- newPID queue

pid2 <- newPID queue

let machine :: DynamicsProc ()

machine =

do startUpTime <- liftD time

upTime <- liftIO $ exprnd upRate

holdProc upTime

finishUpTime <- liftD time

liftD $ modifyRef’ totalUpTime

(+ (finishUpTime - startUpTime))

-- check the resource availability

liftD $ modifyRef’ nRep (+ 1)

n <- resourceCount repairPerson

26 CHAPTER 4. PROCESS-ORIENTED SIMULATION

when (n == 1) $

liftD $ modifyRef’ nImmedRep (+ 1)

requestResource repairPerson

repairTime <- liftIO $ exprnd repairRate

holdProc repairTime

releaseResource repairPerson

machine

runProc machine pid1 starttime

runProc machine pid2 starttime

let system :: Dynamics (Double, Double)

system =

do x <- readRef totalUpTime

y <- stoptime

n <- readRef nRep

nImmed <- readRef nImmedRep

return (x / (2 * y),

fromIntegral nImmed / fromIntegral n)

return system

main =

do a <- runDynamics1 model specs

print a

We create two new counters to find the proportion of the time that a given
machine does not have immediate access to the repairperson.

nRep <- newRef queue 0

nImmedRep <- newRef queue 0

Also there is only one repairperson. The corresponded resource is created in
the following line:

repairPerson <- newResource queue 1

To check whether the repairperson is free or busy, we use the resourceCount
function. The next code increases the second counter only if he/she is free. If
the repairperson is busy then n equals 0.

liftD $ modifyRef’ nRep (+ 1)

n <- resourceCount repairPerson

when (n == 1) $

liftD $ modifyRef’ nImmedRep (+ 1)

4.5. EXAMPLE MACHREP3 27

To repair the broken machine, we have to acquire the resource busying the re-
pairperson. This operation suspends the current discontinuous process if he/she
is already busy with another machine.

requestResource repairPerson

After the resource is acquired, the repairing process is modeled as a short-
time suspension of the current process. Then the machine is counted repaired
and we must release the resource, i.e. free the repairperson.

releaseResource repairPerson

Then we repeat the loop recursively calling the same computation. It should
be a general rule in modeling the discontinuous processes.

The next example is more complicated and involves a process passivation
and the following reactivation.

4.5 Example MachRep3

The next model[1] has a more complex behavior.

Variation of the previous models. Two machines, but sometimes
break down. Up time is exponentially distributed with mean 1.0,
and repair time is exponentially distributed with mean 0.5. In this
example, there is only one repairperson, and she is not summoned
until both machines are down. We find the proportion of up time.
It should come out to about 0.45.

To model the work of two machines, we have to passivate the first broken
machine until the second machine is broken too. Then we summon the repair-
person, reactivating the first machine. Therefore the discontinuous process that
models the machine must know the process PID of another machine. We pass
it as a parameter.

import Random

import Control.Monad

import Control.Monad.Trans

import Simulation.Aivika.Dynamics

upRate = 1.0 / 1.0 -- reciprocal of mean up time

repairRate = 1.0 / 0.5 -- reciprocal of mean repair time

specs = Specs { spcStartTime = 0.0,

spcStopTime = 1000.0,

spcDT = 1.0,

spcMethod = RungeKutta4 }

28 CHAPTER 4. PROCESS-ORIENTED SIMULATION

exprnd :: Double -> IO Double

exprnd lambda =

do x <- getStdRandom random

return (- log x / lambda)

model :: Dynamics (Dynamics Double)

model =

do queue <- newQueue

-- number of machines currently up

nUp <- newRef queue 2

-- total up time for all machines

totalUpTime <- newRef queue 0.0

repairPerson <- newResource queue 1

pid1 <- newPID queue

pid2 <- newPID queue

let machine :: DynamicsPID -> DynamicsProc ()

machine pid =

do startUpTime <- liftD time

upTime <- liftIO $ exprnd upRate

holdProc upTime

finishUpTime <- liftD time

liftD $ modifyRef’ totalUpTime

(+ (finishUpTime - startUpTime))

liftD $ modifyRef’ nUp $ \a -> a - 1

nUp’ <- liftD $ readRef nUp

if nUp’ == 1

then passivateProc

else do n <- resourceCount repairPerson

when (n == 1) $ reactivateProc pid

requestResource repairPerson

repairTime <- liftIO $ exprnd repairRate

holdProc repairTime

liftD $ modifyRef’ nUp $ \a -> a + 1

releaseResource repairPerson

machine pid

runProc (machine pid2) pid1 starttime

4.5. EXAMPLE MACHREP3 29

runProc (machine pid1) pid2 starttime

let system :: Dynamics Double

system =

do x <- readRef totalUpTime

y <- stoptime

return $ x / (2 * y)

return system

main =

do a <- runDynamics1 model specs

print a

After the machine is broken, we decrease the counter of machines currently
up. If only this machine is broken then we passivate it. Otherwise, the both
machines are counted broken and the last of them, i.e. current, reactivates
another in that case if the repairperson is free, i.e. n equals 1.

liftD $ modifyRef’ nUp $ \a -> a - 1

nUp’ <- liftD $ readRef nUp

if nUp’ == 1

then passivateProc

else do n <- resourceCount repairPerson

when (n == 1) $ reactivateProc pid

To repair the machine, we acquire the resouce. Before we release it, we
increase the counter of the machines.

liftD $ modifyRef’ nUp $ \a -> a + 1

releaseResource repairPerson

Each of the both machines must know of another. We pass other’s PID
during the start of the machine.

runProc (machine pid2) pid1 starttime

runProc (machine pid1) pid2 starttime

The process-oriented simulation is built on top of the event queue and the
Dynamics computation, i.e. on top of the event-driven simulation. But we
can actually create models based on the Dynamics computation directly even
without queue, although it is more risky as we loose the coordination center in
the form of the event queue. The next chapter is devoted to this subject.

30 CHAPTER 4. PROCESS-ORIENTED SIMULATION

Chapter 5

Activity-oriented
Simulation

Under the Activity-oriented paradigm, we break time into tiny increments. At
each time point, we look around at all the activities and check for the possible
occurrence of events. Sometimes this scheme is called time-driven.

In Aivika we have the time built-ins. The dt value can play a role of the
tiny time increment. Also the Dynamics type is a monad. Therefore we can
define a rather complex code in the monad computation including that one
which is necessary to operate on activities. It would be tempting to use this in
the models.

We can say that Aivika supports the activity-oriented paradigm as well. But
we should be cautious as this way of simulation is most risky. Below I will show
how one of the considered earlier models can be coded under this paradigm and
then I will show what is dangerous in that code. But before it we need some
theory.

5.1 Ordered Computations and Memoization

The Dynamics computation by itself doesn’t give any guarantee of the order
of calculations. This computation corresponds to a dynamic process and we
can request for its value at any time point. Therefore the computation usually
contains a rule by which such a value can be calculated. It usually doesn’t store
the values themselves. This is a key point.

Each time we call runDynamics1 function, the Aivika engine at first creates
a model in the initial integration time point and then calls this model in the last
integration time point to return the result. The runDynamics function requests
already the model in every integration time point in the sequential order from
the first to last with the specified integration time step.

But the Dynamics computation is not actually limited to a finite set of the
integration time points. The computation works with the infinite set. We can

31

32 CHAPTER 5. ACTIVITY-ORIENTED SIMULATION

request for the value at any time point from the set of real numbers. Then how
does Aivika compute integrals?

The integral values are calculated in the integration time points and then
interpolated for all other points. There are three predefined interpolation trans-
formations. The integrals use the interpolate function.

initD :: Dynamics a -> Dynamics a

discrete :: Dynamics a -> Dynamics a

interpolate :: Dynamics Double -> Dynamics Double

The initD function returns always a value for the initial time point. It is
useful if we want to know the initial value of some computation. The discrete

function works like a linear stepwise function reducing all the time space to
the integration time points only. If the requested point is different then the
function returns the computation’s value for the greatest integration time point
not greater than the requested one. Also it takes into account an accuracy.
Finally, the interpolate function is similar to discrete but applies a linear
interpolation between the closest integration time points.

With help of these three functions we can reduce the infinite time space to
a finite space of the integration time points. The next question is how to calcu-
late values in these points? The obvious solution is to perform the calculations
sequentially starting from the initial time point to the last one with the speci-
fied integration time step. If you remember, this step is defined by the spcDT

parameter. This is what functions memo0 and memo0’ do. Also they save the
calculated values in the internal cache.

memo0 :: Memo e => (Dynamics e -> Dynamics e)

-> Dynamics e

-> Dynamics (Dynamics e)

umemo0 :: UMemo e => (Dynamics e -> Dynamics e)

-> Dynamics e

-> Dynamics (Dynamics e)

instance Memo e

The latter is just an unbound version of the former. Two type classes Memo

and UMemo are used here. We need them to create mutable arrays in which the
computation’s values are stored. Any type is an instance of the Memo type class.
The UMemo class is more restrictive. If we can create an unboxed array for some
type then this type is an instance of the UMemo class. For example, Double and
Int are instances of the both classes. Also the both functions are strict.

The first argument must be an interpolation function. The second argument
specifies a computation to memoize in the integration time points. In all other
points the values are interpolated using the specified interpolation function.

But the integrals need more. Some integration methods such as Runge-Kutta
introduce additional steps when the same time points are used interchangeably.

5.2. EXAMPLE MACHREP1 AGAIN 33

There are memoization functions that know of these additional steps. They are
called the same only without zero on the end.

memo :: Memo e => (Dynamics e -> Dynamics e)

-> Dynamics e

-> Dynamics (Dynamics e)

umemo :: UMemo e => (Dynamics e -> Dynamics e)

-> Dynamics e

-> Dynamics (Dynamics e)

Thus, we can make the computation sequential and memoized. This is im-
portant for the integrals. The sequential order is important for the activity-
oriented simulation too, although the memoization itself is somewhere redun-
dant for this kind of simulation. Only we must guarantee that nobody else will
call the computation outside the selected memo function. Usually, it is easy to
provide this guarantee.

Now it is time of some practice.

5.2 Example MachRep1 Again

I will take the model[1] from section 3.3. For easiness I will give the model
description again.

There are two machines, which sometimes break down. Up time is
exponentially distributed with mean 1.0, and repair time is expo-
nentially distributed with mean 0.5. There are two repairpersons,
so the two machines can be repaired simultaneously if they are down
at the same time. Output is long-run proportion of up time. Should
get value of about 0.66.

We have much manual work to do. We have to track each iteration. We
create two counters of iterations. The first counter defines how long the machine
is in a working state. The second counter defines how long the machine is broken.
Since the counters can be created in the Dynamics computation only, we create
such a machine that returns actually a nested computation.

import Random

import Control.Monad.Trans

import Simulation.Aivika.Dynamics

upRate = 1.0 / 1.0 -- reciprocal of mean up time

repairRate = 1.0 / 0.5 -- reciprocal of mean repair time

specs = Specs { spcStartTime = 0.0,

34 CHAPTER 5. ACTIVITY-ORIENTED SIMULATION

spcStopTime = 1000.0,

spcDT = 0.05,

spcMethod = RungeKutta4 }

exprnd :: Double -> IO Double

exprnd lambda =

do x <- getStdRandom random

return (- log x / lambda)

model :: Dynamics (Dynamics Double)

model =

do queue <- newQueue

totalUpTime <- newRef queue 0.0

let machine :: Dynamics (Dynamics ())

machine =

do startUpTime <- newRef queue 0.0

-- a number of iterations when

-- the machine works

upNum <- newRef queue (-1)

-- a number of iterations when

-- the machine is broken

repairNum <- newRef queue (-1)

-- create a simulation model

return $

do upNum’ <- readRef upNum

repairNum’ <- readRef repairNum

let untilBroken =

modifyRef’ upNum $ \a -> a - 1

untilRepaired =

modifyRef’ repairNum $ \a -> a - 1

broken =

do writeRef’ upNum (-1)

-- the machine is broken

startUpTime’ <- readRef startUpTime

finishUpTime’ <- time

dt’ <- dt

modifyRef’ totalUpTime $

\a -> a +

(finishUpTime’ - startUpTime’)

5.2. EXAMPLE MACHREP1 AGAIN 35

repairTime’ <-

liftIO $ exprnd repairRate

writeRef’ repairNum $

round (repairTime’ / dt’)

repaired =

do writeRef’ repairNum (-1)

-- the machine is repaired

t’ <- time

dt’ <- dt

writeRef’ startUpTime t’

upTime’ <-

liftIO $ exprnd upRate

writeRef’ upNum $

round (upTime’ / dt’)

result | upNum’ > 0 = untilBroken

| upNum’ == 0 = broken

| repairNum’ > 0 = untilRepaired

| repairNum’ == 0 = repaired

| otherwise = repaired

result

-- create two machines with type Dynamics ()

m1 <- machine

m2 <- machine

-- create strictly sequential computations

c1 <- memo0 discrete m1

c2 <- memo0 discrete m2

let system :: Dynamics Double

system =

do c1 -- involve in the simulation

c2 -- involve in the simulation

x <- readRef totalUpTime

y <- stoptime

return $ x / (2 * y)

return system

main =

do a <- runDynamics1 model specs

print a

36 CHAPTER 5. ACTIVITY-ORIENTED SIMULATION

To create a machine, we extract the corresponded computation from the
nested one.

-- create two machines with type Dynamics ()

m1 <- machine

m2 <- machine

If you read the previous section, then you know that we cannot use these
computations directly. We don’t know at what time point they will be called.
To order them, we can apply the memo0 function, although the caching itself
will be redundant here.

-- create strictly sequential computations

c1 <- memo0 discrete m1

c2 <- memo0 discrete m2

To take effect, these new computations must be involved in the main simu-
lation. This is what the next lines of the code do.

system =

do c1 -- involve in the simulation

c2 -- involve in the simulation

If we used computations m1 and m2 instead of c1 and c2 here then there
would be no any simulation. Aivika would request the values of m1 and m2 at
the last integration time point and that would be an end.

Now requesting for the value in the last time point from the runDynamics1

function leads to a full and ordered calculation in all integration time points
starting from the initial one. The memo0 function guarantees it. Also it is
important that nobody else uses computations m1 and m2 expect for this memo
function. It would be an error even if you used the same computation twice.

-- ERROR

c1 <- memo0 discrete m1

c1’ <- memo0 discrete m1

Also we use the standard Aivika references, but it makes no any special
sense. We could use the IORef references with the same success. The event
queue is not used here in any way. Nothing depends on the queue. I provided
such references only to attract your attention to this detail.

Thus, the activity-oriented simulation requires much manual work. Also
we have to deal with an uncertain order of calculations which is inherent in
the Dynamics computation. Compare with that how easily we could define
the same model under the event-oriented and process-oriented paradigms. The
event queue is a great achievement in simplifying the simulation. The next
chapter shows how the same queue can be applied to model the agents.

Chapter 6

Agent-based Modeling

The agent-based modeling is quite different in comparison with DES and System
Dynamics. The main entity is an agent that acts as a state machine. The states
can have children. The states can be activated, or deactivated. All ancestors
of the active state are considered implicitly active, but there is always only one
selected active state.

The state hierarchy represents a forest of trees. We can modify this forest
dynamically during simulation. We can add new states, define their activa-
tion and deactivation computations and then make some of these states active,
selecting one of them as the downmost active state. Its ancestor line will be
activated. Other states will be deactivated if required. The same ancestor can
stay activated during a change of the selected state. The states are activated
and deactivated only in case of need.

Also we can assign the timer and timeout handlers to each active state.
These handlers are computations that are actuated in the specified amount of
time. This is what gives a moving force to the agents making them an excellent
tool for modeling some systems.

Aivika supports the agent-based modeling. As almost everything else, this
support is based on the Dynamics monad. The activation and deactivation pro-
cedures are the Dynamics computations. So are the timer and timeout handlers.
As before, all is ruled by the event queue.

6.1 Stateful Agents

The agents and their states are created as part of the Dynamics computation.
The agent is bound to the specified event queue. The state is bound to its agent.
Also the state can have a parent state.

data Agent

data AgentState

instance Eq Agent

37

38 CHAPTER 6. AGENT-BASED MODELING

instance Eq AgentState

newAgent :: DynamicsQueue -> Dynamics Agent

newState :: Agent -> Dynamics AgentState

newSubstate :: AgentState -> Dynamics AgentState

agentQueue :: Agent -> DynamicsQueue

stateAgent :: AgentState -> Agent

stateParent :: AgentState -> Maybe AgentState

Each agent has a selected active state. It is always a downmost state in
the line of active states. All ancestors of this state in the hierarchy forest
are considered implicitly active. Other states are deactivated. To know this
downmost active state, we can apply the agentState function.

agentState :: Agent -> Dynamics (Maybe AgentState)

If the agent was not initiated yet then it has no active state and this function
returns Nothing wrapped in the Dynamics monad. We can initiate the agent
and select another downmost active state with help of the same function. It is
function activateState.

activateState :: AgentState -> Dynamics ()

initState :: AgentState -> Dynamics ()

The initState is very similar to the first function but it works only dur-
ing the direct activation when namely this state is selected. It means that the
initState function can be called only from the activation computation. If
the state is activated implicitly when its descendant becomes active then the
initState function is just ignored. It allows us to manage the state initializa-
tion.

Each state has the activation and deactivation computations. They are
actuated if necessary. By default they are empty. We can modify them with
help of the following two functions.

stateActivation :: AgentState -> Dynamics () -> Dynamics ()

stateDeactivation :: AgentState -> Dynamics () -> Dynamics ()

They look like statements that the specified state has this activation and
that deactivation computations.

What makes the agent alive is the timeout and timer handlers. They are
similar to events and they are indeed implemented as the events. Only the
timeout and timer handlers are assigned to some state and they are legitimate
while the corresponded state remains active. After the state is deactivated all
its handlers become outdated and then they are ignored. But you can assign
new handlers at the time of next state activation.

6.2. EXAMPLE BASSDIFFUSION 39

addTimeoutD :: AgentState -> Dynamics Double -> Dynamics ()

-> Dynamics ()

addTimerD :: AgentState -> Dynamics Double -> Dynamics ()

-> Dynamics ()

addTimeout :: AgentState -> Double -> Dynamics () -> Dynamics ()

addTimer :: AgentState -> Double -> Dynamics () -> Dynamics ()

The first argument is the state which the handler is assigned to. The sec-
ond argument specifies the time period in which the handler can be actuated,
if the state will remain active. The third argument defines the corresponded
computation.

If the timeout handler is still actuated then it happens only once. The timer
handler tries to add itself again. It will periodically repeat while the state
remains active.

If the time period is defined as a number then it stays calculated. If the time
period is defined as the Dynamics computation then it will be recalculated each
time the timer handler tries to add itself again.

Like other cases the event queue manages all the process here. On the
underlying level it treats the timer and timeout handlers as events. Each agent
state has a version number. When we add a new handler, we save the current
version with the corresponded event. If the state becomes deactivated then its
version increases, which makes all handlers with less version number obsolete.
It is efficient enough.

Now we will see how this theory can be applied to a practice.

6.2 Example BassDiffusion

An agent-based version of the Bass Diffusion model[2] is described in the Any-
Logic tutorial.

The model describes a product diffusion process. Potential adopters
of a product are influenced into buying the product by advertising
and by word of mouth from adopters — those who have already
purchased the new product. Adoption of a new product driven by
word of mouth is likewise an epidemic. Potential adopters come into
contact with adopters through social interactions. A fraction of these
contacts results in the purchase of the new product. The advertising
causes a constant fraction of the potential adopter population to
adopt each time period.

The model starts similarly. We import the modules, define constants, simu-
lation specs and two random functions.

import Random

import Data.Array

40 CHAPTER 6. AGENT-BASED MODELING

import Control.Monad

import Control.Monad.Trans

import Simulation.Aivika.Dynamics

n = 500 -- the number of agents

advertisingEffectiveness = 0.011

contactRate = 100.0

adoptionFraction = 0.015

specs = Specs { spcStartTime = 0.0,

spcStopTime = 8.0,

spcDT = 0.1,

spcMethod = RungeKutta4 }

exprnd :: Double -> IO Double

exprnd lambda =

do x <- getStdRandom random

return (- log x / lambda)

boolrnd :: Double -> IO Bool

boolrnd p =

do x <- getStdRandom random

return (x <= p)

Now we create an agent identified with the person who can be in two states:
an adopter or potential adopter. To create the person, we need the event queue.
We place all persons in the array. We need this array to have an access to
random agents at time when the specified adopter tries to convert somebody to
be an adopter too.

data Person = Person { personAgent :: Agent,

personPotentialAdopter :: AgentState,

personAdopter :: AgentState }

createPerson :: DynamicsQueue -> Dynamics Person

createPerson q =

do agent <- newAgent q

potentialAdopter <- newState agent

adopter <- newState agent

return Person { personAgent = agent,

personPotentialAdopter = potentialAdopter,

personAdopter = adopter }

createPersons :: DynamicsQueue -> Dynamics (Array Int Person)

6.2. EXAMPLE BASSDIFFUSION 41

createPersons q =

do list <- forM [1 .. n] $ \i ->

do p <- createPerson q

return (i, p)

return $ array (1, n) list

Since the agents and states are created in the Dynamics computation, we
have to separate different steps. At first step we create the objects. At second
step we define their activation and deactivation computations.

definePerson :: Person -> Array Int Person

-> DynamicsRef Int -> DynamicsRef Int

-> Dynamics ()

definePerson p ps potentialAdopters adopters =

do stateActivation (personPotentialAdopter p) $

do modifyRef’ potentialAdopters $ \a -> a + 1

-- add a timeout

t <- liftIO $ exprnd advertisingEffectiveness

let st = personPotentialAdopter p

st’ = personAdopter p

addTimeout st t $ activateState st’

stateActivation (personAdopter p) $

do modifyRef’ adopters $ \a -> a + 1

-- add a timer that works while the state is active

let t = liftIO $ exprnd contactRate -- many times!

addTimerD (personAdopter p) t $

do i <- liftIO $ getStdRandom $ randomR (1, n)

let p’ = ps ! i

st <- agentState (personAgent p’)

when (st == Just (personPotentialAdopter p’)) $

do b <- liftIO $ boolrnd adoptionFraction

when b $ activateState (personAdopter p’)

stateDeactivation (personPotentialAdopter p) $

modifyRef’ potentialAdopters $ \a -> a - 1

stateDeactivation (personAdopter p) $

modifyRef’ adopters $ \a -> a - 1

definePersons :: Array Int Person

-> DynamicsRef Int

-> DynamicsRef Int

-> Dynamics ()

definePersons ps potentialAdopters adopters =

forM_ (elems ps) $ \p ->

definePerson p ps potentialAdopters adopters

When the potential adopter state is activated we add a timeout handler
with the specified period after which the agent becomes an adopter. The most

42 CHAPTER 6. AGENT-BASED MODELING

difficult part is the activation computation for the adopter state. We add a
timer handler that periodically calls a procedure when the adopter tries to
make a random agent an adopter too. Note that the time period for the timer
is specified as the Dynamics computation. It will be recalculated during every
next call giving different random numbers.

activatePerson :: Person -> Dynamics ()

activatePerson p = activateState (personPotentialAdopter p)

activatePersons :: Array Int Person -> Dynamics ()

activatePersons ps =

forM_ (elems ps) $ \p -> activatePerson p

An agent activation is straightforward enough. Each agent starts with the
potential adopter state.

model :: Dynamics (Dynamics [Int])

model =

do q <- newQueue

potentialAdopters <- newRef q 0

adopters <- newRef q 0

ps <- createPersons q

definePersons ps potentialAdopters adopters

activatePersons ps

return $ do i1 <- readRef potentialAdopters

i2 <- readRef adopters

return [i1, i2]

main =

do xs <- runDynamics model specs

print xs

The remained part is simple. We create agents, define and then activate
them. We return the values defined with help of the references. These references
are updated by the agents during their work.

Here is one of the possible results of simulation:

[[500,0],[499,1],[498,2],[498,2],[498,2],[498,2],[495,5],[495,5],

[494,6],[488,12],[488,12],[484,16],[480,20],[478,22],[474,26],

[469,31],[458,42],[448,52],[441,59],[434,66],[426,74],[413,87],

[403,97],[389,111],[375,125],[363,137],[348,152],[336,164],

[323,177],[299,201],[281,219],[255,245],[239,261],[216,284],

[202,298],[187,313],[170,330],[156,344],[141,359],[123,377],

[114,386],[99,401],[83,417],[78,422],[68,432],[61,439],[56,444],

[51,449],[46,454],[42,458],[33,467],[30,470],[28,472],[25,475],

[23,477],[22,478],[20,480],[18,482],[17,483],[11,489],[8,492],

[7,493],[7,493],[7,493],[5,495],[4,496],[3,497],[3,497],[3,497],

6.2. EXAMPLE BASSDIFFUSION 43

[2,498],[2,498],[2,498],[2,498],[2,498],[2,498],[2,498],[2,498],

[2,498],[2,498],[2,498],[2,498]]

The next chapter returns us to the system of differential equations which we
started with.

44 CHAPTER 6. AGENT-BASED MODELING

Chapter 7

System Dynamics

A model of System Dynamics is a dynamic system with loopbacks. Usually, it is
a system of differential equations (ODEs). It can have stocks such as reservoirs,
flows and auxiliaries. The reservoir is just an integral. Then the flow is a
summand of the derivative. We take it with the plus or minus sign depending
on that whether the flow is inflow or outflow. The auxiliaries correspond to
other variables.

There are also discrete stocks such as conveyors, ovens and queues. It is
important that their simulation can also be described in terms of the integration
method such as the Runge-Kutta method or Euler’s method. Any stock has
a state varying in time. We update sequentially this state in all integration
time points. It looks like that as we would integrate numerically differential
equations.

An idea is to define the model both graphically on the diagram and in the
equations. The loopbacks are usually explicitly shown on the diagram which is
called a Stock and Flow Map. Stocks are an origin of these loopbacks. Flows
close them.

The ordinary differential equations are easily defined in Aivika. Before we
proceed to an example, I will introduce the table functions that are very useful
in such equations.

7.1 Table Functions

A table function operates on the Dynamics computation that represents value
x. The second argument is a table of pairs (x, y). The resulting computation
represents y which is calculated based on the specified arguments.

There are two table functions in Aivika. The first function uses a linear
interpolation. The second one is a linear stepwise function. Note that the table
must be sorted by value x in the both cases.

lookupD :: Dynamics Double

-> Array Int (Double, Double)

45

46 CHAPTER 7. SYSTEM DYNAMICS

-> Dynamics Double

lookupStepwiseD :: Dynamics Double

-> Array Int (Double, Double)

-> Dynamics Double

The next example illustrates how these table functions can simplify the
model definition.

7.2 Example FishBank

The Fish Bank model is distributed along with other sample models as a part of
the installation package of Simtegra MapSys[3]. This model is trying to establish
a relation between the amount of fish in the ocean, a number of ships with help
of which this fish is caught and the profit that the ship owners could realize.

In the model I will use two new functions which are counterparts of the
standard min and max functions.

maxD :: (Ord a) => Dynamics a -> Dynamics a -> Dynamics a

minD :: (Ord a) => Dynamics a -> Dynamics a -> Dynamics a

The model itself is stated below. The equations are easy to read. At first we
initialize the integrals, then define the auxiliaries and finally set the derivatives
creating loopbacks.

import Data.Array

import Simulation.Aivika.Dynamics

specs = Specs { spcStartTime = 0,

spcStopTime = 13,

spcDT = 0.01,

spcMethod = RungeKutta4 }

model :: Dynamics (Dynamics Double)

model =

do fishInteg <- newInteg 1000

shipsInteg <- newInteg 10

totalProfitInteg <- newInteg 0

-- integral values --

let fish = integValue fishInteg

ships = integValue shipsInteg

totalProfit = integValue totalProfitInteg

-- auxiliary values --

let annualProfit = profit

area = 100

7.2. EXAMPLE FISHBANK 47

carryingCapacity = 1000

catchPerShip =

lookupD density $

listArray (1, 11) [(0.0, -0.048), (1.2, 10.875),

(2.4, 17.194), (3.6, 20.548),

(4.8, 22.086), (6.0, 23.344),

(7.2, 23.903), (8.4, 24.462),

(9.6, 24.882), (10.8, 25.301),

(12.0, 25.86)]

deathFraction =

lookupD (fish / carryingCapacity) $

listArray (1, 11) [(0.0, 5.161), (0.1, 5.161),

(0.2, 5.161), (0.3, 5.161),

(0.4, 5.161), (0.5, 5.161),

(0.6, 5.118), (0.7, 5.247),

(0.8, 5.849), (0.9, 6.151),

(10.0, 6.194)]

density = fish / area

fishDeathRate = maxD 0 (fish * deathFraction)

fishHatchRate = maxD 0 (fish * hatchFraction)

fishPrice = 20

fractionInvested = 0.2

hatchFraction = 6

operatingCost = ships * 250

profit = revenue - operatingCost

revenue = totalCatchPerYear * fishPrice

shipBuildingRate =

maxD 0 (profit * fractionInvested / shipCost)

shipCost = 300

totalCatchPerYear = maxD 0 (ships * catchPerShip)

-- derivatives --

integDiff fishInteg

(fishHatchRate - fishDeathRate - totalCatchPerYear)

integDiff shipsInteg shipBuildingRate

integDiff totalProfitInteg annualProfit

-- results --

return annualProfit

main = do xs <- runDynamics model specs

print xs -- N.B. it is a long output!

The next chapter summarizes the methods we have considered till now.

48 CHAPTER 7. SYSTEM DYNAMICS

Chapter 8

Hybrid Simulation

We saw that the same Dynamics computation can describe models under very
different simulation paradigms including System Dynamics, Discrete Event Sim-
ulation and Agent-based modeling. Their differences are erased. Everything
is reduced ultimately to some function varying in time whatever complex the
model would be. Such a function represents some underlying dynamic process.
Therefore I often call the Dynamics computation a dynamic process. I use these
terms as interchangeable.

It is amazing how well this idea suits the functional programming. This
function is actually a monad. In other words, the dynamic process is a monad,
which makes the former just a fantastic build unit to create simulation models.
What is also important, we can mix different models together even if they were
created under different paradigms. For example, we can mix agents, events,
discontinuous processes and differential equations in the same hybrid model.
And all this huge thing will work as one complex dynamic process, i.e. some
value in the Dynamics monad.

I would like to end this document saying that this subject is not yet com-
pleted. I expect that new simulation techniques can be developed using the
method I have invented and implemented in Aivika.

49

50 CHAPTER 8. HYBRID SIMULATION

Bibliography

[1] Norm Matloff. Introduction to Discrete-Event Simulation and the SimPy
Language, 2008,
http://heather.cs.ucdavis.edu/ matloff/156/PLN/DESimIntro.pdf

[2] AnyLogic Tutorial. http://www.xjtek.com/anylogic/help/nav/1 2

[3] Simtegra MapSys. http://www.simtegra.com

[4] Vensim. http://www.vensim.com

[5] iThink. http://www.iseesystems.com

[6] The F# version of Aivika. http://sourceforge.net/projects/aivika/

51

http://heather.cs.ucdavis.edu/~matloff/156/PLN/DESimIntro.pdf
http://www.xjtek.com/anylogic/help/nav/1_2
http://www.simtegra.com
http://www.vensim.com
http://www.iseesystems.com
http://sourceforge.net/projects/aivika/

	Introduction
	Dynamic Systems
	Discrete Event Simulation
	Event Queue
	References
	Example MachRep1

	Process-oriented Simulation
	Discontinuous Processes
	Revised Example MachRep1
	Resources
	Example MachRep2
	Example MachRep3

	Activity-oriented Simulation
	Ordered Computations and Memoization
	Example MachRep1 Again

	Agent-based Modeling
	Stateful Agents
	Example BassDiffusion

	System Dynamics
	Table Functions
	Example FishBank

	Hybrid Simulation

